Skip to main content

Interaction Between Aromatic Oil Components and Bacterial Targets

  • Chapter
  • First Online:
Plant Biotic Interactions

Abstract

Aromatic and medicinal plants have been used as antimicrobial agents since time immemorial, though there has been a stark decline in the total quantitative use in recent times. Nonetheless they have been used, albeit with little or no precision in the knowledge of their modes of actions. Recent studies have indicated that different components of essential oils cause distinct types of injuries to microbial cells, each type of damage characteristic to one or more components of a particular essential oil. The damage to the microbial cells result from oxidative stress, protein dysfunction or membrane impairment. The modern interdisciplinary research has been successful in furthering our comprehension of the various chemotypes of essential oils as well as improving our insight on designing active compounds for use as antimicrobial agents and as alternatives to antibiotics. Here, we have briefly reviewed the chemical principles that underlie the antibacterial activity of some promising essential oils. We have also discussed the pros and cons of preferring compounds for specific microbial targeting. Further, we have emphasized on the possible steps to catalogue and leverage this uncharted fraction of the study of antibacterial properties of essential oils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acamovic T, Brooker JD (2005) Biochemistry of plant secondary metabolites and their effects in animals. Proc Nutr Soc 64:403–412

    Article  CAS  PubMed  Google Scholar 

  • Aoshima H, Hamamoto K (1999) Potentiation of GABA receptors expressed in Xenopus oocytes by perfume and Phytoncid. Biosci Biotechnol Biochem 63(4):743–748

    Article  CAS  PubMed  Google Scholar 

  • Bellamy W, Takase M, Wakabayashi H, Kawase K, Tomita M (1992) Antibacterial spectrum of Lactoferricin B, a potent bactericidal peptide derived from the N-terminal region of bovine Lactoferrin. J Appl Bacteriol 73(6):472–479

    Article  CAS  PubMed  Google Scholar 

  • Boire NA (2013) Essential oils and future antibiotics: new weapons against emerging ‘superbugs’? J Anc Dis Prev Rem 01(02):1–5

    Google Scholar 

  • Demain AL, Vaishnav P (2011) Natural products for cancer chemotherapy. Microb Biotechnol 4(6):687–699

    Article  PubMed  PubMed Central  Google Scholar 

  • Dickschat JS (2011) Biosynthesis and function of secondary metabolites. Beilstein J Org Chem 7:1620–1621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egamberdieva D, Mamedov N, Ovidi E, Tiezzi A, Craker L (2016) Phytochemical and pharmacological properties of medicinal plants from Uzbekistan: a review. J Med Act Plants 5(2):59–75

    Google Scholar 

  • Elisabetsky E, Brum LFS, Souza DO (1999) Anticonvulsant properties of linalool in glutamate-related seizure models. Phytomedicine 6(2):107–113

    Article  CAS  PubMed  Google Scholar 

  • Heilmann J (2010) New medical applications of plant secondary metabolites. In: Wink M (ed) Annual plant reviews, vol 39, (Functions and biotechnology of plant secondary metabolites, 2nd edn. Wiley Blackwell, Oxford

    Chapter  Google Scholar 

  • Jones TH, Vail KM, McMullen LM (2013) Filament formation by foodborne bacteria under sublethal stress. Int J Food Microbiol 165(2):97–110

    Article  CAS  PubMed  Google Scholar 

  • Katiyar C, Gupta KS, Katiyar S (2012) Drug discovery from plant sources: an integrated approach. Ayu 33(1):10–19

    Article  PubMed  PubMed Central  Google Scholar 

  • Kemp JT, Driks A, Losick R (2002) Fts A mutants of Bacillus subtilis impaired in sporulation. J Bacteriol 184(14):3856–3863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latch JN, Margolin W (1997) Generation of buds, swellings, and branches instead of filaments after blocking the cell cycle of Rhizobium meliloti. J Bacteriol 179:2373–2381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maguire M, Coates ARM, Henderson B (2002) Chaperonin 60 unfolds its secrets of cellular communication. Cell Stress Chaperones 7(4):317–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathe A (2015) Introduction, utilization/significance of medicinal and aromatic plants. In: Mathe A (ed) Medicinal and aromatic plants of world. Springer, Dordrecht, pp 1–12

    Chapter  Google Scholar 

  • Mogk A, Huber D, Bukau B (2011) Integrating protein homeostasis strategies in prokaryotes. Cold Spring Harb Perspect Biol 3(4):1–19

    Article  CAS  Google Scholar 

  • Mohanraj K, Karthikeyan BS, Vivek-Ananth RP, Bharath Chand RP, Aparna SR, Mangalapandi P, Samal A (2018) IMPPAT: a curated database of Indian Medicinal Plants, Phytochemistry and Therapeutics. Sci Rep 8:4329

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Neckers L, Tatu U (2008) Molecular chaperones in pathogen virulence: emerging new targets for therapy. Cell Host Microbe 4(6):519–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pattnaik S (2018) Plant derived essential oils are the inducers of stress in bacterial cells of clinical relevance. In: Rakshit A, Tripathi VK, Chandola VK, Singh A, Sekhar S, Sarkar DR (eds) Innovative approach of integrated resource management. New Delhi Publishers, New Delhi, pp 163–173

    Google Scholar 

  • Pattnaik S, Subramanyam VR, Kole CR, Sahoo S (1995a) Antibacterial activity of essential oils from Cymbopogon: inter- and intra-specific differences. Microbios 84(341):239–245

    CAS  PubMed  Google Scholar 

  • Pattnaik S, Subramanyam VR, Rath CC (1995b) Effect of essential oils on the viability and morphology of Escherichia coli (SP-11). Microbios 84(340):195–199

    CAS  PubMed  Google Scholar 

  • Pattnaik S, Subramanyam VR, Bapaji M, Kole CR (1997) Antibacterial and antifungal activity of aromatic constituents of essential oils. Microbios 89(358):39–46

    CAS  PubMed  Google Scholar 

  • Pattnaik S, Padhan DK, Jana GK (2010) Evaluation of cinnamon oil, peppermint oil, cardamom oil & Orange oil as antimicrobial agents. J Pharm Res 3(2):414–416

    CAS  Google Scholar 

  • Pattnaik S, Behera SK, Mohapatra N (2017) Homology modeling of FtsZ protein from virulent bacterial strains and its interaction with eucalyptol: an In silico approach for therapeutics. Bioinformatics 1:24870

    Google Scholar 

  • Ramawat KG, Goyal S (2009) Indian herbal drugs scenario in global perspectives. In: Ramawat KG, Merillon JM (eds) Bioactive compounds and medicinal plants. Springer, Heidelberg, p 323

    Google Scholar 

  • Rates SM (2001) Plants as source of drugs. Toxicon 39(5):603–613

    Article  CAS  PubMed  Google Scholar 

  • Rehman R, Asif Hanif M (2016) Biosynthetic factories of essential oils: the aromatic plants. Nat Prod Chem Res 04(04):227

    Article  CAS  Google Scholar 

  • Sabate R, De Groot NS, Ventura S (2010) Protein folding and aggregation in bacteria. Cell Mol Life Sci 67(16):2695–2715

    Article  CAS  PubMed  Google Scholar 

  • Schaffner-Barbero C, Martín-Fontecha M, Chacón P, Andreu JM (2012) Targeting the assembly of bacterial cell division protein FtsZ with small molecules. ACS Chem Biol 7(2):269–277

    Article  CAS  PubMed  Google Scholar 

  • Schulz B, Boyle C, Draeger S, Ro A, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106(September):996–1004

    Article  CAS  Google Scholar 

  • Siahsar B, Rahimi M, Tavassoli A, Raissi A (2011) Application of biotechnology in production of medicinal plants 1. Am J Agric Environ Sci 11(3):439–444

    CAS  Google Scholar 

  • Sun N, Chan FY, Lu YJ, Neves MAC, Lui HK, Wang Y et al (2014) Rational design of berberine-based FtsZ inhibitors with broad-spectrum antibacterial activity. PLoS One 9(5):e97514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Torres-Barcelo C, Cabot G, Oliver A, Buckling A, MacLean RC (2013) A trade-off between oxidative stress resistance and DNA repair plays a role in the evolution of elevated mutation rates in bacteria. Proc R Soc B Biol Sci 280(1757). https://doi.org/10.1098/rspb.2013.0007

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Turek C, Stingzing FC (2013) Stability of essential oils: a review. Compr Rev Food Sci Food Saf 12:40–51

    Article  CAS  Google Scholar 

  • Turner GW, Croteau R (2004) Organization of monoterpene biosynthesis in Mentha. Immunocytochemical localizations of geranyl diphosphate synthase, limonene-6-hydroxylase, isopiperitenol dehydrogenase, and pulegone reductase. Plant Physiol 136(4):4215–4227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Wyk BE, de Wet H, Van Heerden FR (2008) An ethnobotanical survey of medicinal plants in the southeastern Karoo, South Africa. S Afr J Bot 74(4):696–704

    Article  Google Scholar 

  • Vedyaykin AD, Vishnyakov IE, Polinovshaya VS, Khodorkovskii MA, Sabansev AV (2016) New insights into FTsZ rearrangements during the cell division of Escherichia coli from single molecule localization microscopy of fixed cells. Microbiologyopen 5(3):378–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vega-Cabrera LA et al (2017) Analysis of Spo0M function in Bacillus subtilis. PLoS One 12(2):1–24. https://doi.org/10.1371/journal.pone.0172737

    Article  CAS  Google Scholar 

  • Vikram P, Chiruvella KK, Ripain IHA, Arifullah M (2014) A recent review on phytochemical constituents and medicinal properties of Kesum (Polygonum minus Huds.). Asian Pac J Trop Biomed 4(6):430–435

    Article  PubMed  PubMed Central  Google Scholar 

  • Wink M (2015) Modes of action of herbal medicines and plant secondary metabolites. Medicines 2(3):251–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young KD (2006) The selective value of bacterial shape. Microbiol Mol Biol Rev 70(3):600–703

    Article  Google Scholar 

  • ZieliÅ„ska S, Matkowski A (2014) Phytochemistry and bioactivity of aromatic and medicinal plants from the genus Agastache (Lamiaceae). Phytochem Rev 13(2):391–416

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgement

This chapter is part of DSc thesis (2018) submitted to Sambalpur University, Odisha, India.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pattnaik, S., Behera, N. (2019). Interaction Between Aromatic Oil Components and Bacterial Targets. In: Varma, A., Tripathi, S., Prasad, R. (eds) Plant Biotic Interactions . Springer, Cham. https://doi.org/10.1007/978-3-030-26657-8_12

Download citation

Publish with us

Policies and ethics