Skip to main content

Maternal-Fetal Contributors to Insulin Resistance Syndrome in Youth

  • Chapter
  • First Online:
Insulin Resistance

Part of the book series: Contemporary Endocrinology ((COE))

  • 882 Accesses

Abstract

The life course approach to chronic diseases considers fetal life a critical period for the development of later, adult chronic diseases. Numerous studies have linked growth restriction in utero, as marked by low birth weight or thinness at birth, with an increased risk for the metabolic syndrome (MetS), insulin resistance (IR), poor glucose tolerance and/or type 2 diabetes mellitus (T2DM), and indicators of early cardiovascular disease (CVD) in adulthood. The effects were strong and greatly enhanced by the presence of adult obesity. These findings were linked to poor fetal nutrition during intrauterine life and constitute the basis for “the thrifty phenotype” hypothesis. At the other end of the birth weight distribution, macrosomic infants of women with diabetes during pregnancy are a group exposed to overnutrition during the intrauterine life. They have also been shown to have an increased risk for obesity and T2DM as adults.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ben-Shlomo Y, Kuh D. A life course approach to chronic disease epidemiology: conceptual models, empirical challenges and interdisciplinary perspectives. Int J Epidemiol. 2002;31(2):285–93.

    Article  PubMed  Google Scholar 

  2. Barker DJ, Hales CN, Fall CH, Osmond C, Phipps K, Clark PM. Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia. 1993;36(1):62–7.

    Article  CAS  PubMed  Google Scholar 

  3. Pandolfi C, Zugaro A, Lattanzio F, Necozione S, Barbonetti A, Colangeli MS, et al. Low birth weight and later development of insulin resistance and biochemical/clinical features of polycystic ovary syndrome. Metab Clin Exp. 2008;57(7):999–1004.

    Article  CAS  PubMed  Google Scholar 

  4. Mi J, Cheng H, Zhao XY, Hou DQ, Chen FF, Zhang KL. Developmental origin of metabolic syndrome: interaction of thinness at birth and overweight during adult life in Chinese population. Obes Rev. 2008;9(Suppl 1):91–4.

    Article  PubMed  Google Scholar 

  5. Phillips DI, Barker DJ, Hales CN, Hirst S, Osmond C. Thinness at birth and insulin resistance in adult life. Diabetologia. 1994;37(2):150–4.

    Article  CAS  PubMed  Google Scholar 

  6. Crume TL, Scherzinger A, Stamm E, McDuffie R, Bischoff KJ, Hamman RF, et al. The long-term impact of intrauterine growth restriction in a diverse U.S. cohort of children: the EPOCH study. Obesity. 2014;22(2):608–15.

    Article  CAS  PubMed  Google Scholar 

  7. Hales CN, Barker DJ, Clark PM, Cox LJ, Fall C, Osmond C, et al. Fetal and infant growth and impaired glucose tolerance at age 64. BMJ. 1991;303(6809):1019–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Norris SA, Osmond C, Gigante D, Kuzawa CW, Ramakrishnan L, Lee NR, et al. Size at birth, weight gain in infancy and childhood, and adult diabetes risk in five low- or middle-income country birth cohorts. Diabetes Care. 2012;35(1):72–9.

    Article  PubMed  Google Scholar 

  9. Barker DJ, Fall CH. Fetal and infant origins of cardiovascular disease. Arch Dis Child. 1993;68(6):797–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bilge I, Poyrazoglu S, Bas F, Emre S, Sirin A, Gokalp S, et al. Ambulatory blood pressure monitoring and renal functions in term small-for-gestational age children. Pediatr Nephrol. 2011;26(1):119–26.

    Article  PubMed  Google Scholar 

  11. Crispi F, Bijnens B, Figueras F, Bartrons J, Eixarch E, Le Noble F, et al. Fetal growth restriction results in remodeled and less efficient hearts in children. Circulation. 2010;121(22):2427–36.

    Article  PubMed  Google Scholar 

  12. Li L, Law C, Power C. Body mass index throughout the life-course and blood pressure in mid-adult life: a birth cohort study. J Hypertens. 2007;25(6):1215–23.

    Article  CAS  PubMed  Google Scholar 

  13. Salonen M, Tenhola S, Laitinen T, Lyyra-Laitinen T, Romppanen J, Jaaskelainen J, et al. Tracking serum lipid levels and the association of cholesterol concentrations, blood pressure and cigarette smoking with carotid artery intima-media thickness in young adults born small for gestational age. Circ J. 2010;74(11):2419–25.

    Article  CAS  PubMed  Google Scholar 

  14. Stanner SA, Bulmer K, Andres C, Lantseva OE, Borodina V, Poteen VV, et al. Does malnutrition in utero determine diabetes and coronary heart disease in adulthood? Results from the Leningrad siege study, a cross sectional study. BMJ. 1997;315(7119):1342–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hales CN, Barker DJ. The thrifty phenotype hypothesis. Br Med Bull. 2001;60:5–20.

    Article  CAS  PubMed  Google Scholar 

  16. Pettitt DJ, Baird HR, Aleck KA, Bennett PH, Knowler WC. Excessive obesity in offspring of Pima Indian women with diabetes during pregnancy. N Engl J Med. 1983;308(5):242–5.

    Article  CAS  PubMed  Google Scholar 

  17. McCance DR, Pettitt DJ, Hanson RL, Jacobsson LT, Knowler WC, Bennett PH. Birth weight and non-insulin dependent diabetes: thrifty genotype, thrifty phenotype, or surviving small baby genotype? BMJ. 1994;308(6934):942–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. National Institutes of Health. The third report of the national cholesterol education program expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). Bethesda; 2001. Contract No.: NIH Publication 01-3670.

    Google Scholar 

  19. Ogden CL, Carroll MD, Lawman HG, Fryar CD, Kruszon-Moran D, Kit BK, et al. Trends in obesity prevalence among children and adolescents in the United States, 1988–1994 through 2013–2014. JAMA. 2016;315(21):2292–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Magge SN, Goodman E, Armstrong SC. The metabolic syndrome in children and adolescents: shifting the focus to cardiometabolic risk factor clustering. Pediatrics. 2017;140(2):e20171603.

    Article  PubMed  Google Scholar 

  21. Miller JM, Kaylor MB, Johannsson M, Bay C, Churilla JR. Prevalence of metabolic syndrome and individual criterion in US adolescents: 2001–2010 National Health and Nutrition Examination Survey. Metab Syndr Relat Disord. 2014;12(10):527–32.

    Article  PubMed  Google Scholar 

  22. Hannon TS, Rao G, Arslanian SA. Childhood obesity and type 2 diabetes mellitus. Pediatrics. 2005;116(2):473–80.

    Article  PubMed  Google Scholar 

  23. Olshansky SJ, Passaro DJ, Hershow RC, Layden J, Carnes BA, Brody J, et al. A potential decline in life expectancy in the United States in the 21st century. N Engl J Med. 2005;352(11):1138–45.

    Article  CAS  PubMed  Google Scholar 

  24. Dabelea D, Pettitt DJ, Jones KL, Arslanian SA. Type 2 diabetes mellitus in minority children and adolescents. An emerging problem. Endocrinol Metab Clin N Am. 1999;28(4):709–29, viii.

    Article  CAS  Google Scholar 

  25. Fagot-Campagna A. Emergence of type 2 diabetes mellitus in children: epidemiological evidence. J Pediatr Endocrinol Metab. 2000;13(Suppl 6):1395–402.

    PubMed  Google Scholar 

  26. Flegal KM, Kruszon-Moran D, Carroll MD, Fryar CD, Ogden CL. Trends in obesity among adults in the United States, 2005 to 2014. JAMA. 2016;315(21):2284–91.

    Article  CAS  PubMed  Google Scholar 

  27. Freinkel N. Banting Lecture 1980. Of pregnancy and progeny. Diabetes. 1980;29(12):1023–35.

    Article  CAS  PubMed  Google Scholar 

  28. Aerts L, Van Assche FA. Animal evidence for the transgenerational development of diabetes mellitus. Int J Biochem Cell Biol. 2006;38(5–6):894–903.

    Article  CAS  PubMed  Google Scholar 

  29. Damm P, Houshmand-Oeregaard A, Kelstrup L, Lauenborg J, Mathiesen ER, Clausen TD. Gestational diabetes mellitus and long-term consequences for mother and offspring: a view from Denmark. Diabetologia. 2016;59(7):1396–9.

    Article  CAS  PubMed  Google Scholar 

  30. Harder T, Aerts L, Franke K, Van Bree R, Van Assche FA, Plagemann A. Pancreatic islet transplantation in diabetic pregnant rats prevents acquired malformation of the ventromedial hypothalamic nucleus in their offspring. Neurosci Lett. 2001;299(1–2):85–8.

