Skip to main content

Aqueous Humor and the Dynamics of Its Flow: Formation of Aqueous Humor

  • Reference work entry
  • First Online:
Albert and Jakobiec's Principles and Practice of Ophthalmology

Abstract

Aqueous humor has numerous functions including optical transparency, structural integrity, and providing nutrition for the eye without the need for blood vessels that would be opaque. Ordinarily, no blood vessels are found in the cornea, lens, vitreous, or trabecular meshwork. Indeed, proportionately, the eye contains the largest avascular mass found in an organ anywhere in the body. The traditionally avascular structures of the eye including the cornea, lens, and trabecular meshwork require essential nutrients including glucose, oxygen, and amino acids to function properly. The aqueous humor not only provides these nutrients and removes harmful substances and byproducts of metabolism but also provides an optimally balanced pH and environment for these structures to function, including providing an optically clear media for vision. Aqueous humor also generates intraocular pressure to maintain the eye’s structural integrity and the position of the refractive surfaces of the eye relative to each other. Furthermore, aqueous humor contains a relatively high concentration of ascorbate, which may offer protection from UV radiation by removing free radicals. Finally, the aqueous humor provides a crucial role in mediating the immune response in the eye by modulating its rate of formation and thus the concentration of immune mediators when fighting off infections. It is largely the energy available from the cellular metabolism of the epithelia of the ciliary processes that drives the extraction and formation of the aqueous humor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 5,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 6,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Knutson SL, Sears ML: Herman Boerhaave and the history of vessels carrying aqueous humor from the eye. Am J Ophthalmol 1973; 76:648–654.

    Google Scholar 

  2. Magitot A. Sur les sources multiples de I’humeur aqueuse. Ann Oct. 1928;11165:481–507.

    Google Scholar 

  3. Duke-Elder S. Textbook of ophthalmology. London: Kimpton; 1932. p. 455.

    Google Scholar 

  4. Leber T. Die Zirkulations-und Ertlahrungsverhaltnisse des Auges. Graefe-Saemiach’s Handbuch der Gesellshaft fur Augenheilk. Leipzig: W. Engelmann; 1903. p. 63.

    Google Scholar 

  5. Lauber H. Beitrag zur Anatomic des vorderen Augen-abbachnittes der Wirbeithiere Anat I-lent. 1901; 18:430.

    Google Scholar 

  6. Troncoso MU. The physiologic nature of the Schlemm canal. Am J Ophthalmol. 1921;4:321–6.

    Article  Google Scholar 

  7. Seidel E. Mikroskopische Beobachtungen uber den Mechanismus des Abflusses aus der Vorderkammer des Lebenden Tieres bie physiologimchem Augendrucke. Graefes Arch ophthalniol. 1923;111:167.

    Article  Google Scholar 

  8. Ascher KW. Aqueous veins. Am J Ophthalmol. 1942;25:31.

    Article  Google Scholar 

  9. Goldmann H. Weitere Mitteilung uber den Abfluss des Kammerwassers beim menschen. Ophthalmologica. 1946;112:344.

    Article  CAS  PubMed  Google Scholar 

  10. Davson H. Physiology of the ocular and cerebrospinal fluid. Boston: Little, Brown; 1956. p. 7–11.

    Google Scholar 

  11. Friedenwald JS, Stichler RD. Circulation of the aqueous: VII. A mechanism of secretion of the intraocular fluid. Arch Ophthalmol. 1938;20:761–86.

    Article  Google Scholar 

  12. Friedenwald JS. The formation of the intraocular fluid. Am J Ophthalmol. 1949;32:9–27.

    Article  PubMed  Google Scholar 

  13. Yamada E. Further observation on the intraepithelial nerve fibers of rabbit ocular ciliary epithelium. Arch Histol Cytol. 1989;52:191–5.

    Article  CAS  PubMed  Google Scholar 

  14. Stamper RL, Lieberman MF, Drake MV. Aqueous humor formation. In: Becker-Shaffer’s diagnosis and therapy of the glaucomas. 8th ed. St. Louis: Elsevier Inc; 2009. p. 8–24.

    Chapter  Google Scholar 

  15. Tomarev M, et al. Gene expression profile of the human trabecular meshwork: NEI Bank sequence tag analysis. Invest Ophthalmol Vis Sci. 2003;44:2588.

    Article  PubMed  Google Scholar 

  16. Alm A, Villumsen J. PHXA3, a new potent ocular hypotensive drug. A study on dose-response relationship and on aqueous humor dynamics in healthy volunteers. Arch Ophthalmol. 1991;109:1564.

    Article  CAS  PubMed  Google Scholar 

  17. Ellingsen BA, Grant WM. Trabeculotomy and sinusotomy in enucleated human eyes. Investig Ophthalmol. 1972;11:21.

    CAS  Google Scholar 

  18. Bill A. The role of ciliary blood flow and ultrafiltration in aqueous humor formation. Exp Eye Res. 1973;16:287–95.

    Article  CAS  PubMed  Google Scholar 

  19. Bill A. Blood circulation and fluid dynamics in the eye. Phytiol Rev. 1971;55:383–417.

    Article  Google Scholar 

  20. Sears ML. Physiology and pharmacology of aqueous humor formation: implications with respect to treatment. Ophthalmol Clin N Am. 1991;4:781–802.

    Google Scholar 

  21. NeufeId AH, Sears ML. The site of action of prostaglandin E on the disruption of the blood/aqueous barrier in the rabbit eye. Exp Eye Res. 1973;17:445–8.

    Article  Google Scholar 

  22. Vegge T, Neufeld AH, Sears ML. Morphology of the breakdown of the blood-aqueous barrier in the ciliary processes of the rabbit eye after prostaglandin E. Investig Ophthalmol. 1975;14:33–40.

    CAS  Google Scholar 

  23. Green K, Bountra C, Georgiou P, et al. Invest Ophthalmol Vis Sci. 1985;26:371–81.

    CAS  PubMed  Google Scholar 

  24. Wiederholt M, Zadunaisky JA. Membrane potentials and intra cellular chloride activity in the ciliary body of the shark. Pflugers Arch. 1986;407(Suppl 2):5112–5.

    Google Scholar 

  25. Diamond JR, Bossert WH. Standing gradient osmotic flow: a mechanism for coupling of water and solute transport in epithelia. J Gen Physiol. 1967;50:2061–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ballintine ET, Peters L. Effects of intracarotid injection of a basic dye on the ciliary body. Am J Ophthalmol. 1954;38:153–63.

    Article  CAS  PubMed  Google Scholar 

  27. de Roetth A Jr. Glycolytic activity of ciliary process. Arch Ophthalmol. 1954;51:599–608.

    Article  Google Scholar 

  28. Shimizu H, Riley MV, Cole DF. The isolation of whole cell from the ciliary epithelium together with some observations on the metabolism of the two cell types. Exp Eye Res. 1967;6:141–51.

    Article  CAS  PubMed  Google Scholar 

  29. Riley MV, Kishida K. ATPases of ciliary epithelium: cellular and subcellular distribution and probable role in secretion of aqueous humor. Exp Eye Res. 1986;42:559–68.

    Article  CAS  PubMed  Google Scholar 

  30. Cole DF. Aqueous humor formation. Doc Ophthalmol. 1966;21:116–238.

    Article  Google Scholar 

  31. Becker B. Decrease in intraocular pressure in man by a carbonic anhydrase inhibitor, diamos. Am J Ophthalmol. 1954;37:13–5.

    Article  CAS  PubMed  Google Scholar 

  32. Grant WM, Trotter RR. Diamox (acetazolamide) in the treatment of glaucoma. Arch Ophthalmol. 1954;51:735–9.

    Article  CAS  Google Scholar 

  33. Breinin GM, Gortz H. Carbonic anhydrase inhibitor acetazolamide (Diamox): a new approach to the therapy of glaucoma. Arch Ophthalmol. 1954;52:333–48.

    Article  CAS  Google Scholar 

  34. Vareilles P, Silverstone D, Pazonnet B, et al. Comparison of the effects of timolol and other adrenergic agents on intraocular pressure in the rabbit. Invest Ophthalmol Vis Sci. 1977;16:987–96.

    CAS  PubMed  Google Scholar 

  35. Katz IM, Hubbard WA, Getson AJ, et al. Intraocular pressure decrease in normal volunteers following timolol ophthalmic solution. Invest Ophthalmol Vis Sci. 1976;15:489–92.

    CAS  Google Scholar 

  36. Zimmerman TJ, Kaufman HE. Timolol: a beta adrenergic blocking agent for the treatment of glaucoma. Arch Ophthalmol. 1977;95:601–4.

    Article  CAS  PubMed  Google Scholar 

  37. Brechue WF, Maren TH. Correlation of drug accession with 10P reduction following local and intravenous carbonic anhydrase inhibitors. Invest Ophthalmol Vis Sci. 1991;32:156.

    Google Scholar 

  38. Nathanson JA. Adrenergic regulation of intraocular pressure: identification of beta, adrenergic stimulated adenylate cyclase in ciliary process epithelium. Proc Natl Acad Sci U S A. 1980;77:7420–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gregory OS, Bausher TP, Bromberg BB, et al. The beta adrenergic receptor and adenyl cyclase of rabbit ciliary processes. In: Sears ML, editor. New directions in ophthalmic research. New Haven: Yale University Press; 1981. p. 127–48.

    Google Scholar 

  40. King LS, Agre P. Pathophysiology of the aquaporin channels. Annu Rev Physiol. 1996;58:619–48.

    Article  CAS  PubMed  Google Scholar 

  41. Friedenwald JS, Herrmann H, Moses R. The distribution of certain oxidative enzymes in tbc ciliary body. Johns Hopkins Bull. 1943;73:421–34.

    CAS  Google Scholar 

  42. Berggren L. Direct observation of secretory pumping in vitro of the rabbit eye ciliary processes: influence of ion milieu and carbonic anhydrase inhibition. Investig Ophthalmol. 1964;3:266–72.

    CAS  Google Scholar 

  43. Berggren L. Effect of a mercurial diuretic, Mersalyl, on in vitro secretory activity of the rabbit eye ciliary processes. Acta Ophthalmol. 1970;48:275–53.

    Article  CAS  Google Scholar 

  44. Becker B. Ascorbate transport in guinea pig eyes. Investig Ophthalmol. 1967;6:410–5.

    CAS  Google Scholar 

  45. Krupin T, Reinach PS, Candia OA, et al. Transepithelial electrical measurements on the isolated rabbit iris-ciliary body. Exp Eye Res. 1984;311:115–23.

    Article  Google Scholar 

  46. Pesin SR, Candia OA. Na+ and Cl fluxes and effects of pharmacological agents on the short circuit current of the isolated rabbit iris-ciliary body. Curr Eye Res. 1982;83(2):815–27.

    Article  Google Scholar 

  47. Holland MG, Gipson CC. Chloride ion transport in the isolated ciliary body. Investig Ophthalmol. 1970;9:20–9.

    CAS  Google Scholar 

  48. Cole DF. Evidence for active transport of chloride in ciliary epithelium of the rabbit. Exp Eye Res. 1969;8:5–15.

    Article  CAS  PubMed  Google Scholar 

  49. Cole DF. Secretion of the aqueous humor. Exp Eye Res. 1977;25:161–76.

    Article  CAS  PubMed  Google Scholar 

  50. Chu TC, Candia OA. Electrically silent Na+ and Cl fluxes across the rabbit cilia, epithelium. Invest Ophthalmol Vis Sci. 1987;28:445–50.

    CAS  PubMed  Google Scholar 

  51. Chu TC, Candia OA. Active transport of ascorbate across the isolated rabbit ciliary epithelium. Invest Ophthalmol Vis Sci. 1988;29:594–9.

    CAS  PubMed  Google Scholar 

  52. Kondo K, Coca-Prados M, Sears ML. Human ciliary epithelia in monolayer culture. Exp Eye Res. 1984;38:423–33.

    Article  CAS  PubMed  Google Scholar 

  53. Coca Prados M, Wax MB. Transformation of human ciliary epithelial cells by simian virus 40: induction of cell proliferation and retention of beta adrenergic receptors. Proc Natl Acad Sci U S A. 1986;83:8754–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wiederholt M, Helbig H, Kormacher C. Ion transport across the ciliary epithelium: lessons from cultured cells and proposed role of the carbonic anhydrase. In: Botre F, Gross C, Storey UT, editors. Carbonic anhydrase. New York: VCH Publications; 1991. p. 232–44.

    Google Scholar 

  55. Helbig H, Kormacher C, Nawrath M, et al. Sodium bicarbonate cotransport in cultured pigmented ciliary epithelial cells. Curr Eye Res. 1989;8:595–8.

    Article  CAS  PubMed  Google Scholar 

  56. Helbig H, Korbmacher C, Kuhner D, et al. Characterization of Cl/HCO; – exchange in cultured bovine pigmented ciliary epithelium. Exp Eye Res. 1988;47:515–23.

    Article  CAS  PubMed  Google Scholar 

  57. Helbig H, Korbmacher C, Berweck S, et al. Kinetic properties of Na’/H exchanged in cultured bovine pigmented ciliary epithelial cells. Eur J Phys. 1988;412:80–5.

    Article  CAS  Google Scholar 

  58. Helbig H, Korbmacher C, Stumpff F, et al. Na/H exchange regulated intracellular pH in a cell done derived from bovine pigmented ciliary epithelium. J Cell Physiol. 1988;137:384–9.

    Article  CAS  PubMed  Google Scholar 

  59. Helbig H, Korbmacher C, Wohlfarth I, et al. Electrogenic Na ascorbate cotransport in cultured bovine pigmented biliary epithelial cells. Am J Phys. 1989;256:44–9.

    Article  Google Scholar 

  60. Helbig H, Korhmacher C, Wohlfarth J, et al. Effect of acetylcholine on membrane potential of cultured human nonpigmented ciliary epithelial cells. Invest Ophthalmol Vis Sci. 1989;30:890–6.

    CAS  PubMed  Google Scholar 

  61. Barros F, Lopez-Briones LU, Coca-Prados M, et al. Detection and characterization of Ca2+-activated K+ channels in transformed cells of human non-pigmented ciliary epithelium. Curr Eye Res. 1991;10:731–8.

    Article  CAS  PubMed  Google Scholar 

  62. Wax MB, Coca-Prados M. Receptor-mediated phosphoinositide hydrolysis in human ocular ciliary epithelial cells. Invest Ophthalmol Vis Sci. 1989;30:1675–9.

    CAS  PubMed  Google Scholar 

  63. Sears ML. The aqueous. In: Moses RA, editor. Adler’s physiology of the eye. St. Louis: CV Mosby; 1980. p. 204–26.

    Google Scholar 

  64. Sears ML. Catecholamines in relation to the eye. In: Astwood B, Creep R, editors. Handbook of physiology, section on endocrinology. Washington, DC: American Physiological Society; 1975. p. 553–90.

    Google Scholar 

  65. Waitzman MB, Woods WD. Some characteristics of an adenyl cyclase preparation from rabbit ciliary process tissue. Exp Eye Res. 1971;12:99–111.

    Article  CAS  PubMed  Google Scholar 

  66. Neufeld AH, Sears ML. Cyclic AMP in the ocular tissues of the rabbit, monkey, and human. Invest Ophthalmol Vis Sci. 1974;13:475–7.

    CAS  Google Scholar 

  67. Bromberg BB, Gregory DS, Sears ML. Beta adrenergic receptors in ciliary processes of the rabbit. Invest Ophthalmol Vis Sci. 1980;19:203–7.

    CAS  PubMed  Google Scholar 

  68. Wax MB, Molinoff PB. Distribution and properties of beta adrenergic receptors in human iris-ciliary body. Invest Ophthalmol Vis Sci. 1987;28:420–30.

    CAS  PubMed  Google Scholar 

  69. Elena PP, Fredj-Reydgrobellet D, Moulin G, et al. Pharmacological characteristics of b-adrenergic-sensitive adenylate cyclase in nonpigmented and in pigmented cells of bovine diary process. Curr Eye Res. 1984;3:1383–9.

    Article  CAS  PubMed  Google Scholar 

  70. Palkama A, Kaufman H, Uusitalo R, et al. Histochemistry of adenylate cyclase activity in the anterior segment of the eye: a methodological evaluation with biochemical background. Exp Eye Res. 1986;43:1043–56.

    Article  CAS  PubMed  Google Scholar 

  71. Tsukahara S, Maezewa N. Cytochemical localization of adenyl cyclase in the rabbit ciliary body. Exp Eye Res. 1978;26:99–106.

    Article  CAS  PubMed  Google Scholar 

  72. Polansky JR, Alvarado JA. Isolation and evaluation of target cells in glaucoma research: hormone receptors and drug responses. Curr Eye Res. 1985;4:267–79.

    Article  CAS  PubMed  Google Scholar 

  73. Bausher LP, Gregory DS, Sears ML. Interaction between alpha and beta,-adrenergic receptors in rabbit ciliary processes. Curr Eye Res. 1987;6:497–505.

    Article  CAS  PubMed  Google Scholar 

  74. Bausher LP, Gregory DS, Sears ML. Alpha-adrenergic and VIP receptors in rabbit ciliary processes interact. Curr Eye Res. 1989;8:47–54.

    Article  CAS  PubMed  Google Scholar 

  75. Sears ML. Autonomic nervous system: adrenergic agonists. In: Sears ML, editor. Handbook of experimental pharmacology, pharmacology of the eye. Berlin: Springer; 1984. p. 193–233.

    Google Scholar 

  76. Sears ML. Regulation of aqueous flow by the adenylate cyclase receptor complex in the ciliary epithelium. Am J Ophthalmol. 1985;1053:194–8.

    Article  Google Scholar 

  77. Topper RE, Brubaker RF. Effects of timolol, epinephrine, and acetazolamide on aqueous flow during sleep. Invest Ophthalmol Vis Sci. 1985;26:1315–9.

    CAS  PubMed  Google Scholar 

  78. Vareilles P, Silveratone D, Plazonnet B, et al. The effect of timolol, a beta-adrenergic blocking agent, on 10P in rabbits. Pharmacologist. 1976;18:139.

    Google Scholar 

  79. Mittag TW, Torstasy A, Podos SM. Vasoactive intestinal peptide and intraocular pressure: adenylate cyclase activation and binding sites for vasoactive intestinal peptide in membranes of ocular ciliary processes. J Pharmacol Exp Ther. 1987;241:230–5.

    CAS  PubMed  Google Scholar 

  80. Uddman R, Alumets J, Ehinger B, et al. Vasoactive intestinal peptide nerves in ocular and orbital structures of the cat. Invest Ophthalmol Vis Sci. 1980;19:875–85.

    Google Scholar 

  81. Nilsson SFE, Macpea O, Samuelsson M, et al. Effects of timolol on terbutaline- and VIP-stimulated aqueous humor flow in the cynomolgus monkey. Curt Eye Res. 1990;9:863–72.

    Article  CAS  Google Scholar 

  82. Cepelik J, Hynie S. Inhibitory effects of neuropeptide Y on adenylate cyclase of rabbit diary processes. Curr Eye Res. 1990;9:121–8.

    Article  CAS  PubMed  Google Scholar 

  83. Bausher LP, Horio B. Neuropeptide Y and somatostatin inhibited stimulated cyclic AMP production in rabbit ciliary processes. Curr Eye Res. 1990;9:371–8.

    Article  CAS  PubMed  Google Scholar 

  84. Junblatt JE, Gooch JM. Neuropeptide y modulates adenylate cyclase in the rabbit iris ciliary body and ciliary epithelium. Exp Eye Rca. 1990;51:229–31.

    Article  Google Scholar 

  85. Caprioli J, Sears M, Bausher L, et al. Forskolin lowers intraocular pressure by reducing aqueous inflow. Invest Ophthalmol Vis Sci. 1984;25:268–77.

    CAS  PubMed  Google Scholar 

  86. Gregory D, Sears ML, Bausher L, et al. Intraocular pressure and aqueous flow are decreased by cholera toxin. Invest Ophthalmol Vis Sci. 1981;20:371–81.

    CAS  PubMed  Google Scholar 

  87. Jumblatt JE, North GT, Hackmiller RC. Muscarinic cholinergic inhibition of adenylate cyclase in the rabbit iris-ciliary body and ciliary epithelium. Invest Ophthalmol Vis Sci. 1990;31:1103–8.

    CAS  PubMed  Google Scholar 

  88. Gregory D. Timolol reduces lOP in normal NZW rabbits during the dark only. Invest Ophthalmol Vis Sci. 1990;31:715–21.

    CAS  PubMed  Google Scholar 

  89. Gregory D, Aviado DG, Sears ML. Cervical ganglionectomy alters the circadian rhythm of intraocular pressure Sn New Zealand White rabbits. Curr Eye Res. 1985;4:1273–9.

    Article  CAS  PubMed  Google Scholar 

  90. Smith SD, Gregory D. A circadian rhythm of aqueous flow underlies the circadian rhythm of lOP in NZW rabbits. Invest Ophthalmol Vis Sci. 1989;30:775.

    CAS  PubMed  Google Scholar 

  91. Yoshitomi T, Gregory DS. Ocular adrenergic nerves control the circadian rhythm of aqueous flow in rabbits. Invest Ophthalmol Vis Sci. 1991;32:523–8.

    CAS  PubMed  Google Scholar 

  92. Yoshitomi T, Horn B, Gregory DS. Changes in aqueous norepinephrine and cyclic adenosine monophosphate during the circadian cycle in rabbits. Invest Ophthalmol Vis Sci. 1991;32:1609–13.

    CAS  PubMed  Google Scholar 

  93. Lohse MJ, Benovic JL, Codina J, et al. Beta arrestin: a protein that regulates beta receptor function. Science. 1990;248:1547–50.

    Article  CAS  PubMed  Google Scholar 

  94. Sears J, Sears M. Circadian rhythms in aqueous humor formation. In: Civan MM, editor. The eye’s aqueous humor: from secretion to glaucoma ed by Civan MM. Current topics in membranes. San Diego: Harcourt Brace & Co; 1998.

    Google Scholar 

  95. Chen S, Inoue R, Inomata H, Ito Y. Role of cAMP induced Cl conductance in aqueous humor formation by the dog ciliary epithelium. Br J Pharmacol. 1994;112:1137–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Saito Y, Watanabe T. Relationship between short-circuit current and unidirectional fluxes of Na and Cl across the diary epithelium of the load: demonstration of active Cl transport. Exp Eye Res. 1979;28:71–9.

    Article  CAS  PubMed  Google Scholar 

  97. Kishida K, Sasabe T, Manabe R, et al. Electric characteristics of the isolated rabbit ciliary body. Jpn J Ophthalmol. 1983;25:407–16.

    Google Scholar 

  98. Yamashita H, Yamamoto T. Histochemical observation of distribution of chloride ion around ciliary epithelium. Jpn J Ophthalmol. 1989;33:41–7.

    Google Scholar 

  99. Holland MG, Gipson CC. Chloride ion transport in the isolated ciliary body. Invest Ophthalmol Vis Sci. 1970;90:20–9.

    Google Scholar 

  100. Yantorno RE, Krupin T, Civan MM. Selective and non-selective ion channels in intact rabbit ciliary epithelium. Invest Ophthalmol Vis Sci. 1987;28(suppl):374.

    Google Scholar 

  101. Murakami M, Sears M, Mori N, et al. The loci of carbonic anhydrase activity in the ciliary epithelium of the rabbit eye: an electrophysiological study using isolated ciliary epithelial bilayer. Acta Histochem Cytochem. 1992;25:77–85.

    Article  CAS  Google Scholar 

  102. Berggren L. Effect of a mercurial diuretic, mersalyl, on in vitro secretory activity of she rabbit eye ciliary processes. Acta Ophthalmol. 1970;48:275–83.

    Article  CAS  Google Scholar 

  103. Civan MM. The ins and outs of aqueous secretion. Exp Eye Res. 2004;78:625–31.

    Article  CAS  PubMed  Google Scholar 

  104. Civan MM. Basis of chloride transport in ciliary epithelium. J Membr Biol. 2004;200:1–13.

    Article  CAS  PubMed  Google Scholar 

  105. Friedenwald JS. Carbonic anhydrase inhibition and aqueous flow. Am J Ophthalmol. 1955;39:59–64.

    Article  CAS  PubMed  Google Scholar 

  106. Maren TH. HCO3 formation in aqueous humor: mechanism and relation to the treatment of glaucoma. Investig Ophthalmol. 1974;3:479–84.

    Google Scholar 

  107. Friedland BR, Maren TH. Carbonic anhydrate: pharmacology of inhibitors and treatment of glaucoma. In: Sears ML, editor. Handbook of experimental pharmacology, pharmacology of the eye. Berlin: Springer; 1984. p. 279–303.

    Google Scholar 

  108. Zimmerman TJ, Garg LC, Vogh BP, et al. The effect of acetazolamide on the movement of sodium into the posterior chamber of the dog eye. J Pharmacol Exp Ther. 1976;199:510.

    CAS  PubMed  Google Scholar 

  109. Kinsey VE. Comparative chemistry of aqueous humor in posterior and anterior chambers of rabbit eye: Its physiologic significance. Arch Ophthalmol. 1953;40:401–17.

    Article  Google Scholar 

  110. Kinsey VE, Reddy DVN. Turnover of carbon dioxide in the aqueous humor and the effect thereon of acetazolamide. Arch Ophthalmol. 1959;62:78–83.

    Article  CAS  Google Scholar 

  111. Cole DF. Electrochemical changes associated with the formation of the aqueous humor. Br J Ophthalmol. 1961;45:202–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sears ML, Yamada E, Cummins D, et al. The isolated ciliary epithelial bilayer is useful for in vitro studies of aqueous humor formation. Trans Am Ophthalmol Soc. 1991;89:131–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Lutjen-Drecoll E, Lonnerholm G. Carbonic anhydrase in the rabbit eye by light and electron microscopy. Invest Ophthalmol Vis Sci. 1981;21:782–97.

    CAS  PubMed  Google Scholar 

  114. Lutjen-Drecoll E, Lonnerholm G, Eichhorn M. Carbonic anhydrase distribution in the human and monkey eye by light and electron microscopy. Graefes Arch Clin Exp Ophthalmol. 1983;220:285–91.

    Article  CAS  PubMed  Google Scholar 

  115. Wistrand PJ. Properties of membrane-bound carbonic anhydrase. Ann N Y Acad Sci. 1984;429:195–206.

    Article  CAS  PubMed  Google Scholar 

  116. Brown D, Zhu XL, Sly WS. Localization of membrane-associated carbonic anhydrase type IV in kidney epithelial cells. Proc Natl Acad Sci U S A. 1990;87:7457–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lonnerholm G, Ridderstrale Y. Intracellular distribution of carbonic anhydrase in the rat kidney. Kidney mt. 1980;17:162–74.

    CAS  Google Scholar 

  118. Maren TH. The kinetics of HCO synthesis related to fluid secretion, pH control, and CO2 elimination. Annu Rev Physiol. 1988;50:695–717.

    Article  CAS  PubMed  Google Scholar 

  119. Boron WF, Boulpaep EL. The electrogenic Na/BCE dotrans. porter. Kidney Ins. 1989;36:392–402.

    Article  CAS  Google Scholar 

  120. Cole DF. Rate of entrance of sodium into the aqueous humour of the rabbit. Br J Ophthalmol. 1960;44:225–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Simon KA, Bonting SL, Hawkins NM. Studies on sodium- potassium activated adenosine triphosphatase II. Exp Eye Res. 1962;1:253–61.

    Article  CAS  PubMed  Google Scholar 

  122. Bonting SL, Caravaggio L, Hawkins NM. Studies on sodium- potassium-activated adenosine triphosphatase: IV. Correlation with cation transport sensitive to cardiac glycosides. Arch Bio Chem Biophys. 1962;98:413–9.

    Article  CAS  Google Scholar 

  123. Bonting SL, Reeker B. Studies on sodium-potassium-activated adenosine triphosphatase: IV. Inhibition of enzyme activity and aqueous humor flow in the rabbit eye after intravitreal injections of ouabain. Investig Ophthalmol. 1964;3:523–33.

    CAS  Google Scholar 

  124. Krupin T, Fritz C, Becker B. Maturation of Rb and PAH accumulation by rabbit anterior uvea and choroid plexus. Invest Ophthalmol Vis Sci. 1985;26:159–62.

    CAS  PubMed  Google Scholar 

  125. Shiose Y, Sears ML. Localization and other aspects of nucleoside phosphatase activity in the ciliary epithelium of albino rabbits. Investig Ophthalmol. 1965;4:64–75.

    CAS  Google Scholar 

  126. Mori N, Yamada E, Sears ML. Immunocytochemical localization of Na/K-ATPa5e in the isolated ciliary epithelial bilayer of the rabbit. Arch Histol Cytol. 1991;54:259–65.

    Article  CAS  PubMed  Google Scholar 

  127. Ghosh S, Freitag A, Martin-Vasallo P, et al. Cellular distribution and differential gene expression of the three subunit isoforms of the Na, K-ATPase in the ocular ciliary epithelium. J Biol Chem. 1990;265:2935.

    Article  CAS  PubMed  Google Scholar 

  128. Martin-Vasallo F, Ghosh S, Coca-Prados M. Expression of Na, K-ATPase subunit isoforms in the human ciliary body and cultured epithelial cells. J Cell Physiol. 1989;141:243–52.

    Article  CAS  PubMed  Google Scholar 

  129. Lytton J, Lin JC, Guidotti G. Identification of two molecular forms of (Na+ K+)-ATPase in rat adipocytes. J Bid Chem. 1985;260:1177–84.

    Article  CAS  Google Scholar 

  130. Delamere NA, Socci RR, King KL. Alteration of sodium, potassium-adenosine triphosphatase activity in rabbit ciliary processes by cyclic adenosine monophosphate-dependent protein kinase. Invest Ophthalmol Vis Sci. 1990;31:2164–70.

    CAS  PubMed  Google Scholar 

  131. Barany E, Kinsey VE. The rate of flow of aqueous humor: I. The rate of disappearance of para-aminohippuric acid, radioactive Rayopake. and radioactive Diodrast from the aqueous humor of rabbits. Am J Ophthalmol. 1949;32:177–8.

    PubMed  Google Scholar 

  132. Reddy DVN. Distribution of free amino acids and related compounds in ocular fluids, lens, and plasma of various mammalian species. Investig Ophthalmol. 1967;6:478–83.

    CAS  Google Scholar 

  133. Reddy DVN, Thompson MR, Chakrapani B. Amino acid transport across blood-aqueous barrier of mammalian species. Exp Eye Res. 1977;25:555–62.

    Article  CAS  PubMed  Google Scholar 

  134. Reddy VN. Dynamics of transport systems in the eye: Friedenwald lecture. Invest Ophthalmol Vis Sci. 1979;18:1000–18.

    CAS  PubMed  Google Scholar 

  135. Davson H, Matchett PA. The kinetics of penetration of the blood aqueous barrier. J Physiol. 1953;122:11–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. DiMattio J, Zadunaisky JA. Glucose transport into the ocular compartments of the rat. Exp Eye Res. 1981;32:517–32.

    Article  CAS  PubMed  Google Scholar 

  137. Linner E. A method of determination of time-concentration curves using one single sample and several test substances. Acta Soc Med Ups. 1953;59(3–4):241–2.

    Google Scholar 

  138. Kinsey VE, Reddy DVN. Chemistry and dynamics of aqueous humor. In: Prince JH, editor. The rabbit in eye research. Springfield: Charles C Thomas; 1964. p. 218–319.

    Google Scholar 

  139. Brubaker K. Flow of aqueous humor in humans. Invest Ophthalmol Vis Sci. 1991;32:3145–66.

    CAS  PubMed  Google Scholar 

  140. Goldmann H, Schmidt T. Studien mittels applanationstonographie. Doc Ophthalmol. 1966;20:184–213.

    Article  CAS  PubMed  Google Scholar 

  141. Bill A, Phillips CI. Uveoscleral drainage of aqueous humour in human eyes. Exp Eyc Res. 1971;12:275–81.

    Article  CAS  Google Scholar 

  142. Barany EH. Pseudofacility and uveo-scleral outflow routes: some nontechnical difficulties in the determination of outflow facility and rate of formation of aqueous humor. In: Glaucoma symposium, Tutzing Castle, vol. 1966. Karger: Basel; 1967. p. 27–51.

    Google Scholar 

  143. Bill A. Experimental aqueous perfusion in enucleated human eyes after obstruction of Schlemm’s canal. AMA Arch Ophthalmol. 1971;86:65.

    Article  Google Scholar 

  144. Novack GD. Rho kinase inhibitors for the treatment of glaucoma. Drugs Future. 2013;38:107–13.

    Article  Google Scholar 

  145. Kopczynski CC, Epstein DL. Emerging trabecular outflow drugs. J Ocul Pharmacol Ther. 2014;30:85–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Rasmussen CA, et al. Latrunculin B reduces intraocular pressure in human ocular hypertension and primary open angle glaucoma. Transl Vis Sci Technol. 2014;3(5) https://doi.org/10.1167/tvst.3.5.1.

  147. Xie X, et al. Visual assessment of aqueous humor outflow. Asia Pac J Ophthalmol. 2019; https://doi.org/10.22608/apo.201911.

  148. Huang AS, et al. Aqueous angiography: aqueous humor outflow imaging in live human subjects. Ophthalmology. 2017;124(8):1249–51. https://doi.org/10.1016/j.ophtha.2017.03.058.

    Article  PubMed  Google Scholar 

  149. Huang AS, Mohindroo C. Aqueous humor outflow structure and function imaging at the bench and bedside: a review. J Clin Exp Ophthalmol. 2016;07(04) https://doi.org/10.4172/2155-9570.1000578.

  150. Johnstone M, Martin E, Jamil A. Pulsatile flow into the aqueous veins: manifestations in normal and glaucomatous eyes. Exp Eye Res. 2011;92:318–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Saraswathy S, Tan JC, Yu F, et al. Aqueous angiography: real-time and physiologic aqueous humor outflow imaging. PLoS One. 2016;11(1):e0147176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Caprioli J. The ciliary epithelia and aqueous humor. In: Moses K, Hart WM, editors. Adler’s physiology of the eye. 8th ed. St. Louis: CV Mosby; 1987. p. 204–22.

    Google Scholar 

  153. DiMattio J, Degnan KJ, Zadunaisky IA. A model for transepithelial ion transport across the isolated retinal pigment epithelium of the frog. Exp Eye Res. 1983;37:409–20.

    Article  CAS  PubMed  Google Scholar 

  154. Kinsey VE, Reddy DVN. Transport of glucose across blood-aqueous barriers as affected by insulin. Physiologist. 1961;156:8–16.

    Article  CAS  Google Scholar 

  155. Davson H. Vegetative physiology and biochemistry. New York: Academic Press. 1962.

    Google Scholar 

  156. De Berardinis E, Tieri O, Iuglio N et al. The concentration of lactic acid in the human aqueous humour is not determined by the metabolism of the lens. Experientia. 1965;21:589–590.

    Google Scholar 

  157. Gaasterland DE, Pederson JE, McLellan HM, Reddy VN. Rhesus monkey aqueous humor composition and a primate ocular perfusate. Invest Ophthalmol Vis Sci. 1979;18:1139–1150.

    Google Scholar 

  158. Remky H. Die Chlorverteilung Kammerwaasser/Serum beim Menschen und ihre Bedeutung fur den Wasserhaushalt des Auges. Albrecht v Graefes Arch. Ophthal. 1956;157:506–521.

    Google Scholar 

  159. Remky H. Die C1-Verteilung Kammerwasser-Serum beim Menschen [Distribution of chlorides in aqueous humor & serum in man]. Doc Ophthalmol. 1957;11:176–81.

    Google Scholar 

  160. Bito LZ. Intraocular fluid dynamics. I. Steady-state concentration gradients of magnesium, potassium and calcium in relation to the sites and mechanisms of ocular cation transport processes. Exp Eye Res. 1970;10(1):102–16.

    Google Scholar 

  161. Heald K, Langham ME. Permeability of the cornea and the blood-aqueous barrier to oxygen. Br J Ophthalmol. 1956;40(12):705–20.

    Google Scholar 

  162. Kleifeld O, Neumann HG. The oxygen content of human aqueous humor. Klin Monbl Augenheilkd Augenarztl Fortbild. 1959;135:224–6.

    Google Scholar 

  163. Wegener JK, Moller PM. Oxygen tension in the anterior chamber of the rabbit eye. Acta Ophthalmol (Copenh). 1971;49(4):577–84.

    Google Scholar 

  164. Stefansson E, Wolbarsht ML, Landers MB 3rd. The corneal contact lens and aqueous humor hypoxia in cats. Invest Ophthalmol Vis Sci. 1983;24(8):1052–4.

    Google Scholar 

  165. Walker AM. Comparision of the chemical composition of aqueous humor, cerebrospinal fluid, lymph, and blood from frogs, higher animals, and man. J Boil Chem. 1933;101:269.

    Google Scholar 

  166. Constant MA, Falch J. Phosphate and protein concentrations of intraocular fluids. I. effect of carbonic anhydrase inhibition in young and old rabbits. Invest Ophthalmol. 1963;2:332–43.

    Google Scholar 

  167. Reddy DV, Kinsey VE. Composition of the vitreous humor in relation to that of plasma and aqueous humors. Arch Ophthalmol. 1960;63:715–20.

    Google Scholar 

  168. Cole DF. In Biochemistry of the Eye. (Ed. Graymore, CN) p 105. 1970.

    Google Scholar 

  169. Maren TH. The rates of movement of Na+, Cl-, and HCO-3 from plasma to posterior chamber: effect of acetazolamide and relation to the treatment of glaucoma. Invest Ophthalmol. 1976;15(5):356–64.

    Google Scholar 

  170. Grönvall H. Contributions to the knowledge of the citric acid content of the eye fluids under varying conditions and of the dehydrogenases in the retina, Acta Ophthalmologica. 1936;14(1–2):109–26.

    Google Scholar 

  171. Duke-elder, WS. Recent Advances in Ophthalmology. P. UK, Blakistons 1927.

    Google Scholar 

  172. Furuichi C. The influence of various experimental injuries on creatine, creatinine metabolism of aqueous fluid of the rabbit’s eye. Acta Soc Ophthalmol, 1961;65:561–565.

    Google Scholar 

  173. Reim M, Lax F, Lichte H, Turss R. Steady state levels of glucose in the different layers of the cornea, aqueous humor, blood and tears in vivo. Ophthalmologica. 1967;154(1):39–50

    Google Scholar 

  174. Duke-Elder WS, Goldsmith AJB. Recent Advances in Ophthalmology. London: Churchill. 1951.

    Google Scholar 

  175. Laurent UB. Hyaluronate in aqueous humour. Exp Eye Res. 1981;33(2):147–55.

    Google Scholar 

  176. Riley MV. Intraocular dynamics of lactic acid in the rabbit. Invest Ophthalmol. 1972;11(7):600–7.

    Google Scholar 

  177. Krause U, Raunio V. Proteins of the normal human aqueous humour. Ophthalmologica. 1969;159(1):178–85.

    Google Scholar 

  178. Stjernschantz J, Uusitalo R, Palkama A. The aqueous proteins of the rat in normal eye and after aqueous withdrawal. Exp Eye Res. 1973;16(3):215–21.

    Google Scholar 

  179. Dernouchamps JP. The proteins of the aqueous humour. Doc Ophthalmol. 1982;53(3):193–248.

    Google Scholar 

  180. Reddy DVN, Rosenburg C, Kinsey VE. Steady state distribution of free amino acids within aqueous humour, vitreous body and plasma of the rabbit. Exp Eye Res. 1961;175(1961):1.

    Google Scholar 

  181. Ehlers N, Schonheyder F. Concentration of amino acids in aqueous humour and plasma in congenital cataract or dislocation of the lens. Acta Ophthalmol. 1974;123(Suppl):179.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher C. Teng .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sears, M.L., Sarrafpour, S., Teng, C.C. (2022). Aqueous Humor and the Dynamics of Its Flow: Formation of Aqueous Humor. In: Albert, D.M., Miller, J.W., Azar, D.T., Young, L.H. (eds) Albert and Jakobiec's Principles and Practice of Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-030-42634-7_184

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42634-7_184

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42633-0

  • Online ISBN: 978-3-030-42634-7

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics