Skip to main content

In Silico Identification of Anticancer Peptides with Stacking Heterogeneous Ensemble Learning Model and Sequence Information

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11644))

Included in the following conference series:

Abstract

Cancer is a well-known dreadful killer of human being’s health, which has led to countless deaths and misery. Traditional treatment can also affect the normal cells while killing cancer cells. Meanwhile, physical or chemical techniques are costly and inefficient. Fortunately, anticancer peptides are a promising treatment, with specifically targeted, low production cost and other advantages. In order to effectively identify the anticancer peptides, we proposed a stacking heterogeneous ensemble learning model, ACP-SE, for predicting anticancer peptides. More specifically, to fully exploit protein sequence information, we developed an efficient feature representation approach by integrating binary profile feature and conjoint triad feature. Then we use a stacking ensemble strategy to combine the three heterogeneous classifiers and get the final prediction results. It was demonstrated that the proposed ACP-SE remarkably outperformed other comparison methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferlay, J., Shin, H.R., Bray, F., Forman, D., Mathers, C., Parkin, D.M.: Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer 127(12), 2893–2917 (2010)

    Article  Google Scholar 

  2. Siegel, R.L., Miller, K.D.: Cancer statistics, 2018. CA Cancer J. Clin. 68, 284–296 (2018)

    Article  Google Scholar 

  3. Holohan, C., Schaeybroeck, S.V., Longley, D.B., Johnston, P.G.: Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer 13(10), 714–726 (2013)

    Article  Google Scholar 

  4. Hoskin, D.W., Ramamoorthy, A.: Studies on anticancer activities of antimicrobial peptides. BBA Biomembr. 1778(2), 357–375 (2008)

    Article  Google Scholar 

  5. Gaspar, D., Veiga, A.S., Castanho, M.A.R.B.: From antimicrobial to anticancer peptides. Rev. Front. Microbiol. 4(4), 294 (2013)

    Google Scholar 

  6. Huang, Y., Feng, Q., Yan, Q., Hao, X., Chen, Y.: Alpha-helical cationic anticancer peptides: a promising candidate for novel anticancer drugs. Mini. Rev. Med. Chem. 15(1), 73–81 (2015)

    Article  Google Scholar 

  7. Otvos, L.: Peptide-based drug design: here and now. Methods Mol. Biol. 494(8), 1 (2008)

    Google Scholar 

  8. Mader, J.S., Hoskin, D.W.: Cationic antimicrobial peptides as novel cytotoxic agents for cancer treatment. Expert Opin. Investig. Drugs 15(8), 933–946 (2006)

    Article  Google Scholar 

  9. Hariharan, S., et al.: Assessment of the biological and pharmacological effects of the alpha nu beta3 and alpha nu beta5 integrin receptor antagonist, cilengitide (EMD 121974), in patients with advanced solid tumors. Ann. Oncol. 18(8), 1400–1407 (2007)

    Article  Google Scholar 

  10. Gregorc, V., et al.: Phase I study of NGR-hTNF, a selective vascular targeting agent, in combination with cisplatin in refractory solid tumours. Clin. Cancer Res. 17, 1964–1972 (2011)

    Article  Google Scholar 

  11. Barras, D., Widmann, C.: Promises of apoptosis-inducing peptides in cancer therapeutics. Curr. Pharm. Biotechnol. 12(8), 1153–1165 (2011)

    Article  Google Scholar 

  12. Boohaker, R.J., Lee, M.W., Vishnubhotla, P., Perez, J.M., Khaled, A.R.: The use of therapeutic peptides to target and to kill cancer cells. Curr. Med. Chem. 19(22), 3794–3804 (2012)

    Article  Google Scholar 

  13. Thundimadathil, J.: Cancer treatment using peptides: current therapies and future prospects. J. Amino Acids 2012(1), 967347 (2012)

    Google Scholar 

  14. Tyagi, A., Kapoor, P., Kumar, R., Chaudhary, K., Gautam, A., Raghava, G.P.: In silico models for designing and discovering novel anticancer peptides. Sci. Rep. 3(10), 2984 (2013)

    Article  Google Scholar 

  15. Hajisharifi, Z., Piryaiee, M., Mohammad, B.M., Behbahani, M., Mohabatkar, H.: Predicting anticancer peptides with Chou’s pseudo amino acid composition and investigating their mutagenicity via Ames test. J. Theor. Biol. 341, 34–40 (2014)

    Article  Google Scholar 

  16. Chou, K.C.: Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. 21, 10–19 (2005)

    Google Scholar 

  17. Shen, H.B., Chou, K.C.: Using ensemble classifier to identify membrane protein types. Amino Acids 32(4), 483–488 (2007)

    Article  Google Scholar 

  18. Vijayakumar, S., Lakshmi, P.T.V.: ACPP: a web server for prediction and design of anti-cancer peptides. Int. J. Pept. Res. Ther. 21(1), 99–106 (2015)

    Article  Google Scholar 

  19. Wei, C., Hui, D., Feng, P., Hao, L., Chou, K.C.: iACP: a sequence-based tool for identifying anticancer peptides. Oncotarget 7(13), 16895–16909 (2016)

    Google Scholar 

  20. Wei, L., Zhou, C., Chen, H., Song, J., Su, R.: ACPred-FL: a sequence-based predictor based on effective feature representation to improve the prediction of anti-cancer peptides. Bioinformatics 34, 4007–4016 (2018)

    Google Scholar 

  21. Vapnik, V.N.: Statistical learning theory. Encycl. Sci. Learn. 41(4), 3185 (1998)

    Google Scholar 

  22. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 1–27 (2011)

    Article  Google Scholar 

  23. Breiman, L.: Random forest. Mach. Learn. 45, 5–32 (2001)

    Article  Google Scholar 

  24. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12(10), 2825–2830 (2013)

    MathSciNet  MATH  Google Scholar 

  25. Zhang, H.: The optimality of Naive Bayes. In: The International Flairs Conference (2004)

    Google Scholar 

  26. Schmidt, M., Roux, N.L., Bach, F.: Minimizing finite sums with the stochastic average gradient. Math. Program. 162(5), 1–30 (2016)

    MathSciNet  MATH  Google Scholar 

  27. You, Z.H., Zhou, M., Luo, X., Li, S.: Highly efficient framework for predicting interactions between proteins. IEEE Trans. Cybern. PP(99), 1–13 (2016)

    Google Scholar 

  28. Yi, H.-C., You, Z.-H., Huang, D.-S., Li, X., Jiang, T.-H., Li, L.-P.: A deep learning framework for robust and accurate prediction of ncRNA-protein interactions using evolutionary information. Mol. Ther. Nucleic Acids 11, 337–344 (2018)

    Article  Google Scholar 

  29. Li, W., Godzik, A.: Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22(13), 1658 (2006)

    Article  Google Scholar 

  30. Muppirala, U.K., Honavar, V.G., Dobbs, D.: Predicting RNA-protein interactions using only sequence information. BMC Bioinformatics 12(1), 489 (2011)

    Article  Google Scholar 

  31. Suresh, V., Liu, L., Adjeroh, D., Zhou, X.: RPI-Pred: predicting ncRNA-protein interaction using sequence and structural information. Nucleic Acids Res. 43(3), 1370–1379 (2015)

    Article  Google Scholar 

  32. Pan, X., Fan, Y.X., Yan, J., Shen, H.B.: IPMiner: hidden ncRNA-protein interaction sequential pattern mining with stacked autoencoder for accurate computational prediction. BMC Genom. 17(1), 582 (2016)

    Article  Google Scholar 

  33. Kolda, T.G., O’Leary, D.P.: A semidiscrete matrix decomposition for latent semantic indexing in information retrieval. Proc. ACM Trans. Inf. Syst. 16(4), 322–346 (1996)

    Article  Google Scholar 

  34. Yi, H.-C., et al.: ACP-DL: a deep learning long short-term memory model to predict anticancer peptides using high efficiency feature representation. Mol. Ther. Nucleic Acids 17, 1–9 (2019)

    Article  Google Scholar 

  35. Wang, L., et al.: MTRDA: using logistic model tree to predict miRNA-disease associations by fusing multi-source information of se-quences and similarities. PLoS Comput. Biol. 15(3), e1006865 (2019)

    Article  Google Scholar 

  36. Chen, Z.-H., You, Z.-H., Li, L.-P., Wang, Y.-B., Wong, L., Yi, H.-C.: Prediction of self-interacting proteins from protein sequence information based on random projection model and fast fourier transform. Int. J. Mol. Sci. 20(4), 930 (2019)

    Article  Google Scholar 

  37. Chen, Z.-H., Li, L.-P., He, Z., Zhou, J.-R., Li, Y., Wong, L.: An improved deep forest model for predicting self-interacting proteins from protein sequence using wavelet transformation. Front. Genet. 10, 90 (2019)

    Article  Google Scholar 

  38. Zhu, H.-J., You, Z.-H., Zhu, Z.-X., Shi, W.-L., Chen, X., Cheng, L.: DroidDet: effective and robust detection of android malware using static analysis along with rotation forest model. Neuro-Comput. 272, 638–646 (2018)

    Google Scholar 

  39. You, Z.-H., Huang, W., Zhang, S., Huang, Y.-A., Yu, C.-Q., Li, L.-P.: An efficient ensemble learning approach for predicting protein-protein interactions by integrating protein primary sequence and evolutionary information. IEEE/ACM Trans. Comput. Biol. Bioinform. 16, 809–817 (2018)

    Article  Google Scholar 

  40. Wang, Y.-B., You, Z.-H., Li, X., Jiang, T.-H., Cheng, L., Chen, Z.-H.: Prediction of protein self-interactions using stacked long short-term memory from protein sequences information. BMC Syst. Biol. 12(8), 129 (2018)

    Article  Google Scholar 

  41. Wang, Y., et al.: Predicting protein interactions using a deep learning method-stacked sparse autoencoder combined with a probabilistic classification vector machine. Complexity 2018, 12 (2018)

    Google Scholar 

  42. Wang, L.: Using two-dimensional principal component analysis and rotation forest for prediction of protein-protein interactions. Sci. Rep. 8(1), 12874 (2018)

    Article  Google Scholar 

  43. Wang, L., et al.: An improved efficient rotation forest algorithm to predict the interactions among proteins. Soft. Comput. 22(10), 3373–3381 (2018)

    Article  Google Scholar 

  44. Wang, L., You, Z.-H., Huang, D.-S., Zhou, F.: Combining high speed ELM learning with a deep convolutional neural network feature encoding for predicting protein-RNA interactions. IEEE/ACM Trans. Comput. Biol. Bioinform. PP, 1 (2018)

    Google Scholar 

  45. Wang, L., et al.: A computational-based method for predicting drug–target interactions by using stacked autoencoder deep neural network. J. Comput. Biol. 25(3), 361–373 (2018)

    Article  MathSciNet  Google Scholar 

  46. Song, X.-Y., Chen, Z.-H., Sun, X.-Y., You, Z.-H., Li, L.-P., Zhao, Y.: An ensemble classifier with random projection for predicting protein-protein interactions using sequence and evolutionary information. Appl. Sci. 8(1), 89 (2018)

    Article  Google Scholar 

  47. Qu, J., et al.: In silico prediction of small molecule-miRNA associations based on HeteSim algorithm. Molecular Therapy-Nucleic Acids 14, 274–286 (2019)

    Article  Google Scholar 

  48. Qu, J., Chen, X., Sun, Y.Z., Li, J.Q., Ming, Z.: Inferring potential small molecule–miRNA association based on triple layer heterogeneous network. J. Cheminformatics 10(1), 30 (2018)

    Article  Google Scholar 

  49. Luo, X., et al.: Incorporation of efficient second-order solvers into latent factor models for accurate prediction of missing QoS data. IEEE Trans. Cybern. 48(4), 1216–1228 (2018)

    Article  Google Scholar 

  50. Li, L.-P., Wang, Y.-B., You, Z.-H., Li, Y., An, J.-Y.: PCLPred: a bioinformatics method for predicting protein-protein interactions by combining relevance vector machine model with low-rank matrix approximation. Int. J. Mol. Sci. 19(4), 1029 (2018)

    Article  Google Scholar 

  51. Huang, Y.-A., You, Z.-H., Chen, X.: A systematic prediction of drug-target interactions using molecular fingerprints and protein sequences. Curr. Protein Pept. Sci. 19(5), 468–478 (2018)

    Article  Google Scholar 

  52. Chen, X., Zhang, D.-H., You, Z.-H.: A heterogeneous label propagation approach to explore the potential associations between miRNA and disease. J. Transl. Med. 16(1), 348 (2018)

    Article  Google Scholar 

  53. Chen, X., Xie, D., Wang, L., Zhao, Q., You, Z.-H., Liu, H.: BNPMDA: bipartite network projection for MiRNA–disease association prediction. Bioinformatics 1, 9 (2018)

    Google Scholar 

  54. Chen, X., Wang, C.-C., Yin, J., You, Z.-H.: Novel human miRNA-disease association inference based on random forest. Mol. Ther.-Nucl. Acids 13, 568–579 (2018)

    Article  Google Scholar 

  55. Chen, X., Gong, Y., Zhang, D.H., You, Z.H., Li, Z.W.: DRMDA: deep representations-based miRNA–disease association prediction. J. Cell Mol. Med. 22(1), 472–485 (2018)

    Article  Google Scholar 

  56. Zhu, L., Deng, S.-P., You, Z.-H., Huang, D.-S.: Identifying spurious interactions in the protein-protein interaction networks using local similarity preserving embedding. IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB) 14(2), 345–352 (2017)

    Article  Google Scholar 

  57. Zhu, H.-J., Jiang, T.-H., Ma, B., You, Z.-H., Shi, W.-L., Cheng, L.: HEMD: a highly efficient random forest-based malware detection framework for Android. Neural Comput. Appl. 30(11), 3353–3361 (2018)

    Article  Google Scholar 

  58. Zhang, S., Zhu, Y., You, Z., Wu, X.: Fusion of superpixel, expectation maximization and PHOG for recognizing cucumber diseases. Comput. Electron. Agric. 140, 338–347 (2017)

    Article  Google Scholar 

  59. Zhang, S., Zhang, C., Zhu, Y.: You, Z,: Discriminant WSRC for large-scale plant species recognition. Comput. Intell. Neurosci. 2017, 10 (2017)

    Google Scholar 

  60. Zhang, S., You, Z., Wu, X.: Plant disease leaf image segmentation based on superpixel clustering and EM algorithm. Neural Comput. Appl. 1–8 (2017)

    Google Scholar 

  61. Zhang, S., Wu, X., You, Z., Zhang, L.: Leaf image based cucumber disease recognition using sparse representation classification. Comput. Electron. Agricul. 134, 135–141 (2017)

    Article  Google Scholar 

  62. Zhang, S., Wu, X., You, Z.: Jaccard distance based weighted sparse representation for coarse-to-fine plant species recognition. PLoS ONE 12(6), e0178317 (2017)

    Article  Google Scholar 

  63. You, Z.-H., Zhou, M., Luo, X., Li, S.: Highly efficient framework for predicting interactions between proteins. IEEE Trans. Cybern. 47(3), 731–743 (2017)

    Article  Google Scholar 

  64. You, Z.-H., et al.: PRMDA: personalized recommendation-based MiRNA-disease association prediction. Oncotarget 8(49), 85568 (2017)

    Article  Google Scholar 

  65. You, Z.-H., et al.: PBMDA: a novel and effective path-based computational model for miRNA-disease association prediction. PLoS Comput. Biol. 13(3), e1005455 (2017)

    Article  Google Scholar 

  66. You, Z.H., Li, X., Chan, K.C.: An improved sequence-based prediction protocol for protein-protein interactions using amino acids substitution matrix and rotation forest ensemble classifiers. Neurocomputing 228, 277–282 (2017)

    Article  Google Scholar 

  67. Wen, Y.-T., et al.: Prediction of protein-protein inter-actions by label propagation with protein evolutionary and chemical information derived from heterogeneous network. J. Theor. Biol. 430, 9–20 (2017)

    Article  Google Scholar 

  68. Wang, Y.-B., You, Z.-H., Li, L.-P., Huang, Y.-A., Yi, H.-C.: Detection of interactions between proteins by using legendre moments descriptor to extract discriminatory information embedded in PSSM. Molecules 22(8), 1366 (2017)

    Article  Google Scholar 

  69. Wang, Y.B., et al.: Predicting protein-protein interactions from protein sequences by a stacked sparse autoencoder deep neural network. Mol. BioSyst. 13(7), 1336–1344 (2017)

    Article  Google Scholar 

  70. Wang, Y., You, Z., Li, X., Chen, X., Jiang, T., Zhang, J.: PCVMZM: using the probabilistic classification vector machines model combined with a zernike moments descriptor to predict protein-protein interactions from protein sequences. Int. J. Mol. Sci. 18(5), 1029 (2017)

    Article  Google Scholar 

  71. Wang, L., et al.: Advancing the prediction accuracy of protein-protein interactions by utilizing evolutionary information from position-specific scoring matrix and ensemble classifier. J. Theor. Biol. 418, 105–110 (2017)

    Article  MathSciNet  Google Scholar 

  72. Wang, L., et al.: Computational methods for the prediction of drug-target interactions from drug fingerprints and protein sequences by stacked auto-encoder deep neural network. In: Cai, Z., Daescu, O., Li, M. (eds.) ISBRA 2017. LNCS, vol. 10330, pp. 46–58. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59575-7_5

    Chapter  Google Scholar 

  73. Li, S., Zhou, M., Luo, X., You, Z.-H.: Distributed winner-take-all in dynamic networks. IEEE Trans. Autom. Control 62(2), 577–589 (2017)

    Article  MathSciNet  Google Scholar 

  74. Li, J.-Q., You, Z.-H., Li, X., Ming, Z., Chen, X.: PSPEL: in silico prediction of self-interacting proteins from amino acids sequences using ensemble learning. IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB) 14(5), 1165–1172 (2017)

    Article  Google Scholar 

  75. Chen, X., Xie, D., Zhao, Q., You, Z.-H.: MicroRNAs and complex diseases: from experimental results to computational models. Briefings Bioinform. 20, 515–539 (2017)

    Article  Google Scholar 

  76. Luo, X., Zhou, M., Li, S., You, Z., Xia, Y., Zhu, Q.: A nonnegative latent factor model for large-scale sparse matrices in recommender systems via alternating direction method. IEEE Trans. Neural Networks Learn. Syst. 27(3), 579–592 (2016)

    Article  MathSciNet  Google Scholar 

  77. Luo, X., et al.: An incremental-and-static-combined scheme for matrix-factorization-based collaborative filtering. IEEE Trans. Autom. Sci. Eng. 13(1), 333–343 (2016)

    Article  Google Scholar 

  78. Li, S., You, Z.H., Guo, H., Luo, X., Zhao, Z.Q.: Inverse-free extreme learning machine with optimal information updating. IEEE Trans. Cybern. 46(5), 1229 (2016)

    Article  Google Scholar 

  79. Ji, Z., Wang, B., Deng, S., You, Z.: Predicting dynamic deformation of retaining structure by LSSVR-based time series method. Neurocomputing 137, 165–172 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Science Foundation of China, under Grants 61572506, in part by the NSFC Excellent Young Scholars Program, under Grants 61722212, in part by the Pioneer Hundred Talents Program of Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Contributions

Hai-Cheng Yi and Zhu-Hong You conceived the algorithm, carried out analyses, prepared the data sets, carried out experiments, and wrote the manuscript; Yan-Bin Wang, Zhan-Heng Chen, Zhen-Hao Guo and Hui-Juan Zhu designed, performed and analyzed experiments and wrote the manuscript; All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhu-Hong You .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yi, HC., You, ZH., Wang, YB., Chen, ZH., Guo, ZH., Zhu, HJ. (2019). In Silico Identification of Anticancer Peptides with Stacking Heterogeneous Ensemble Learning Model and Sequence Information. In: Huang, DS., Jo, KH., Huang, ZK. (eds) Intelligent Computing Theories and Application. ICIC 2019. Lecture Notes in Computer Science(), vol 11644. Springer, Cham. https://doi.org/10.1007/978-3-030-26969-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26969-2_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26968-5

  • Online ISBN: 978-3-030-26969-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics