Skip to main content

Using the Gini Index for a Gaussian Mixture Model

  • Conference paper
  • First Online:
Advances in Computational Intelligence (MICAI 2020)

Abstract

A Gaussian mixture model is a weighted sum of parametric Gaussian components. These parametric density functions are widely used in data mining and pattern recognition. In this work we propose an efficient method to model a density function as a Gaussian mixture through an iterative algorithm that allow us to estimate the parameters of the model for a given data set. For this purpose we use the Gini Index, a measure of the inequality degree between two probability distributions. The Gini Index is obtained by finding the solution of an optimization problem. Our model consists in minimizing the Gini Index between an empirical distribution and a parametric distribution that is a Gaussian mixture. We will show some simulated examples and real data examples, with two widely used datasets, to observe the efficiency and properties of our model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://archive.ics.uci.edu/ml/index.php.

References

  1. Bassetti, F., Bodini, A., Regazzini, E.: On minimum Kantorovich distance estimators. Stat. Probab. Lett. 76(12), 1298–1302 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

  3. Capinski, M., Kopp, P.: Measure, Integral and Probability. Springer Undergraduate Mathematics Series. Springer, London (2013). https://books.google.com.mx/books?id=5d6PBAAAQBAJ

  4. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc.: Ser. B (Methodol.) 39(1), 1–22 (1977)

    MathSciNet  MATH  Google Scholar 

  5. Giorgi, G.M., Gigliarano, C.: The Gini concentration index: a review of the inference literature. J. Econ. Surv. 31(4), 1130–1148 (2017)

    Article  Google Scholar 

  6. Greenspan, H., Ruf, A., Goldberger, J.: Constrained Gaussian mixture model framework for automatic segmentation of MR brain images. IEEE Trans. Med. Imaging 25(9), 1233–1245 (2006)

    Article  Google Scholar 

  7. Meng, X.L., Rubin, D.B.: On the global and component wise rates of convergence of the EM algorithm. Linear Algebra Appl. 199, 413–425 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Povey, D., et al.: The subspace Gaussian mixture model–a structured model for speech recognition. Comput. Speech Lang. 25(2), 404–439 (2011)

    Article  Google Scholar 

  9. Rachev, S.T., Klebanov, L.B., Stoyanov, S.V., Fabozzi, F.: The Methods of Distances in the Theory of Probability and Statistics. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-4869-3

    Book  MATH  Google Scholar 

  10. Reynolds, D.A.: Gaussian mixture models. In: Encyclopedia of Biometrics, vol. 741 (2009)

    Google Scholar 

  11. Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vis. 40(2), 99–121 (2000). https://doi.org/10.1023/A:1026543900054

    Article  MATH  Google Scholar 

  12. Torres-Carrasquillo, P.A., Reynolds, D.A., Deller, J.R.: Language identification using gaussian mixture model tokenization. In: 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 1, p. I-757. IEEE (2002)

    Google Scholar 

  13. Ultsch, A., Lötsch, J.: A data science based standardized Gini index as a Lorenz dominance preserving measure of the inequality of distributions. PloS One 12(8), e0181572 (2017)

    Article  Google Scholar 

  14. Vaida, F.: Parameter convergence for EM and MM algorithms. Statistica Sinica 15, 831–840 (2005)

    MathSciNet  MATH  Google Scholar 

  15. Villani, C.: Topics in Optimal Transportation. American Mathematical Society, Providence (2003)

    Book  MATH  Google Scholar 

  16. Xu, L., Jordan, M.I.: On convergence properties of the EM algorithm for Gaussian mixtures. Neural Comput. 8(1), 129–151 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Laura López-Lobato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

López-Lobato, A.L., Avendaño-Garrido, M.L. (2020). Using the Gini Index for a Gaussian Mixture Model. In: Martínez-Villaseñor, L., Herrera-Alcántara, O., Ponce, H., Castro-Espinoza, F.A. (eds) Advances in Computational Intelligence. MICAI 2020. Lecture Notes in Computer Science(), vol 12469. Springer, Cham. https://doi.org/10.1007/978-3-030-60887-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60887-3_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60886-6

  • Online ISBN: 978-3-030-60887-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics