Skip to main content

The Statistical Minkowski Distances: Closed-Form Formula for Gaussian Mixture Models

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11712))

Included in the following conference series:

Abstract

The traditional Minkowski distances are induced by the corresponding Minkowski norms in real-valued vector spaces. In this work, we propose statistical symmetric distances based on the Minkowski’s inequality for probability densities belonging to Lebesgue spaces. These statistical Minkowski distances admit closed-form formula for Gaussian mixture models when parameterized by integer exponents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Like any distance based on the log ratio of triangle inequality gap induced by a homogeneous norm.

  2. 2.

    Because \(\sum _i \alpha _i B_F(\theta _i:\bar{\theta })=J_F({\theta _1},\ldots , {\theta _k};\alpha _1,\ldots ,\alpha _k)\) for the barycenter \(\bar{\theta }=\sum _i\alpha _i \theta _i\), where \(B_F(\theta :\theta ')=F(\theta )-F(\theta ')-(\theta -\theta ')^\top \nabla F(\theta ')\) is a Bregman divergence.

  3. 3.

    To apply the multinomial expansion, we need elements to commute wrt. the product. Thus it does not apply to the matrix cases.

References

  1. Alabiso, C., Weiss, I.: A Primer on Hilbert Space Theory: Linear Spaces, Topological Spaces, Metric Spaces, Normed Spaces, and Topological Groups. UNITEXT for Physics. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-03713-4

    Book  MATH  Google Scholar 

  2. Balakrishnan, V.K.: Introductory Discrete Mathematics. Courier Corporation, North Chelmsford (2012)

    MATH  Google Scholar 

  3. Banerjee, A., Merugu, S., Dhillon, I.S., Ghosh, J.: Clustering with Bregman divergences. J. Mach. Learn. Res. 6, 1705–1749 (2005)

    MathSciNet  MATH  Google Scholar 

  4. Bogachev, V.I.: Measure Theory, vol. 1. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-34514-5

    Book  MATH  Google Scholar 

  5. Bolton, D.W.: The multinomial theorem. Math. Gaz. 52(382), 336–342 (1968)

    Article  Google Scholar 

  6. Bronstein, M.: Symbolic Integration I: Transcendental Functions, vol. 1. Springer, New York (2013)

    MATH  Google Scholar 

  7. Brown, L.D.: Fundamentals of Statistical Exponential Families: With Applications in Statistical Decision Theory. IMS (1986)

    Google Scholar 

  8. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, Hoboken (2012)

    MATH  Google Scholar 

  9. Deza, M.M., Deza, E.: Encyclopedia of distances. In: Deza, E., Deza, M.M. (eds.) Encyclopedia of Distances, pp. 1–583. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00234-2_1

    Chapter  MATH  Google Scholar 

  10. Durrieu, J.L., Thiran, J.P., Kelly, F.: Lower and upper bounds for approximation of the Kullback-Leibler divergence between Gaussian mixture models. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4833–4836. IEEE (2012)

    Google Scholar 

  11. Fujisawa, H., Eguchi, S.: Robust parameter estimation with a small bias against heavy contamination. J. Multivar. Anal. 99(9), 2053–2081 (2008)

    Article  MathSciNet  Google Scholar 

  12. Goldberger, J., Aronowitz, H.: A distance measure between GMMs based on the unscented transform and its application to speaker recognition. In: European Conference on Speech Communication and Technology (INTERSPEECH), pp. 1985–1988 (2005)

    Google Scholar 

  13. Goldberger, J., Gordon, S., Greenspan, H.: An efficient image similarity measure based on approximations of KL-divergence between two Gaussian mixtures, p. 487 (2003)

    Google Scholar 

  14. Jenssen, R., Principe, J.C., Erdogmus, D., Eltoft, T.: The Cauchy-Schwarz divergence and Parzen windowing: connections to graph theory and Mercer kernels. J. Frankl. Inst. 343(6), 614–629 (2006)

    Article  MathSciNet  Google Scholar 

  15. Jian, B., Vemuri, B.C.: Robust point set registration using Gaussian mixture models. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 33(8), 1633–1645 (2011)

    Article  Google Scholar 

  16. Minkowski, H.: Geometrie der Zahlen, vol. 40 (1910)

    Google Scholar 

  17. Mousley, S., Schley, N., Shoemaker, A.: Planar rook algebra with colors and Pascal’s simplex. arXiv preprint arXiv:1211.0663 (2012)

  18. Nielsen, F.: A family of statistical symmetric divergences based on Jensen’s inequality. arXiv preprint arXiv:1009.4004 (2010)

  19. Nielsen, F.: Closed-form information-theoretic divergences for statistical mixtures. In: 21st International Conference on Pattern Recognition (ICPR), pp. 1723–1726. IEEE (2012)

    Google Scholar 

  20. Nielsen, F., Boltz, S.: The Burbea-Rao and Bhattacharyya centroids. IEEE Trans. Inf. Theory 57(8), 5455–5466 (2011)

    Article  MathSciNet  Google Scholar 

  21. Nielsen, F., Garcia, V.: Statistical exponential families: a digest with flash cards. preprint arXiv:0911.4863 (2009)

  22. Nielsen, F., Nock, R.: Patch matching with polynomial exponential families and projective divergences. In: Amsaleg, L., Houle, M.E., Schubert, E. (eds.) SISAP 2016. LNCS, vol. 9939, pp. 109–116. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46759-7_8

    Chapter  Google Scholar 

  23. Nielsen, F., Sun, K.: Guaranteed bounds on information-theoretic measures of univariate mixtures using piecewise log-sum-exp inequalities. Entropy 18(12), 442 (2016)

    Article  MathSciNet  Google Scholar 

  24. Nielsen, F., Sun, K.: On the chain rule optimal transport distance. arXiv preprint arXiv:1812.08113 (2018)

  25. Nielsen, F., Sun, K., Marchand-Maillet, S.: On Hölder projective divergences. Entropy 19(3), 122 (2017)

    Article  Google Scholar 

  26. Risch, R.H.: The solution of the problem of integration in finite terms. Bull. Am. Math. Soc. 76(3), 605–608 (1970)

    Article  MathSciNet  Google Scholar 

  27. Tolsted, E.: An elementary derivation of the Cauchy, Hölder, and Minkowski inequalities from Young’s inequality. Math. Mag. 37(1), 2–12 (1964)

    Article  MathSciNet  Google Scholar 

  28. Wang, F., Syeda-Mahmood, T., Vemuri, B.C., Beymer, D., Rangarajan, A.: Closed-form jensen-renyi divergence for mixture of gaussians and applications to group-wise shape registration. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5761, pp. 648–655. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04268-3_80

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Nielsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nielsen, F. (2019). The Statistical Minkowski Distances: Closed-Form Formula for Gaussian Mixture Models. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2019. Lecture Notes in Computer Science(), vol 11712. Springer, Cham. https://doi.org/10.1007/978-3-030-26980-7_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26980-7_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26979-1

  • Online ISBN: 978-3-030-26980-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics