Skip to main content

Mathematical Models of Aqueous Production, Flow and Drainage

  • Chapter
  • First Online:
Ocular Fluid Dynamics

Abstract

The aqueous humour (AH) is a transparent fluid with water-like properties that fills the anterior chamber (AC, the region between the cornea and the iris) and the posterior chamber (PC, the region between the iris and the lens) of the eye, which are connected at the pupil. AH is produced at ciliary processes, and it flows from the PC to the AC, where it is drained in the trabecular meshwork. AH flow is important physiologically, as it governs intraocular pressure and delivers nutrients to avascular ocular tissues. Disruption of AH flow may lead to multiple pathological conditions, such as glaucoma and nutrient depletion. Studying aqueous production, flow and drainage is thus relevant to understand eye physiology and pathophysiology.

Mathematical modelling has proven to be a very useful tool for studying AH, as it allows one to understand the mechanisms of the flow by studying them separately. In this chapter we outline the mathematical models of AH production, different AH flow mechanisms and drainage, subsequently. We focus on analytical works and briefly mention the main conclusions of numerical ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. O. Abouali, A. Modareszadeh, A. Ghaffarieh, and J. Tu. Investigation of saccadic eye movement effects on the fluid dynamic in the anterior chamber. J. Biomech. Eng., 134(2):021002, Feb. 2012. ISSN 1528-8951. https://doi.org/10.1115/1.4005762. PMID: 22482669.

  2. A. Alm and S. F. E. Nilsson. Uveoscleral outflow – A review. Exp. Eye Res., 88:760–768, 2009.

    Article  Google Scholar 

  3. R. Avtar and R. Srivastava. Modelling aqueous humor outflow through trabecular meshwork. Appl. Math. Comput., 189:734–745, 2007.

    MathSciNet  MATH  Google Scholar 

  4. R. Avtar, R. Srivastava, and D. Nigam. A mathematical model for solute coupled water transport in the production of aqueous humor. Applied Mathematical Modelling, 32(7): 1350–1369, 2008.

    Article  MATH  Google Scholar 

  5. G. K. Batchelor. An Introduction to Fluid Dynamics. Cambridge University Press, 1967.

    MATH  Google Scholar 

  6. J. A. Beswick and C. McCulloch. Effect of hyaluronidase on the viscosity of the aqueous humour. Br. J. Ophthamol., 40:545–548, 1956.

    Article  Google Scholar 

  7. A. Bill. Conventional and uveo-scleral drainage of aqueous humour in the cynomolgus monkey (Macaca irus) at normal and high intraocular pressures. Exp. Eye Res., 5:45–54, 1966a.

    Article  Google Scholar 

  8. A. Bill. The routes for bulk drainage of aqueous humour in the vervet monkey (Cercopithecus ethiops). Exp. Eye Res., 5:55–57, 1966b.

    Article  Google Scholar 

  9. A. Bill and K. Hellsing. Production and drainage of aqueous humor in the cynomolgus money (Macaca irus). Invest. Ophthalmol., 4:920–926, 1965.

    Google Scholar 

  10. A. Bill and C. I. Phillips. Uveoscleral drainage of aqueous humour in human eyes. Exp. Eye Res., 12:275–281, 1971.

    Article  Google Scholar 

  11. R. F. Brubaker. Measurement of aqueous flow by fluorophotometry. In The Glaucomas. Mosby (St. Louis), 1989.

    Google Scholar 

  12. R. F. Brubaker. Flow of aqueous humor in humans [the friedenwald lecture]. Investigative Ophthalmology and Visual Science, 32 (13):3145–3166, 1991. ISSN, 1552-5783. PMID: 1748546.

    Google Scholar 

  13. C. R. Canning, M. J. Greaney, J. N. Dewynne, and A. Fitt. Fluid flow in the anterior chamber of a human eye. IMA J. Math. Appl. Med. Biol., 19:31–60, 2002.

    Article  MATH  Google Scholar 

  14. D. Chai, G. Chaudhary, E. Mikula, H. Sun, and T. Juhasz. 3D finite element model of aqueous outflow to predict the effect of femtosecond laser created partial thickness drainage channels. Laser. Surg. Med., 40:188–195, 2008.

    Article  Google Scholar 

  15. N. A. Delamere. Ciliary body and ciliary epithelium. Advances in organ biology, 10:127–148, 2005.

    Article  Google Scholar 

  16. J. M. Diamond and W. H. Bossert. Standing-gradient osmotic flow: A mechanism for coupling of water and solute transport in epithelia. The Journal of general physiology, 50(8): 2061–2083, 1967.

    Google Scholar 

  17. S. Dorairaj, J. M. Liebmann, C. Tello, V. Barocas, and R. Ritch. Posterior chamber volume does not change significantly during dilation. Br. J. Ophthalmol., 93:1514–1517, 2009.

    Article  Google Scholar 

  18. P. G. Drazin and W. H. Reid. Hydrodynamic Stability. Cambridge University Press, 1981.

    MATH  Google Scholar 

  19. M. Dvoriashyna, A. J. Foss, E. A. Gaffney, O. E. Jensen, and R. Repetto. Osmotic and electroosmotic fluid transport across the retinal pigment epithelium: A mathematical model. Journal of theoretical biology, 456:233–248, 2018a.

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Dvoriashyna, R. Repetto, M. Romano, and J. Tweedy. Aqueous humour flow in the posterior chamber of the eye and its modifications due to pupillary block and iridotomy. Mathematical medicine and biology: a journal of the IMA, 35(4):447–467, 2018b.

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Dvoriashyna, R. Repetto, and J. Tweedy. Oscillatory and steady streaming flow in the anterior chamber of the moving eye. Journal of Fluid Mechanics, 863:904–926, 2019.

    Article  MathSciNet  MATH  Google Scholar 

  22. C. R. Ethier, R. D. Kamm, B. A. Palaszewski, M. C. Johnson, and T. M. Richardson. Calculation of flow resistance in the juxtacanalicular meshwork. Invest. Ophthalmol. Visual Sci., 27:1741–1750, 1986.

    Google Scholar 

  23. M. P. Fautsch and D. H. Johnson. Aqueous humor outflow: what do we know? where will it lead us? Investigative ophthalmology & visual science, 47 (10):4181–4187, 2006.

    Article  Google Scholar 

  24. A. D. Fitt and G. Gonzalez. Fluid mechanics of the human eye: Aqueous humour flow in the anterior chamber. Bull. Math. Biol., 68(1):53–71, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  25. A. B. Friedland. A hydrodynamic model of acqueous flow in the posterior chamber of the eye. Bull. Math. Biol., 40:223–235, 1978.

    Article  Google Scholar 

  26. D. S. Friedman. Epidemiology of angle-closure glaucoma. Journal of Current Glaucoma Practice, 1(1): 1–3, 2007.

    Article  Google Scholar 

  27. B. S. Gardiner, D. W. Smith, M. Coote, and J. G. Crowston. Computational modeling of fluid flow and intra-ocular pressure following glaucoma surgery. PLoS ONE, 5:e13178, 2010.

    Article  Google Scholar 

  28. H. Gong and T. F. Freddo. The washout phenomenon in aqueous outflow – Why does it matter? Exp. Eye Res., 88:729–737, 2009.

    Article  Google Scholar 

  29. H. Y. Gong, R. C. Tripathi, and B. J. Tripathi. Morphology of the aqueous outflow pathway. Microsc. Res. Tech., 33:336–367, 1996.

    Article  Google Scholar 

  30. H. v. Helmholtz. Handbuch der physiologischen Optik. University of Michigan Library, third edition, 1909.

    Google Scholar 

  31. J. J. Heys and V. H. Barocas. A Boussinesq model of natural convection in the human eye and formation of krunberg’s spindle. Ann. Biomed. Eng., 30:392–401, 2002.

    Article  Google Scholar 

  32. J. J. Heys, V. H. Barocas, and M. J. Taravella. Modeling passive mechanical interaction between aqueous humor and iris. Transactions of the ASME, 123:540–547, December 2001.

    Google Scholar 

  33. E. C. Huang and V. H. Barocas. Active iris mechanics and pupillary block: steady-state analysis and comparison with anatomical risk factors. Annals of biomedical engineering, 32(9): 1276–1285, 2004.

    Article  Google Scholar 

  34. D. H. Johnson and M. Johnson. How does nonpenetrating glaucoma surgery work? Aqueous outflow resistance and glaucoma surgery. J. Glaucoma, 10:55–67, 2001.

    Article  Google Scholar 

  35. M. Johnson. What controls aqueous humor outflow resistance? Exp. Eye Res., 82(4):545–557, 2006.

    Article  Google Scholar 

  36. M. Johnson, A. Shapiro, C. R. Ethier, and R. D. Kamm. Modulation of outflow resistance by the pores of the inner wall endothelium. Invest. Ophthalmo. Vis. Sci., 33:1670–1675, 1992.

    Google Scholar 

  37. M. C. Johnson and R. D. Kamm. The role of schlemm’s canal in aqueous outflow from the human eye. Invest. Ophthalmol. Visual Sci., 24(3): 320–325, Mar. 1983. ISSN 0146-0404. PMID: 6832907.

    Google Scholar 

  38. K. Kapnisis, M. van Doormaal, and C. R. Ethier. Modeling aqueous humor collection from the human eye. J. Biomech., 42:2454–2457, 2009.

    Article  Google Scholar 

  39. J. Kiel, M. Hollingsworth, R. Rao, M. Chen, and H. Reitsamer. Ciliary blood flow and aqueous humor production. Prog. Retin. Eye Res., 30(1):1–17, 2011.

    Article  Google Scholar 

  40. C. C. Klaver, R. C. Wolfs, J. R. Vingerling, A. Hofman, and P. T. de Jong. Age-specific prevalence and causes of blindness and visual impairment in an older population: the rotterdam study. Archives of ophthalmology, 116(5): 653–658, 1998.

    Article  Google Scholar 

  41. K. E. Kotliar, T. V. Kozlova, and I. M. Lanzl. Postoperative aqueous outflow in the human eye after glaucoma filtration surgery: biofluidmechanical considerations. Biomed. Tech., 54:14–22, 2009.

    Article  Google Scholar 

  42. T. Krahn and A. M. Weinstein. Acid/base transport in a model of the proximal tubule brush border: impact of carbonic anhydrase. American Journal of Physiology-Renal Physiology, 270 (2):F344–F355, 1996.

    Article  Google Scholar 

  43. F. Krukenberg. Beiderseitige angeborene melanose de hornhaut. Klin. Mbl. Augenheilk., 37:254–258, 1899.

    Google Scholar 

  44. S. Kumar, S. Acharya, R. Beuerman, and A. Palkama. Numerical solution of ocular fluid dynamics in a rabbit eye: Parametric effects. Ann. Biomed. Eng., 34:530–544, 2006.

    Article  Google Scholar 

  45. Y. H. Kwon, J. H. Fingert, M. H. Kuehn, and W. L. Alward. Primary open-angle glaucoma. New England Journal of Medicine, 360(11): 1113–1124, 2009.

    Article  Google Scholar 

  46. J. M. Liebmann and R. Ritch. Laser surgery for angle closure glaucoma. In Seminars in ophthalmology, volume 17, pages 84–91. Taylor & Francis, 2002.

    Google Scholar 

  47. G. Lyubimov, I. Moiseeva, and A. Stein. Dynamics of the intraocular fluid: Mathematical model and its main consequences. Fluid Dynamics, 42(5):684–694, 2007.

    Article  MATH  Google Scholar 

  48. A. G. Mauri, L. Sala, P. Airoldi, G. Novielli, R. Sacco, S. Cassani, G. Guidoboni, B. Siesky, and A. Harris. Electro-fluid dynamics of aqueous humor production: simulations and new directions. Journal for Modeling in Ophthalmology, 1 (2):48–58, 2016.

    Google Scholar 

  49. D. M. Maurice. The von sallmann lecture 1996: an ophthalmological explanation of rem sleep. Experimental eye research, 66(2):139–145, 1998.

    Article  Google Scholar 

  50. J. W. McLaren. Measurement of aqueous humor flow. Exp. Eye Res., 88:641–647, 2009.

    Article  Google Scholar 

  51. B. M. Merchant and J. J. Heys. Effects of variable permeability on aqueous humor outflow. Appl. Math. Comput., 196:371–380, 2008.

    MathSciNet  MATH  Google Scholar 

  52. J. G. Milton and A. Longtin. Evaluation of pupil constriction and dilation from cycling measurements. Vision research, 30(4):515–525, 1990.

    Article  Google Scholar 

  53. S. Modarreszadeh, O. Abouali, A. Ghaffarieh, and G. Ahmadi. Physiology of aqueous humor dynamic in the anterior chamber due to rapid eye movement. Physiol Behav, 2014.

    Google Scholar 

  54. P. Niederer, F. Fankhauser, and S. Kwasniewska. Hydrodynamics of aqueous humor in chronic simple glaucoma. Ophthalmologe, 109:30–36, 2012.

    Article  Google Scholar 

  55. OpenFOAM, the Open Source CFD Toolbox by OpenCFD Ltd. http://openfoam.com.

  56. T. Pan, M. S. Stay, V. H. Barocas, J. D. Brown, and B. Ziaie. Modeling and characterization of a valved glaucoma drainage device with implications for enhanced therapeutic efficacy. IEEE Trans. Biomed. Eng., 52:948–951, 2005.

    Article  Google Scholar 

  57. H. F. Poppendiek, R. Randall, J. A. Breeden, J. E. Chambers, and J. R. Murphy. Thermal conductivity measurements and predictions for biological fluids and tissues. Cryobiology, 3(4):318–327, 1967. ISSN 0011-2240. doi: 10.1016/S0011-2240(67)80005-1.

    Article  Google Scholar 

  58. R. F. Probstein. Physicochemical hydrodynamics: an introduction. John Wiley & Sons, 2005.

    Google Scholar 

  59. D. Purves, G. J. Augustine, D. Fitzpatrick, L. C. Katz, A.-S. LaMantia, J. O. McNamara, S. M. Williams, et al. Types of eye movements and their functions. Neuroscience, pages 361–390, 2001.

    Google Scholar 

  60. H. A. Quigley and A. T. Broman. The number of people with glaucoma worldwide in 2010 and 2020. British journal of ophthalmology, 90(3): 262–267, 2006.

    Article  Google Scholar 

  61. G. Raviola. The structural basis of the blood-ocular barriers. Experimental eye research, 25:27–63, 1977.

    Article  Google Scholar 

  62. R. Repetto, J. O. Pralits, J. H. Siggers, and P. Soleri. Phakic iris-fixated intraocular lens placement in the anterior chamber: effects on aqueous flow. Invest. Ophthalmol. Visual Sci., 56(5): 3061–3068, 2015.

    Article  Google Scholar 

  63. A. R. Rudnicka, S. Mt-Isa, C. G. Owen, D. G. Cook, and D. Ashby. Variations in primary open-angle glaucoma prevalence by age, gender, and race: a bayesian meta-analysis. Investigative ophthalmology & visual science, 47 (10):4254–4261, 2006.

    Article  Google Scholar 

  64. W. Schmidt, C. Schultze, O. Stachs, R. Allemann, M. Lobler, K. Sternberg, U. Hinze, B. N. Chichkov, R. Guthoff, and K. P. Schmitz. Concept of a pressure-controlled microstent for glaucoma therapy. Klin. Monatsbl. Augenh., 227:946–952, 2010.

    Article  Google Scholar 

  65. R. R. Seeley, T. D. Stephens, and P. Tate. Anatomy & Physiology. McGraw-Hill, New York, 5th edition, 2000.

    Google Scholar 

  66. S. Siewert, C. Schultze, W. Schmidt, U. Hinze, B. Chichkov, A. Wree, K. Sternberg, R. Allemann, R. Guthoff, and K. P. Schmitz. Development of a micro-mechanical valve in a novel glaucoma implant. Biomed. Microdevices, 14:907–920, 2012.

    Article  Google Scholar 

  67. S. Siewert, M. Saemann, W. Schmidt, M. Stiehm, K. Falke, N. Grabow, R. Guthoff, and K. P. Schmitz. Coupled analysis of fluid–structure interaction of a micro-mechanical valve for glaucoma drainage devices. Klin. Monatsbl., Augenh., 232:1374–1380, 2015.

    Article  Google Scholar 

  68. D. M. Silver and H. A. Quigley. Aqueous flow through the iris-lens channel: estimates o the differential pressure between the anterior and the posterior chambers. J. Glaucoma, 13(2):100–107, April 2004.

    Article  Google Scholar 

  69. M. S. Stay, T. Pan, J. D. Brown, B. Ziaie, and V. H. Barocas. Thin-film coupled fluid–solid analysis of flow through the Ahmedtm glaucoma drainage device. J. Biomech. Eng., 127:776–781, 2005.

    Article  Google Scholar 

  70. M. Szopos, S. Cassani, G. Guidoboni, C. Prud’homme, R. Sacco, B. Siesky, and A. Harris. Mathematical modeling of aqueous humor flow and intraocular pressure under uncertainty: towards individualized glaucoma management. Journal for Modeling in Ophthalmology, 1 (2):29–39, 2016.

    Google Scholar 

  71. E. R. Tamm. The trabecular meshwork outflow pathways: Structural and functional aspects. Exp. Eye Res., 88:648–655, 2009.

    Article  Google Scholar 

  72. C. To, C. Kong, C. Chan, M. Shahidullah, and C. Do. The mechanism of aqueous humour formation. Clinical and Experimental Optometry, 85(6): 335–349, 2002.

    Article  Google Scholar 

  73. C. B. Toris, M. E. Yablonski, and Y.-L. W. ad C. B. Camras. Aqueous humor dynamics in the aging human eye. Am. J, Ophthalmol., 127(4):407–412, 1999.

    Article  Google Scholar 

  74. S. Türk. Untersuchungen über eine strömung in der vorderen augenkammer. Gaefes Arch. Ophtalmol., 64:481–501, 1906.

    Article  Google Scholar 

  75. J. H. Tweedy, J. O. Pralits, R. Repetto, and P. Soleri. Flow in the anterior chamber of the eye with an implanted iris-fixated artificial lens. Mathematical Medicine and Biology: A Journal of the IMA, page dqx007, 2017.

    Google Scholar 

  76. A. Villamarin, S. Roy, R. Hasballa, O. Vardoulis, P. Reymond, and N. Stergiopulos. 3D simulation of the aqueous flow in the human eye. Med. Eng. Phys., 34:1462–1470, 2012.

    Article  Google Scholar 

  77. R. N. Weinreb and P. T. Khaw. Primary open-angle glaucoma. The Lancet, 363(9422):1711–1720, 2004.

    Article  Google Scholar 

  78. A. Weinstein and J. Stephenson. Electrolyte transport across a simple epithelium. steady-state and transient analysis. Biophysical journal, 27(2):165–186, 1979.

    Article  Google Scholar 

  79. F. Yuan, A. T. Schieber, L. J. Camras, P. J. Harasymowycz, L. W. Herndon, and R. R. Allingham. Mathematical modeling of outflow facility increase with trabecular meshwork bypass and Schlemm canal dilation. J. Glaucoma, 25:355–364, 2016.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Federica Grillo, University of Genoa (Italy), for drawing Figs. 1 and 2. Mariia Dvoriashyna acknowledges the Department of Civil, Chemical and Environmental Engineering of the University of Genoa (Italy), where she worked as a PhD student when the original version of this chapter was written.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolfo Repetto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dvoriashyna, M., Pralits, J.O., Tweedy, J.H., Repetto, R. (2019). Mathematical Models of Aqueous Production, Flow and Drainage. In: Guidoboni, G., Harris, A., Sacco, R. (eds) Ocular Fluid Dynamics. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-25886-3_9

Download citation

Publish with us

Policies and ethics