    Article  CAS  PubMed  Google Scholar 

  31. Pettitt DJ, Nelson RG, Saad MF, Bennett PH, Knowler WC. Diabetes and obesity in the offspring of Pima Indian women with diabetes during pregnancy. Diabetes Care. 1993;16(1):310–4.

    Article  CAS  PubMed  Google Scholar 

  32. Petitt DJ, Bennett PH, Knowler WC, Baird HR, Aleck KA. Gestational diabetes mellitus and impaired glucose tolerance during pregnancy. Long-term effects on obesity and glucose tolerance in the offspring. Diabetes. 1985;34(Suppl 2):119–22.

    Article  PubMed  Google Scholar 

  33. Pettitt DJ, Knowler WC, Bennett PH, Aleck KA, Baird HR. Obesity in offspring of diabetic Pima Indian women despite normal birth weight. Diabetes Care. 1987;10(1):76–80.

    Article  CAS  PubMed  Google Scholar 

  34. Silverman BL, Rizzo T, Green OC, Cho NH, Winter RJ, Ogata ES, et al. Long-term prospective evaluation of offspring of diabetic mothers. Diabetes. 1991;40(Suppl 2):121–5.

    Article  PubMed  Google Scholar 

  35. Wright CS, Rifas-Shiman SL, Rich-Edwards JW, Taveras EM, Gillman MW, Oken E. Intrauterine exposure to gestational diabetes, child adiposity, and blood pressure. Am J Hypertens. 2009;22(2):215–20.

    Article  PubMed  Google Scholar 

  36. Catalano PM, Thomas A, Huston-Presley L, Amini SB. Increased fetal adiposity: a very sensitive marker of abnormal in utero development. Am J Obstet Gynecol. 2003;189(6):1698–704.

    Article  PubMed  Google Scholar 

  37. Crume TL, Ogden L, Daniels S, Hamman RF, Norris JM, Dabelea D. The impact of in utero exposure to diabetes on childhood body mass index growth trajectories: the EPOCH study. J Pediatr. 2011;158(6):941–6.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Crume TL, Ogden L, West NA, Vehik KS, Scherzinger A, Daniels S, et al. Association of exposure to diabetes in utero with adiposity and fat distribution in a multiethnic population of youth: the Exploring Perinatal Outcomes among Children (EPOCH) Study. Diabetologia. 2011;54(1):87–92.

    Article  CAS  PubMed  Google Scholar 

  39. Page KA, Romero A, Buchanan TA, Xiang AH. Gestational diabetes mellitus, maternal obesity, and adiposity in offspring. J Pediatr. 2014;164(4):807–10.

    Article  PubMed  Google Scholar 

  40. Nilsson C, Carlsson A, Landin-Olsson M. Increased risk for overweight among Swedish children born to mothers with gestational diabetes mellitus. Pediatr Diabetes. 2014;15(1):57–66.

    Article  PubMed  Google Scholar 

  41. Logan KM, Gale C, Hyde MJ, Santhakumaran S, Modi N. Diabetes in pregnancy and infant adiposity: systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2017;102(1):F65–f72.

    Article  PubMed  Google Scholar 

  42. White P. Childhood diabetes. Its course, and influence on the second and third generations. Diabetes. 1960;9:345–55.

    Article  CAS  PubMed  Google Scholar 

  43. Pettitt DJ, Knowler WC. Long-term effects of the intrauterine environment, birth weight, and breast-feeding in Pima Indians. Diabetes Care. 1998;21(Suppl 2):B138–41.

    PubMed  Google Scholar 

  44. Dabelea D, Hanson RL, Lindsay RS, Pettitt DJ, Imperatore G, Gabir MM, et al. Intrauterine exposure to diabetes conveys risks for type 2 diabetes and obesity: a study of discordant sibships. Diabetes. 2000;49(12):2208–11.

    Article  CAS  PubMed  Google Scholar 

  45. Gillman MW, Rifas-Shiman S, Berkey CS, Field AE, Colditz GA. Maternal gestational diabetes, birth weight, and adolescent obesity. Pediatrics. 2003;111(3):e221–6.

    Article  PubMed  Google Scholar 

  46. Dabelea D, Mayer-Davis EJ, Lamichhane AP, D’Agostino RB Jr, Liese AD, Vehik KS, et al. Association of intrauterine exposure to maternal diabetes and obesity with type 2 diabetes in youth: the SEARCH Case-Control Study. Diabetes Care. 2008;31(7):1422–6.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Maftei O, Whitrow MJ, Davies MJ, Giles LC, Owens JA, Moore VM. Maternal body size prior to pregnancy, gestational diabetes and weight gain: associations with insulin resistance in children at 9–10 years. Diabet Med. 2015;32(2):174–80.

    Article  CAS  PubMed  Google Scholar 

  48. Pettitt DJ, Aleck KA, Baird HR, Carraher MJ, Bennett PH, Knowler WC. Congenital susceptibility to NIDDM. Role of intrauterine environment. Diabetes. 1988;37(5):622–8.

    Article  CAS  PubMed  Google Scholar 

  49. Dabelea D, Hanson RL, Bennett PH, Roumain J, Knowler WC, Pettitt DJ. Increasing prevalence of type II diabetes in American Indian children. Diabetologia. 1998;41(8):904–10.

    Article  CAS  PubMed  Google Scholar 

  50. Franks PW, Looker HC, Kobes S, Touger L, Tataranni PA, Hanson RL, et al. Gestational glucose tolerance and risk of type 2 diabetes in young Pima Indian offspring. Diabetes. 2006;55(2):460–5.

    Article  CAS  PubMed  Google Scholar 

  51. Jeffery AN, Metcalf BS, Hosking J, Murphy MJ, Voss LD, Wilkin TJ. Little evidence for early programming of weight and insulin resistance for contemporary children: EarlyBird Diabetes Study report 19. Pediatrics. 2006;118(3):1118–23.

    Article  PubMed  Google Scholar 

  52. Pettitt DJ, Knowler WC. Diabetes and obesity in the Pima Indians: a cross-generational vicious cycle. J Obes Weight Regul. 1988;7:61–5.

    Google Scholar 

  53. Ferrara A, Kahn HS, Quesenberry CP, Riley C, Hedderson MM. An increase in the incidence of gestational diabetes mellitus: Northern California, 1991–2000. Obstet Gynecol. 2004;103(3):526–33.

    Article  PubMed  Google Scholar 

  54. Dabelea D, Snell-Bergeon JK, Hartsfield CL, Bischoff KJ, Hamman RF, McDuffie RS. Increasing prevalence of gestational diabetes mellitus (GDM) over time and by birth cohort: Kaiser Permanente of Colorado GDM Screening Program. Diabetes Care. 2005;28(3):579–84.

    Article  PubMed  Google Scholar 

  55. Gauguier D, Nelson I, Bernard C, Parent V, Marsac C, Cohen D, et al. Higher maternal than paternal inheritance of diabetes in GK rats. Diabetes. 1994;43(2):220–4.

    Article  CAS  PubMed  Google Scholar 

  56. Gauguier D, Bihoreau MT, Ktorza A, Berthault MF, Picon L. Inheritance of diabetes mellitus as consequence of gestational hyperglycemia in rats. Diabetes. 1990;39(6):734–9.

    Article  CAS  PubMed  Google Scholar 

  57. Pildes RS, Hart RJ, Warrner R, Cornblath M. Plasma insulin response during oral glucose tolerance tests in newborns of normal and gestational diabetic mothers. Pediatrics. 1969;44(1):76–83.

    CAS  PubMed  Google Scholar 

  58. Van Assche FA, Gepts W. The cytological composition of the foetal endocrine pancreas in normal and pathological conditions. Diabetologia. 1971;7(6):434–44.

    Article  PubMed  Google Scholar 

  59. Heding LG, Persson B, Stangenberg M. B-cell function in newborn infants of diabetic mothers. Diabetologia. 1980;19(5):427–32.

    Article  CAS  PubMed  Google Scholar 

  60. Gautier JF, Wilson C, Weyer C, Mott D, Knowler WC, Cavaghan M, et al. Low acute insulin secretory responses in adult offspring of people with early onset type 2 diabetes. Diabetes. 2001;50(8):1828–33.

    Article  CAS  PubMed  Google Scholar 

  61. Harder T, Kohlhoff R, Dorner G, Rohde W, Plagemann A. Perinatal ‘programming’ of insulin resistance in childhood: critical impact of neonatal insulin and low birth weight in a risk population. Diabet Med. 2001;18(8):634–9.

    Article  CAS  PubMed  Google Scholar 

  62. Catalano PM, Kirwan JP, Haugel-de Mouzon S, King J. Gestational diabetes and insulin resistance: role in short- and long-term implications for mother and fetus. J Nutr. 2003;133(5 Suppl 2):1674s–83s.

    Article  CAS  PubMed  Google Scholar 

  63. Weiss PA, Scholz HS, Haas J, Tamussino KF, Seissler J, Borkenstein MH. Long-term follow-up of infants of mothers with type 1 diabetes: evidence for hereditary and nonhereditary transmission of diabetes and precursors. Diabetes Care. 2000;23(7):905–11.

    Article  CAS  PubMed  Google Scholar 

  64. Silverman BL, Metzger BE, Cho NH, Loeb CA. Impaired glucose tolerance in adolescent offspring of diabetic mothers. Relationship to fetal hyperinsulinism. Diabetes Care. 1995;18(5):611–7.

    Article  CAS  PubMed  Google Scholar 

  65. Innes KE, Byers TE, Marshall JA, Baron A, Orleans M, Hamman RF. Association of a woman’s own birth weight with subsequent risk for gestational diabetes. JAMA. 2002;287(19):2534–41.

    Article  PubMed  Google Scholar 

  66. Metzger BE, Silverman BL, Freinkel N, Dooley SL, Ogata ES, Green OC. Amniotic fluid insulin concentration as a predictor of obesity. Arch Dis Child. 1990;65(10 Spec No):1050–2.

    Google Scholar 

  67. Koistinen HA, Koivisto VA, Andersson S, Karonen SL, Kontula K, Oksanen L, et al. Leptin concentration in cord blood correlates with intrauterine growth. J Clin Endocrinol Metab. 1997;82(10):3328–30.

    CAS  PubMed  Google Scholar 

  68. Kaar JL, Brinton JT, Crume T, Hamman RF, Glueck DH, Dabelea D. Leptin levels at birth and infant growth: the EPOCH study. J Dev Orig Health Dis. 2014;5(3):214–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Persson B, Westgren M, Celsi G, Nord E, Ortqvist E. Leptin concentrations in cord blood in normal newborn infants and offspring of diabetic mothers. Horm Metab Res. 1999;31(8):467–71.

    Article  CAS  PubMed  Google Scholar 

  70. Hieronimus S, Bastard S, Gillet JY, Giudicelli J, Brucker-Davis F, Berthier F, et al. Significance of cord-blood leptin in newborns of diabetic mothers. Diabetes Care. 2002;25(10):1886–7.

    Article  PubMed  Google Scholar 

  71. Simmons D, Breier BH. Fetal overnutrition in polynesian pregnancies and in gestational diabetes may lead to dysregulation of the adipoinsular axis in offspring. Diabetes Care. 2002;25(9):1539–44.

    Article  PubMed  Google Scholar 

  72. Wolf HJ, Ebenbichler CF, Huter O, Bodner J, Lechleitner M, Foger B, et al. Fetal leptin and insulin levels only correlate in large-for-gestational age infants. Eur J Endocrinol. 2000;142(6):623–9.

    Article  CAS  PubMed  Google Scholar 

  73. Barker DJ. The intrauterine origins of cardiovascular disease. Acta Paediatr Suppl. 1993;82(Suppl 391):93–9; discussion 100.

    Article  PubMed  Google Scholar 

  74. Manderson JG, Mullan B, Patterson CC, Hadden DR, Traub AI, McCance DR. Cardiovascular and metabolic abnormalities in the offspring of diabetic pregnancy. Diabetologia. 2002;45(7):991–6.

    Article  CAS  PubMed  Google Scholar 

  75. Holemans K, Gerber RT, Meurrens K, De Clerck F, Poston L, Van Assche FA. Streptozotocin diabetes in the pregnant rat induces cardiovascular dysfunction in adult offspring. Diabetologia. 1999;42(1):81–9.

    Article  CAS  PubMed  Google Scholar 

  76. Bunt JC, Tataranni PA, Salbe AD. Intrauterine exposure to diabetes is a determinant of hemoglobin A(1)c and systolic blood pressure in pima Indian children. J Clin Endocrinol Metab. 2005;90(6):3225–9.

    Article  CAS  PubMed  Google Scholar 

  77. Rolfe Ede L, Loos RJ, Druet C, Stolk RP, Ekelund U, Griffin SJ, et al. Association between birth weight and visceral fat in adults. Am J Clin Nutr. 2010;92(2):347–52.

    Article  PubMed  CAS  Google Scholar 

  78. Phipps K, Barker DJ, Hales CN, Fall CH, Osmond C, Clark PM. Fetal growth and impaired glucose tolerance in men and women. Diabetologia. 1993;36(3):225–8.

    Article  CAS  PubMed  Google Scholar 

  79. Valdez R, Athens MA, Thompson GH, Bradshaw BS, Stern MP. Birthweight and adult health outcomes in a biethnic population in the USA. Diabetologia. 1994;37(6):624–31.

    Article  CAS  PubMed  Google Scholar 

  80. McCarthy M. Weighing in on diabetes risk. Nat Genet. 1998;19(3):209–10.

    Article  CAS  PubMed  Google Scholar 

  81. Ravelli AC, van der Meulen JH, Michels RP, Osmond C, Barker DJ, Hales CN, et al. Glucose tolerance in adults after prenatal exposure to famine. Lancet. 1998;351(9097):173–7.

    Article  CAS  PubMed  Google Scholar 

  82. Montgomery SM, Ekbom A. Smoking during pregnancy and diabetes mellitus in a British longitudinal birth cohort. BMJ. 2002;324(7328):26–7.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Ong KK, Ahmed ML, Emmett PM, Preece MA, Dunger DB. Association between postnatal catch-up growth and obesity in childhood: prospective cohort study. BMJ. 2000;320(7240):967–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Harding JE. The nutritional basis of the fetal origins of adult disease. Int J Epidemiol. 2001;30(1):15–23.

    Article  CAS  PubMed  Google Scholar 

  85. Hales CN, Ozanne SE. For debate: fetal and early postnatal growth restriction lead to diabetes, the metabolic syndrome and renal failure. Diabetologia. 2003;46(7):1013–9.

    Article  CAS  PubMed  Google Scholar 

  86. Eriksson J, Forsen T, Tuomilehto J, Osmond C, Barker D. Size at birth, childhood growth and obesity in adult life. Int J Obes Relat Metab Disord. 2001;25(5):735–40.

    Article  CAS  PubMed  Google Scholar 

  87. Dabelea D, Pettitt DJ, Hanson RL, Imperatore G, Bennett PH, Knowler WC. Birth weight, type 2 diabetes, and insulin resistance in Pima Indian children and young adults. Diabetes Care. 1999;22(6):944–50.

    Article  CAS  PubMed  Google Scholar 

  88. Parsons TJ, Power C, Logan S, Summerbell CD. Childhood predictors of adult obesity: a systematic review. Int J Obes Relat Metab Disord. 1999;23(Suppl 8):S1–107.

    PubMed  Google Scholar 

  89. Law CM, Gordon GS, Shiell AW, Barker DJ, Hales CN. Thinness at birth and glucose tolerance in seven-year-old children. Diabet Med. 1995;12(1):24–9.

    Article  CAS  PubMed  Google Scholar 

  90. Bavdekar A, Yajnik CS, Fall CH, Bapat S, Pandit AN, Deshpande V, et al. Insulin resistance syndrome in 8-year-old Indian children: small at birth, big at 8 years, or both? Diabetes. 1999;48(12):2422–9.

    Article  CAS  PubMed  Google Scholar 

  91. Yajnik CS, Fall CH, Vaidya U, Pandit AN, Bavdekar A, Bhat DS, et al. Fetal growth and glucose and insulin metabolism in four-year-old Indian children. Diabet Med. 1995;12(4):330–6.

    Article  CAS  PubMed  Google Scholar 

  92. Whincup PH, Cook DG, Adshead F, Taylor SJ, Walker M, Papacosta O, et al. Childhood size is more strongly related than size at birth to glucose and insulin levels in 10–11-year-old children. Diabetologia. 1997;40(3):319–26.

    Article  CAS  PubMed  Google Scholar 

  93. Murtaugh MA, Jacobs DR Jr, Moran A, Steinberger J, Sinaiko AR. Relation of birth weight to fasting insulin, insulin resistance, and body size in adolescence. Diabetes Care. 2003;26(1):187–92.

    Article  PubMed  Google Scholar 

  94. Li C, Johnson MS, Goran MI. Effects of low birth weight on insulin resistance syndrome in caucasian and African-American children. Diabetes Care. 2001;24(12):2035–42.

    Article  CAS  PubMed  Google Scholar 

  95. Fewtrell MS, Doherty C, Cole TJ, Stafford M, Hales CN, Lucas A. Effects of size at birth, gestational age and early growth in preterm infants on glucose and insulin concentrations at 9–12 years. Diabetologia. 2000;43(6):714–7.

    Article  CAS  PubMed  Google Scholar 

  96. Ong KK, Petry CJ, Emmett PM, Sandhu MS, Kiess W, Hales CN, et al. Insulin sensitivity and secretion in normal children related to size at birth, postnatal growth, and plasma insulin-like growth factor-I levels. Diabetologia. 2004;47(6):1064–70.

    Article  CAS  PubMed  Google Scholar 

  97. Huxley RR, Shiell AW, Law CM. The role of size at birth and postnatal catch-up growth in determining systolic blood pressure: a systematic review of the literature. J Hypertens. 2000;18(7):815–31.

    Article  CAS  PubMed  Google Scholar 

  98. Taylor SJ, Whincup PH, Cook DG, Papacosta O, Walker M. Size at birth and blood pressure: cross sectional study in 8–11 year old children. BMJ. 1997;314(7079):475–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Laor A, Stevenson DK, Shemer J, Gale R, Seidman DS. Size at birth, maternal nutritional status in pregnancy, and blood pressure at age 17: population based analysis. BMJ. 1997;315(7106):449–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Donker GA, Labarthe DR, Harrist RB, Selwyn BJ, Wattigney W, Berenson GS. Low birth weight and blood pressure at age 7–11 years in a biracial sample. Am J Epidemiol. 1997;145(5):387–97.

    Article  CAS  PubMed  Google Scholar 

  101. Whincup PH, Bredow M, Payne F, Sadler S, Golding J. Size at birth and blood pressure at 3 years of age. The Avon Longitudinal Study of Pregnancy and Childhood (ALSPAC). Am J Epidemiol. 1999;149(8):730–9.

    Article  CAS  PubMed  Google Scholar 

  102. Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE, et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab. 2001;86(5):1930–5.

    Article  CAS  PubMed  Google Scholar 

  103. Guo SS, Roche AF, Chumlea WC, Gardner JD, Siervogel RM. The predictive value of childhood body mass index values for overweight at age 35 y. Am J Clin Nutr. 1994;59(4):810–9.

    Article  CAS  PubMed  Google Scholar 

  104. Phillips DI. Insulin resistance as a programmed response to fetal undernutrition. Diabetologia. 1996;39(9):1119–22.

    Article  CAS  PubMed  Google Scholar 

  105. Vatten LJ, Nilsen ST, Odegard RA, Romundstad PR, Austgulen R. Insulin-like growth factor I and leptin in umbilical cord plasma and infant birth size at term. Pediatrics. 2002;109(6):1131–5.

    Article  PubMed  Google Scholar 

  106. Langford K, Blum W, Nicolaides K, Jones J, McGregor A, Miell J. The pathophysiology of the insulin-like growth factor axis in fetal growth failure: a basis for programming by undernutrition? Eur J Clin Invest. 1994;24(12):851–6.

    Article  CAS  PubMed  Google Scholar 

  107. Ounsted M, Sleigh G. The infant’s self-regulation of food intake and weight gain. Difference in metabolic balance after growth constraint or acceleration in utero. Lancet. 1975;1(7922):1393–7.

    Article  CAS  PubMed  Google Scholar 

  108. Ong KK, Ahmed ML, Sherriff A, Woods KA, Watts A, Golding J, et al. Cord blood leptin is associated with size at birth and predicts infancy weight gain in humans. ALSPAC Study Team. Avon Longitudinal Study of Pregnancy and Childhood. J Clin Endocrinol Metab. 1999;84(3):1145–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jill Landsbaugh Kaar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaar, J.L., Dabelea, D. (2020). Maternal-Fetal Contributors to Insulin Resistance Syndrome in Youth. In: Zeitler, P., Nadeau, K. (eds) Insulin Resistance. Contemporary Endocrinology. Humana, Cham. https://doi.org/10.1007/978-3-030-25057-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25057-7_6

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-25055-3

  • Online ISBN: 978-3-030-25057-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics