Skip to main content

Traumatic Lumbar Injuries in Athletes

  • Chapter
  • First Online:
Spinal Conditions in the Athlete

Abstract

The majority of traumatic lumbar injuries occur after a high-energy mechanism or as a result of preexisting congenital deformity. Although rare, these injuries can be seen in the elite athlete. Treatment can differ depending on the spectrum of injury. These patients necessitate a high index of suspicion and require meticulous evaluation immediately with an organized, routine checklist. Physical examination can alert the physician of the location of pain as well as neurologic deficits to guide advanced imaging with computed tomography (CT) or magnetic resonance imaging (MRI). Providing a controlled and safe environment for evaluation, transfer, and ultimately treatment both in the acute and follow-up periods is paramount for optimizing outcomes. It is also critical to recognize pathology that necessitates emergent operative intervention. Lastly, it is important to educate the athlete on complications associated with thoracolumbar injuries as long-term sequelae can result. Complications should be openly discussed with the patient, their coaches, and family to maintain accurate expectations for return to play.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hassebrock JD, Patel KA, Makovicka JL, et al. Lumbar spine injuries in National Collegiate Athletic Association Athletes: a 6-season epidemiological study. Orthop J Sports Med. 2019;7(1):2325967118820046.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Nachemson AL. Disc pressure measurements. Spine (Phila Pa 1976). 1981;6(1):93–7.

    Article  CAS  Google Scholar 

  3. Videman T, Levälahti E, Battié MC. The effects of anthropometrics, lifting strength, and physical activities in disc degeneration. Spine (Phila Pa 1976). 2007;32(13):1406–13.

    Article  Google Scholar 

  4. Videman T, Battié MC, Gibbons LE, et al. Lifetime exercise and disk degeneration: an MRI study of monozygotic twins. Med Sci Sports Exerc. 1997;29(10):1350–6.

    Article  CAS  PubMed  Google Scholar 

  5. Gatt CJ, Hosea TM, Palumbo RC, Zawadsky JP. Impact loading of the lumbar spine during football blocking. Am J Sports Med. 1997;25(3):317–21.

    Article  PubMed  Google Scholar 

  6. Prall JA, Winston KR, Brennan R. Spine and spinal cord injuries in downhill skiers. J Trauma. 1995;39(6):1115–8.

    Article  CAS  PubMed  Google Scholar 

  7. Hubbard ME, Jewell RP, Dumont TM, Rughani AI. Spinal injury patterns among skiers and snowboarders. Neurosurg Focus. 2011;31(5):E8.

    Article  PubMed  Google Scholar 

  8. Schmitt H, Gerner HJ. Paralysis from sport and diving accidents. Clin J Sport Med. 2001;11(1):17–22.

    Article  CAS  PubMed  Google Scholar 

  9. Silva LOJE, Fernanda Bellolio M, Smith EM, Daniels DJ, Lohse CM, Campbell RL. Motocross-associated head and spine injuries in adult patients evaluated in an emergency department. Am J Emerg Med. 2017;35(10):1485–9.

    Article  PubMed  Google Scholar 

  10. Greenan TJ. Diagnostic imaging of sports-related spinal disorders. Clin Sports Med. 1993;12(3):487–505.

    CAS  PubMed  Google Scholar 

  11. Gundry CR, Fritts HM. MR imaging of the spine in sports injuries. Magn Reson Imaging Clin N Am. 1999;7(1):85–103.

    CAS  PubMed  Google Scholar 

  12. Alyas F, Turner M, Connell D. MRI findings in the lumbar spines of asymptomatic, adolescent, elite tennis players. Br J Sports Med. 2007;41(11):836–41; discussion 841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Heneweer H, Vanhees L, Picavet HSJ. Physical activity and low back pain: a U-shaped relation? Pain. 2009;143(1–2):21–5.

    Article  PubMed  Google Scholar 

  14. Heneweer H, Staes F, Aufdemkampe G, van Rijn M, Vanhees L. Physical activity and low back pain: a systematic review of recent literature. Eur Spine J. 2011;20(6):826–45.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fett D, Trompeter K, Platen P. Back pain in elite sports: a cross-sectional study on 1114 athletes. PLoS One. 2017;12(6):1–17.

    Article  CAS  Google Scholar 

  16. Trompeter K, Fett D, Platen P. Prevalence of back pain in sports: a systematic review of the literature. Sports Med. 2017;47(6):1183–207.

    Article  PubMed  Google Scholar 

  17. Malliaropoulos N, Bikos G, Meke M, Tsifountoudis I, Pyne D, Korakakis V. Mechanical low back pain in elite track and field athletes: an observational cohort study. J Back Musculoskelet Rehabil. 2017;30(4):681–9.

    Article  PubMed  Google Scholar 

  18. Rajeswaran G, Turner M, Gissane C, Healy JC. MRI findings in the lumbar spines of asymptomatic elite junior tennis players. Skelet Radiol. 2014;43(7):925–32.

    Article  CAS  Google Scholar 

  19. Kobayashi A, Kobayashi T, Kato K, Higuchi H, Takagishi K. Diagnosis of radiographically occult lumbar spondylolysis in young athletes by magnetic resonance imaging. Am J Sports Med. 2013;41(1):169–76.

    Article  PubMed  Google Scholar 

  20. Bennett DL, Nassar L, DeLano MC. Lumbar spine MRI in the elite-level female gymnast with low back pain. Skelet Radiol. 2006;35(7):503–9.

    Article  Google Scholar 

  21. Donaldson LD. Spondylolysis in elite junior-level ice hockey players. Sports Health. 2014;6(4):356–9.

    Article  PubMed  PubMed Central  Google Scholar 

  22. McCarroll JR, Miller JM, Ritter MA. Lumbar spondylolysis and spondylolisthesis in college football players. A prospective study. Am J Sports Med. 1986;14(5):404–6.

    Article  CAS  PubMed  Google Scholar 

  23. Schroeder GD, Lynch TS, Gibbs DB, et al. Pre-existing lumbar spine diagnosis as a predictor of outcomes in National Football League athletes. Am J Sports Med. 2015;43(4):972–8.

    Article  PubMed  Google Scholar 

  24. Yabe Y, Hagiwara Y, Sekiguchi T, et al. Knee pain is associated with lower back pain in young baseball players: a cross-sectional study. Knee Surg Sports Traumatol Arthrosc. 2019;27(3):985–90.

    Article  PubMed  Google Scholar 

  25. Downie A, Williams CM, Henschke N, et al. Red flags to screen for malignancy and fracture in patients with low back pain: systematic review. BMJ. 2013;347:f7095.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Parreira PCS, Maher CG, Traeger AC, et al. Evaluation of guideline-endorsed red flags to screen for fracture in patients presenting with low back pain. Br J Sports Med. 2019;53(10):648–54.

    Article  PubMed  Google Scholar 

  27. Verhagen AP, Downie A, Maher CG, Koes BW. Most red flags for malignancy in low back pain guidelines lack empirical support: a systematic review. Pain. 2017;158(10):1860–8.

    Article  PubMed  Google Scholar 

  28. Prasarn ML, Horodyski M, Dubose D, et al. Total motion generated in the unstable cervical spine during management of the typical trauma patient: a comparison of methods in a cadaver model. Spine (Phila Pa 1976). 2012;37(11):937–42.

    Article  Google Scholar 

  29. Conrad BP, Marchese DL, Rechtine GR, Prasarn M, Del Rossi G, Horodyski MH. Motion in the unstable cervical spine when transferring a patient positioned prone to a spine board. J Athl Train. 2013;48(6):797–803.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Del Rossi G, Horodyski MH, Conrad BP, Di Paola CP, Di Paola MJ, Rechtine GR. The 6-plus-person lift transfer technique compared with other methods of spine boarding. J Athl Train. 2008;43(1):6–13.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Del Rossi G, Horodyski M, Conrad BP, Dipaola CP, Dipaola MJ, Rechtine GR. Transferring patients with thoracolumbar spinal instability: are there alternatives to the log roll maneuver? Spine (Phila Pa 1976). 2008;33(14):1611–5.

    Article  Google Scholar 

  32. Putukian M. Clinical evaluation of the concussed athlete: a view from the sideline. J Athl Train. 2017;52(3):236–44.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Valladares-Otero A, Christenson B, Petersen BD. Radiologic imaging of the spine. In: Patel V, Patel A, Harrop J, Burger E, editors. Spine surgery basics. Berlin: Springer; 2014.

    Google Scholar 

  34. Kanna RM, Gaike CV, Mahesh A, Shetty AP, Rajasekaran S. Multilevel non-contiguous spinal injuries: incidence and patterns based on whole spine MRI. Eur Spine J. 2016;25(4):1163–9.

    Article  PubMed  Google Scholar 

  35. Sharma OP, Oswanski MF, Yazdi JS, Jindal S, Taylor M. Assessment for additional spinal trauma in patients with cervical spine injury. Am Surg. 2007;73(1):70–4.

    PubMed  Google Scholar 

  36. Miller CP, Brubacher JW, Biswas D, Lawrence BD, Whang PG, Grauer JN. The incidence of noncontiguous spinal fractures and other traumatic injuries associated with cervical spine fractures: a 10-year experience at an academic medical center. Spine (Phila Pa 1976). 2011;36(19):1532–40.

    Article  Google Scholar 

  37. Nelson DW, Martin MJ, Martin ND, Beekley A. Evaluation of the risk of noncontiguous fractures of the spine in blunt trauma. J Trauma Acute Care Surg. 2013;75(1):135–9.

    Article  PubMed  Google Scholar 

  38. Cheung KK, Dhawan RT, Wilson LF, Peirce NS, Rajeswaran G. Pars interarticularis injury in elite athletes – the role of imaging in diagnosis and management. Eur J Radiol. 2018;108:28–42.

    Article  PubMed  Google Scholar 

  39. Shah JS, Hampson WG, Jayson MI. The distribution of surface strain in the cadaveric lumbar spine. J Bone Joint Surg Br. 1978;60-B(2):246–51.

    Article  CAS  PubMed  Google Scholar 

  40. Wiltse LL, Newman PH, Macnab I. Classification of spondylolisis and spondylolisthesis. Clin Orthop Relat Res. 1976;(117):23–9.

    Google Scholar 

  41. Jayson MI. Compression stresses in the posterior elements and pathologic consequences. Spine (Phila Pa 1976). 1983;8(3):338–9.

    Article  CAS  Google Scholar 

  42. Troup JD. Mechanical factors in spondylolisthesis and spondylolysis. Clin Orthop Relat Res. 1976;117:59–67.

    Google Scholar 

  43. Cyron BM, Hutton WC. Variations in the amount and distribution of cortical bone across the partes interarticulares of L5. A predisposing factor in spondylolysis? Spine (Phila Pa 1976). 1979;4(2):163–7.

    Article  CAS  Google Scholar 

  44. McClellan JW, Vernon BA, White MA, Stamm S, Ryschon KL. Should 25-hydroxyvitamin D and bone density using DXA be tested in adolescents with lumbar stress fractures of the pars interarticularis? J Spinal Disord Tech. 2012;25(8):426–8.

    Article  PubMed  Google Scholar 

  45. Beutler WJ, Fredrickson BE, Murtland A, Sweeney CA, Grant WD, Baker D. The natural history of spondylolysis and spondylolisthesis: 45-year follow-up evaluation. Spine (Phila Pa 1976). 2003;28(10):1027–35; discussion 1035.

    Google Scholar 

  46. Fradet L, Petit Y, Wagnac E, Aubin CE, Arnoux PJ. Biomechanics of thoracolumbar junction vertebral fractures from various kinematic conditions. Med Biol Eng Comput. 2014;52(1):87–94.

    Article  PubMed  Google Scholar 

  47. Tran NT, Watson NA, Tencer AF, Ching RP, Anderson PA. Mechanism of the burst fracture in the thoracolumbar spine. The effect of loading rate. Spine (Phila Pa 1976). 1995;20(18):1984–8.

    Article  CAS  Google Scholar 

  48. Langrana NA, Harten RD, Lin DC, Reiter MF, Lee CK. Acute thoracolumbar burst fractures. Spine. 27(5):498–508.

    Article  CAS  PubMed  Google Scholar 

  49. Panjabi MM, Kifune M, Liu W, Arand M, Vasavada A, Oxland TR. Graded thoracolumbar spinal injuries: development of multidirectional instability. Eur Spine J. 1998;7(4):332–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Vaccaro AR, Oner C, Kepler CK, et al. AOSpine thoracolumbar spine injury classification system: fracture description, neurological status, and key modifiers. Spine (Phila Pa 1976). 2013;38(23):2028–37. https://doi.org/10.1097/BRS.0b013e3182a8a381.

    Article  Google Scholar 

  51. Klossner D. Sacral stress fracture in a female collegiate distance runner: a case report. J Athl Train. 2000;35(4):453–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Knobloch K, Schreibmueller L, Jagodzinski M, Zeichen J, Krettek C. Rapid rehabilitation programme following sacral stress fracture in a long-distance running female athlete. Arch Orthop Trauma Surg. 2007;127(9):809–13.

    Article  PubMed  Google Scholar 

  53. Shah MK, Stewart GW. Sacral stress fractures: an unusual cause of low back pain in an athlete. Spine (Phila Pa 1976). 2002;27(4):E104–8.

    Article  Google Scholar 

  54. Kendall J, Eckner JT. Sacral stress fracture in a young healthy athlete. Am J Phys Med Rehabil. 2013;92(12):1120.

    Article  PubMed  Google Scholar 

  55. Yildirim K, Şışecıoğlu M, Karatay S, et al. The effectiveness of gabapentin in patients with chronic radiculopathy. Pain Clin. 2003;15(3):213–8. https://doi.org/10.1163/156856903767650718.

    Article  Google Scholar 

  56. Sicras-Mainar A, Rejas-Gutiérrez J, Navarro-Artieda R, Planas-Comes A. Cost comparison of adding pregabalin or gabapentin for the first time to the therapy of patients with painful axial radiculopathy treated in Spain. Clin Exp Rheumatol. 31(3):372–81.

    Google Scholar 

  57. Lo YL, Cheong PWT, George JM, et al. Pregabalin and radicular pain study (PARPS) for cervical spondylosis in a multiracial Asian population. J Clin Med Res. 2014;6(1):66–71.

    CAS  PubMed  Google Scholar 

  58. Saldaña MT, Navarro A, Pérez C, Masramón X, Rejas J. Patient-reported-outcomes in subjects with painful lumbar or cervical radiculopathy treated with pregabalin: evidence from medical practice in primary care settings. Rheumatol Int. 2010;30(8):1005–15.

    Article  PubMed  Google Scholar 

  59. Ansari B, Ghasemi M, Ahmadian M, Khorvash F. The effect of pregabalin and metformin on subacute and chronic radiculopathy. Adv Biomed Res. 2018;7:26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Goldberg H, Firtch W, Tyburski M, et al. Oral steroids for acute radiculopathy due to a herniated lumbar disk: a randomized clinical trial. JAMA. 2015;313(19):1915–23.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ko S, Kim S, Kim J, Oh T. The effectiveness of oral corticosteroids for management of lumbar radiating pain: randomized, controlled trial study. Clin Orthop Surg. 2016;8(3):262–7.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Haimovic IC, Beresford HR. Dexamethasone is not superior to placebo for treating lumbosacral radicular pain. Neurology. 1986;36(12):1593–4.

    Article  CAS  PubMed  Google Scholar 

  63. Finckh A, Zufferey P, Schurch M-A, Balagué F, Waldburger M, So AKL. Short-term efficacy of intravenous pulse glucocorticoids in acute discogenic sciatica. A randomized controlled trial. Spine (Phila Pa 1976). 2006;31(4):377–81.

    Article  Google Scholar 

  64. Chou R, Peterson K, Helfand M. Comparative efficacy and safety of skeletal muscle relaxants for spasticity and musculoskeletal conditions: a systematic review. J Pain Symptom Manage. 2004;28(2):140–75.

    Article  CAS  PubMed  Google Scholar 

  65. Wilkerson GB, Giles JL, Seibel DK. Prediction of core and lower extremity strains and sprains in collegiate football players: a preliminary study. J Athl Train. 47(3):264–72.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Saal JA. Dynamic muscular stabilization in the nonoperative treatment of lumbar pain syndromes. Orthop Rev. 1990;19(8):691–700.

    CAS  PubMed  Google Scholar 

  67. Vangelder LH, Hoogenboom BJ, Vaughn DW. A phased rehabilitation protocol for athletes with lumbar intervertebral disc herniation. Int J Sports Phys Ther. 2013;8(4):482–516.

    PubMed  PubMed Central  Google Scholar 

  68. Liu L, Huang Q-M, Liu Q-G, et al. Evidence for dry needling in the management of myofascial trigger points associated with low back pain: a systematic review and meta-analysis. Arch Phys Med Rehabil. 2018;99(1):144–152.e2.

    Article  PubMed  Google Scholar 

  69. Furlan AD, van Tulder M, Cherkin D, et al. Acupuncture and dry-needling for low back pain: an updated systematic review within the framework of the cochrane collaboration. Spine (Phila Pa 1976). 2005;30(8):944–63.

    Article  Google Scholar 

  70. Furlan AD, Giraldo M, Baskwill A, Irvin E, Imamura M. Massage for low-back pain. Cochrane Database Syst Rev. 2015;9:CD001929.

    Google Scholar 

  71. Furlan AD, Yazdi F, Tsertsvadze A, et al. Complementary and alternative therapies for back pain II. Evid Rep Technol Assess (Full Rep). 2010;194:1–764.

    Google Scholar 

  72. Binny J, Joshua Wong NL, Garga S, et al. Transcutaneous electric nerve stimulation (TENS) for acute low back pain: systematic review. Scand J pain. 2019;19(2):225–33.

    Article  PubMed  Google Scholar 

  73. Overley SC, McAnany SJ, Andelman S, et al. Return to play in elite athletes after lumbar microdiscectomy: a meta-analysis. Spine (Phila Pa 1976). 2016;41(8):713–8.

    Article  Google Scholar 

  74. Minhas SV, Kester BS, Hsu WK. Outcomes after lumbar disc herniation in the National Basketball Association. Sports Health. 2016;8(1):43–9.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Chau AMT, Xu LL, Pelzer NR, Gragnaniello C. Timing of surgical intervention in cauda equina syndrome: a systematic critical review. World Neurosurg. 2014;81(3-4):640–50.

    Article  PubMed  Google Scholar 

  76. Kingwell SP, Curt A, Dvorak MF. Factors affecting neurological outcome in traumatic conus medullaris and cauda equina injuries. Neurosurg Focus. 2008;25(5):E7.

    Article  PubMed  Google Scholar 

  77. Watkins RG, Watkins RG. Return to play after spinal surgery. In: Spinal injuries and conditions in young athletes. New York: Springer New York; 2014. p. 211–8.

    Chapter  Google Scholar 

  78. Burnett MG, Sonntag VKH. Return to contact sports after spinal surgery. Neurosurg Focus. 2006;21(4):E5.

    Article  PubMed  Google Scholar 

  79. Alsobrook J, Clugston JR. Return to play after surgery of the lumbar spine. Curr Sports Med Rep. 2008;7(1):45–8.

    Article  PubMed  Google Scholar 

  80. Eck JC, Riley LH. Return to play after lumbar spine conditions and surgeries. Clin Sports Med. 2004;23(3):367–79, viii.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shah-Nawaz M. Dodwad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Davis, E.P., Showery, J.E., Prasarn, M.L., Dodwad, SN.M. (2020). Traumatic Lumbar Injuries in Athletes. In: Hsu, W., Jenkins, T. (eds) Spinal Conditions in the Athlete. Springer, Cham. https://doi.org/10.1007/978-3-030-26207-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26207-5_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26206-8

  • Online ISBN: 978-3-030-26207-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics