Skip to main content

Resistance to Monoclonal Antibody Therapeutics in Lymphoma

  • Chapter
  • First Online:
Resistance to Targeted Therapies in Lymphomas

Part of the book series: Resistance to Targeted Anti-Cancer Therapeutics ((RTACT,volume 21))

  • 329 Accesses

Abstract

With the long history of rituximab use in CD20 positive lymphomas and the recent approval of brentuximab vedotin for the treatment of Hodgkin lymphoma and anaplastic large cell lymphoma, monoclonal antibody-based therapies are commonly utilized for the treatment of many lymphomas. Following decades of experience with rituximab, much has been learned about the mechanisms of action and potential mechanisms of resistance to monoclonal antibody therapies, but a thorough understanding of which mechanisms of action are most relevant to rituximab’s efficacy and which resistance mechanisms are most clinically relevant is still elusive. Nonetheless, many approaches have been identified and continue to be investigated both pre-clinically and clinically to attempt to overcome or circumvent resistance to monoclonal antibody therapies in order to enhance treatment responses or improve survival at the time of relapse following monoclonal antibody based therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ADCC:

Antibody-Dependent Cellular Cytotoxicity

ADPC:

Antibody-Dependent Phagocytic Cytotoxicity

AKT:

Protein Kinase B

ALCL:

Anaplastic Large Cell Lymphoma

ALL:

Acute Lymphoblastic Leukemia

B-NHL:

B-cell Non-Hodgkin Lymphoma

BiTE:

Bispecific T-cell Engaging

CDC:

Complement Dependent Cytotoxicity

CLL:

Chronic Lymphocytic Leukemia

DLBCL:

Diffuse Large B-Cell Lymphoma

EFS:

Event-Free Survival

ERK1/2:

Extracellular signal Related Kinase 1 and 2

GM-CSF:

Granulocyte-Macrophage Colony Stimulating Factor

HACA:

Human Anti-Chimera Antibodies

IFN-γ:

Interferon Gamma

IL-2:

Interleukin 2

IL-4:

Interleukin 4

MAPK:

Mitogen Activated Protein Kinase

MMAE:

Monomethyl Aurostatin E

MS4A1:

Membrane Spanning 4-Domain A1

NADPH:

Nicotinamide Adenine Dinucleotide Phosphate

NK-κB:

Nuclear Factor Kappa B

NK-cell:

Natural Killer Cells

PCD:

Programmed Cell Death

PLCγ2:

Phospholipase C Gamma 2

RIC:

Radioimmunoconjugate

ROS:

Reactive Oxygen Species

STAT3:

Signal Transducer and Activator of Transcription 3

SYK:

Spleen Associated Tyrosine Kinase

TNF-α:

Tumor Necrosis Factor alpha

References

  1. Coiffier B, Lepage E, Briere J, Herbrecht R, Tilly H, Bouabdallah R, Morel P, Van Den Neste E, Salles G, Gaulard P, Reyes F, Lederlin P, Gisselbrecht C. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med. 2002;346(4):235–42. https://doi.org/10.1056/NEJMoa011795.

    Article  CAS  PubMed  Google Scholar 

  2. Pfreundschuh M, Trümper L, Österborg A, Pettengell R, Trneny M, Imrie K, Ma D, Gill D, Walewski J, Zinzani P-L, Stahel R, Kvaloy S, Shpilberg O, Jaeger U, Hansen M, Lehtinen T, López-Guillermo A, Corrado C, Scheliga A, Milpied N, Mendila M, Rashford M, Kuhnt E, Loeffler M. CHOP-like chemotherapy plus rituximab versus CHOP-like chemotherapy alone in young patients with good-prognosis diffuse large-B-cell lymphoma: a randomised controlled trial by the MabThera International Trial (MInT) Group. Lancet Oncol. 2006;7(5):379–91. https://doi.org/10.1016/S1470-2045(06)70664-7.

    Article  CAS  PubMed  Google Scholar 

  3. Ribrag V, Koscielny S, Bosq J, Leguay T, Casasnovas O, Fornecker L-M, Recher C, Ghesquieres H, Morschhauser F, Girault S, Gouill SL, Ojeda-Uribe M, Mariette C, Cornillon J, Cartron G, Verge V, Chassagne-Clément C, Dombret H, Coiffier B, Lamy T, Tilly H, Salles G. Rituximab and dose-dense chemotherapy for adults with Burkitt’s lymphoma: a randomised, controlled, open-label, phase 3 trial. Lancet. 2016;387(10036):2402–11. https://doi.org/10.1016/S0140-6736(15)01317-3.

    Article  CAS  PubMed  Google Scholar 

  4. Minard-Colin V, Auperin A, Pillon M, Burke A, Anderson JR, Barkauskas DA, Wheatley K, Delgado R, Alexander S, Uyttebroeck A, Bollard C, Zsiros J, Csoka M, Goma G, Tulard A, Patte C, Gross TG. Results of the randomized Intergroup trial Inter-B-NHL Ritux 2010 for children and adolescents with high-risk B-cell non-Hodgkin lymphoma (B-NHL) and mature acute leukemia (B-AL): Evaluation of rituximab (R) efficacy in addition to standard LMB chemotherapy (CT) regimen. J Clin Oncol. 2016;34(15_suppl):10507. https://doi.org/10.1200/JCO.2016.34.15_suppl.10507.

    Article  Google Scholar 

  5. Maloney DG, Grillo-Lopez AJ, White CA, Bodkin D, Schilder RJ, Neidhart JA, Janakiraman N, Foon KA, Liles TM, Dallaire BK, Wey K, Royston I, Davis T, Levy R. IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin’s lymphoma. Blood. 1997;90(6):2188–95.

    CAS  PubMed  Google Scholar 

  6. Maloney DG, Grillo-Lopez AJ, Bodkin DJ, White CA, Liles TM, Royston I, Varns C, Rosenberg J, Levy R. IDEC-C2B8: results of a phase I multiple-dose trial in patients with relapsed non-Hodgkin’s lymphoma. J Clin Oncol. 1997;15(10):3266–74. https://doi.org/10.1200/jco.1997.15.10.3266.

    Article  CAS  PubMed  Google Scholar 

  7. McLaughlin P, Grillo-Lopez AJ, Link BK, Levy R, Czuczman MS, Williams ME, Heyman MR, Bence-Bruckler I, White CA, Cabanillas F, Jain V, Ho AD, Lister J, Wey K, Shen D, Dallaire BK. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol. 1998;16(8):2825–33. https://doi.org/10.1200/jco.1998.16.8.2825.

    Article  CAS  PubMed  Google Scholar 

  8. Feuring-Buske M, Kneba M, Unterhalt M, Engert A, Gramatzki M, Hiller E, Trumper L, Brugger W, Ostermann H, Atzpodien J, Hallek M, Aulitzky E, Hiddemann W. IDEC-C2B8 (Rituximab) anti-CD20 antibody treatment in relapsed advanced-stage follicular lymphomas: results of a phase-II study of the German low-grade lymphoma study group. Ann Hematol. 2000;79(9):493–500.

    Article  CAS  PubMed  Google Scholar 

  9. Coiffier B, Haioun C, Ketterer N, Engert A, Tilly H, Ma D, Johnson P, Lister A, Feuring-Buske M, Radford JA, Capdeville R, Diehl V, Reyes F. Rituximab (anti-CD20 monoclonal antibody) for the treatment of patients with relapsing or refractory aggressive lymphoma: a multicenter phase II study. Blood. 1998;92(6):1927–32.

    CAS  PubMed  Google Scholar 

  10. Davis TA, Grillo-Lopez AJ, White CA, McLaughlin P, Czuczman MS, Link BK, Maloney DG, Weaver RL, Rosenberg J, Levy R. Rituximab anti-CD20 monoclonal antibody therapy in non-Hodgkin’s lymphoma: safety and efficacy of re-treatment. J Clin Oncol. 2000;18(17):3135–43. https://doi.org/10.1200/jco.2000.18.17.3135.

    Article  CAS  PubMed  Google Scholar 

  11. Igarashi T, Ohtsu T, Fujii H, Sasaki Y, Morishima Y, Ogura M, Kagami Y, Kinoshita T, Kasai M, Kiyama Y, Kobayashi Y, Tobinai K. Re-treatment of relapsed indolent B-cell lymphoma with rituximab. Int J Hematol. 2001;73(2):213–21.

    Article  CAS  PubMed  Google Scholar 

  12. Hainsworth JD, Burris HA 3rd, Morrissey LH, Litchy S, Scullin DC Jr, Bearden JD 3rd, et al. Rituximab monoclonal antibody as initial systemic therapy for patients with low-grade non-Hodgkin lymphoma. Blood. 2000;95(10):3052–6.

    CAS  PubMed  Google Scholar 

  13. Czuczman MS. CHOP plus rituximab chemoimmunotherapy of indolent B-cell lymphoma. Semin Oncol. 1999;26(5 Suppl 14):88–96.

    CAS  PubMed  Google Scholar 

  14. Czuczman MS, Grillo-Lopez AJ, White CA, Saleh M, Gordon L, LoBuglio AF, Jonas C, Klippenstein D, Dallaire B, Varns C. Treatment of patients with low-grade B-cell lymphoma with the combination of chimeric anti-CD20 monoclonal antibody and CHOP chemotherapy. J Clin Oncol. 1999;17(1):268–76. https://doi.org/10.1200/jco.1999.17.1.268.

    Article  CAS  PubMed  Google Scholar 

  15. Vose JM, Link BK, Grossbard ML, Czuczman M, Grillo-Lopez A, Gilman P, Lowe A, Kunkel LA, Fisher RI. Phase II study of rituximab in combination with chop chemotherapy in patients with previously untreated, aggressive non-Hodgkin’s lymphoma. J Clin Oncol. 2001;19(2):389–97. https://doi.org/10.1200/jco.2001.19.2.389.

    Article  CAS  PubMed  Google Scholar 

  16. Hagberg H, Gisselbrecht C. Randomised phase III study of R-ICE versus R-DHAP in relapsed patients with CD20 diffuse large B-cell lymphoma (DLBCL) followed by high-dose therapy and a second randomisation to maintenance treatment with rituximab or not: an update of the CORAL study. Ann Oncol. 2006;17(Suppl 4):iv 31–2. https://doi.org/10.1093/annonc/mdj996.

    Article  Google Scholar 

  17. Barth MJ, Goldman S, Smith L, Perkins S, Shiramizu B, Gross TG, Harrison L, Sanger W, Geyer MB, Giulino-Roth L, Cairo MS. Rituximab pharmacokinetics in children and adolescents with de novo intermediate and advanced mature B-cell lymphoma/leukaemia: a Children’s oncology group report. Br J Haematol. 2013;162(5):678–83. https://doi.org/10.1111/bjh.12434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Johnson P, Glennie M. The mechanisms of action of rituximab in the elimination of tumor cells. Semin Oncol. 2003;30(1 Suppl 2):3–8. https://doi.org/10.1053/sonc.2003.50025.

    Article  CAS  PubMed  Google Scholar 

  19. Gül N, van Egmond M. Antibody-dependent phagocytosis of tumor cells by macrophages: a potent effector mechanism of monoclonal antibody therapy of cancer. Cancer Res. 2015;75(23):5008–13. https://doi.org/10.1158/0008-5472.Can-15-1330.

    Article  PubMed  Google Scholar 

  20. Manches O, Lui G, Chaperot L, Gressin R, Molens J-P, Jacob M-C, Sotto J-J, Leroux D, Bensa J-C, Plumas J. In vitro mechanisms of action of rituximab on primary non-Hodgkin lymphomas. Blood. 2003;101(3):949–54. https://doi.org/10.1182/blood-2002-02-0469.

    Article  CAS  PubMed  Google Scholar 

  21. Jazirehi AR, Bonavida B. Cellular and molecular signal transduction pathways modulated by rituximab (rituxan, anti-CD20 mAb) in non-Hodgkin’s lymphoma: implications in chemosensitization and therapeutic intervention. Oncogene. 2005;24:2121. https://doi.org/10.1038/sj.onc.1208349.

    Article  CAS  PubMed  Google Scholar 

  22. Chan HT, Hughes D, French RR, Tutt AL, Walshe CA, Teeling JL, Glennie MJ, Cragg MS. CD20-induced lymphoma cell death is independent of both caspases and its redistribution into triton X-100 insoluble membrane rafts. Cancer Res. 2003;63(17):5480–9.

    CAS  PubMed  Google Scholar 

  23. Cragg MS, Glennie MJ. Antibody specificity controls in vivo effector mechanisms of anti-CD20 reagents. Blood. 2004;103(7):2738–43. https://doi.org/10.1182/blood-2003-06-2031.

    Article  CAS  PubMed  Google Scholar 

  24. Hernandez-Ilizaliturri FJ, Jupudy V, Ostberg J, Oflazoglu E, Huberman A, Repasky E, Czuczman MS. Neutrophils contribute to the biological antitumor activity of rituximab in a non-Hodgkin’s lymphoma severe combined immunodeficiency mouse model. Clin Cancer Res. 2003;9(16 Pt 1):5866–73.

    CAS  PubMed  Google Scholar 

  25. Uchida J, Hamaguchi Y, Oliver JA, Ravetch JV, Poe JC, Haas KM, et al. The innate mononuclear phagocyte network depletes B lymphocytes through Fc receptor-dependent mechanisms during anti-CD20 antibody immunotherapy. J Exp Med. 2004;199(12):1659–69. https://doi.org/10.1084/jem.20040119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Di Gaetano N, Cittera E, Nota R, Vecchi A, Grieco V, Scanziani E, Botto M, Introna M, Golay J. Complement activation determines the therapeutic activity of rituximab in vivo. J Immunol. 2003;171(3):1581–7.

    Article  PubMed  Google Scholar 

  27. Wang S-Y, Racila E, Taylor RP, Weiner GJ. NK-cell activation and antibody-dependent cellular cytotoxicity induced by rituximab-coated target cells is inhibited by the C3b component of complement. Blood. 2008;111(3):1456–63. https://doi.org/10.1182/blood-2007-02-074716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Racila E, Link BK, Weng WK, Witzig TE, Ansell S, Maurer MJ, Huang J, Dahle C, Halwani A, Levy R, Weiner GJ. A polymorphism in the complement component C1qA correlates with prolonged response following rituximab therapy of follicular lymphoma. Clin Cancer Res. 2008;14(20):6697–703. https://doi.org/10.1158/1078-0432.Ccr-08-0745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jin X, Ding H, Ding N, Fu Z, Song Y, Zhu J. Homozygous A polymorphism of the complement C1qA276 correlates with prolonged overall survival in patients with diffuse large B cell lymphoma treated with R-CHOP. J Hematol Oncol. 2012;5:51. https://doi.org/10.1186/1756-8722-5-51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Byrd JC, Kitada S, Flinn IW, Aron JL, Pearson M, Lucas D, Reed JC. The mechanism of tumor cell clearance by rituximab in vivo in patients with B-cell chronic lymphocytic leukemia: evidence of caspase activation and apoptosis induction. Blood. 2002;99(3):1038–43.

    Article  CAS  PubMed  Google Scholar 

  31. Shan D, Ledbetter JA, Press OW. Signaling events involved in anti-CD20-induced apoptosis of malignant human B cells. Cancer Immunol Immunother. 2000;48(12):673–83.

    Article  CAS  PubMed  Google Scholar 

  32. Shan D, Ledbetter JA, Press OW. Apoptosis of malignant human B cells by ligation of CD20 with monoclonal antibodies. Blood. 1998;91(5):1644–52.

    CAS  PubMed  Google Scholar 

  33. van der Kolk LE, Evers LM, Omene C, Lens SM, Lederman S, van Lier RA, van Oers MH, Eldering E. CD20-induced B cell death can bypass mitochondria and caspase activation. Leukemia. 2002;16(9):1735–44. https://doi.org/10.1038/sj.leu.2402559.

    Article  CAS  PubMed  Google Scholar 

  34. Hofmeister JK, Cooney D, Coggeshall KM. Clustered CD20 induced apoptosis: src-family kinase, the proximal regulator of tyrosine phosphorylation, calcium influx, and caspase 3-dependent apoptosis. Blood Cells Mol Dis. 2000;26(2):133–43. https://doi.org/10.1006/bcmd.2000.0287.

    Article  CAS  PubMed  Google Scholar 

  35. Pedersen IM, Buhl AM, Klausen P, Geisler CH, Jurlander J. The chimeric anti-CD20 antibody rituximab induces apoptosis in B-cell chronic lymphocytic leukemia cells through a p38 mitogen activated protein-kinase-dependent mechanism. Blood. 2002;99(4):1314–9.

    Article  CAS  PubMed  Google Scholar 

  36. Mathas S, Rickers A, Bommert K, Dorken B, Mapara MY. Anti-CD20- and B-cell receptor-mediated apoptosis: evidence for shared intracellular signaling pathways. Cancer Res. 2000;60(24):7170–6.

    CAS  PubMed  Google Scholar 

  37. Jazirehi AR, Huerta-Yepez S, Cheng G, Bonavida B. Rituximab (Chimeric Anti-CD20 Monoclonal Antibody) inhibits the constitutive nuclear factor-κB signaling pathway in non-Hodgkin’s lymphoma B-cell lines: role in sensitization to chemotherapeutic drug-induced apoptosis. Cancer Res. 2005;65(1):264–76.

    CAS  PubMed  Google Scholar 

  38. Vega MI, Jazirehi AR, Huerta-Yepez S, Bonavida B. Rituximab-induced inhibition of YY1 and Bcl-xL expression in ramos non-Hodgkin’s lymphoma cell line via inhibition of NF-κB activity: role of YY1 and Bcl-xL in fas resistance and chemoresistance, respectively. J Immunol. 2005;175(4):2174–83. https://doi.org/10.4049/jimmunol.175.4.2174.

    Article  CAS  PubMed  Google Scholar 

  39. Mounier N, Briere J, Gisselbrecht C, Emile JF, Lederlin P, Sebban C, Berger F, Bosly A, Morel P, Tilly H, Bouabdallah R, Reyes F, Gaulard P, Coiffier B. Rituximab plus CHOP (R-CHOP) overcomes bcl-2—associated resistance to chemotherapy in elderly patients with diffuse large B-cell lymphoma (DLBCL). Blood. 2003;101(11):4279–84. https://doi.org/10.1182/blood-2002-11-3442.

    Article  CAS  PubMed  Google Scholar 

  40. Selenko N, Maidic O, Draxier S, Berer A, Jager U, Knapp W, Stockl J. CD20 antibody (C2B8)-induced apoptosis of lymphoma cells promotes phagocytosis by dendritic cells and cross-priming of CD8+ cytotoxic T cells. Leukemia. 2001;15(10):1619–26.

    Article  CAS  PubMed  Google Scholar 

  41. Abes R, Gelize E, Fridman WH, Teillaud JL. Long-lasting antitumor protection by anti-CD20 antibody through cellular immune response. Blood. 2010;116(6):926–34. https://doi.org/10.1182/blood-2009-10-248609.

    Article  CAS  PubMed  Google Scholar 

  42. DiLillo DJ, Ravetch JV. Differential Fc-receptor engagement drives an anti-tumor vaccinal effect. Cell. 2015;161(5):1035–45. https://doi.org/10.1016/j.cell.2015.04.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Marshall MJE, Stopforth RJ, Cragg MS. Therapeutic antibodies: what have we learnt from targeting CD20 and where are we going? Front Immunol. 2017;8:1245. https://doi.org/10.3389/fimmu.2017.01245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Davis TA, Czerwinski DK, Levy R. Therapy of B-cell lymphoma with anti-CD20 antibodies can result in the loss of CD20 antigen expression. Clin Cancer Res. 1999;5(3):611–5.

    CAS  PubMed  Google Scholar 

  45. Kinoshita T, Nagai H, Murate T, Saito H. CD20-negative relapse in B-cell lymphoma after treatment with Rituximab. J Clin Oncol. 1998;16(12):3916.

    Article  CAS  PubMed  Google Scholar 

  46. Venugopal P, Leslie WT, O’Brien T, Gregory SA. CD20-negative relapse after (131)I-anti-CD20 therapy. J Clin Oncol. 1999;17(11):3692–3. https://doi.org/10.1200/jco.1999.17.11.3692.

    Article  CAS  PubMed  Google Scholar 

  47. Schmitz K, Brugger W, Weiss B, Kaiserling E, Kanz L. Clonal selection of CD20-negative non-Hodgkin’s lymphoma cells after treatment with anti-CD20 antibody rituximab. Br J Haematol. 1999;106(2):571–2.

    Article  CAS  PubMed  Google Scholar 

  48. Czuczman MS, Olejniczak S, Gowda A, Kotowski A, Binder A, Kaur H, Knight J, Starostik P, Deans J, Hernandez-Ilizaliturri FJ. Acquirement of rituximab resistance in lymphoma cell lines is associated with both global CD20 gene and protein down-regulation regulated at the pretranscriptional and posttranscriptional levels. Clin Cancer Res. 2008;14(5):1561–70. https://doi.org/10.1158/1078-0432.Ccr-07-1254.

    Article  CAS  PubMed  Google Scholar 

  49. Henry C, Deschamps M, Rohrlich PS, Pallandre JR, Remy-Martin JP, Callanan M, Traverse-Glehen A, GrandClement C, Garnache-Ottou F, Gressin R, Deconinck E, Salles G, Robinet E, Tiberghien P, Borg C, Ferrand C. Identification of an alternative CD20 transcript variant in B-cell malignancies coding for a novel protein associated to rituximab resistance. Blood. 2010;115(12):2420–9. https://doi.org/10.1182/blood-2009-06-229112.

    Article  CAS  PubMed  Google Scholar 

  50. Beum PV, Kennedy AD, Williams ME, Lindorfer MA, Taylor RP. The shaving reaction: rituximab/CD20 complexes are removed from mantle cell lymphoma and chronic lymphocytic leukemia cells by THP-1 monocytes. J Immunol. 2006;176(4):2600–9.

    Article  CAS  PubMed  Google Scholar 

  51. Kennedy AD, Beum PV, Solga MD, DiLillo DJ, Lindorfer MA, Hess CE, Densmore JJ, Williams ME, Taylor RP. Rituximab infusion promotes rapid complement depletion and acute CD20 loss in chronic lymphocytic leukemia. J Immunol. 2004;172(5):3280–8. https://doi.org/10.4049/jimmunol.172.5.3280.

    Article  CAS  PubMed  Google Scholar 

  52. Beers SA, French RR, Chan HT, Lim SH, Jarrett TC, Vidal RM, Wijayaweera SS, Dixon SV, Kim H, Cox KL, Kerr JP, Johnston DA, Johnson PW, Verbeek JS, Glennie MJ, Cragg MS. Antigenic modulation limits the efficacy of anti-CD20 antibodies: implications for antibody selection. Blood. 2010;115(25):5191–201. https://doi.org/10.1182/blood-2010-01-263533.

    Article  CAS  PubMed  Google Scholar 

  53. Dahal LN, Huang CY, Stopforth RJ, Mead A, Chan K, Bowater JX, Taylor MC, Narang P, Chan HTC, Kim JH, Vaughan AT, Forconi F, Beers SA. Shaving is an epiphenomenon of type I and II anti-CD20-mediated phagocytosis, whereas antigenic modulation limits type I monoclonal antibody efficacy. J Immunol. 2018;201(4):1211–21. https://doi.org/10.4049/jimmunol.1701122.

    Article  CAS  PubMed  Google Scholar 

  54. Miyoshi H, Arakawa F, Sato K, Kimura Y, Kiyasu J, Takeuchi M, Yoshida M, Ichikawa A, Ishibashi Y, Nakamura Y, Nakashima S, Niino D, Sugita Y, Ohshima K. Comparison of CD20 expression in B-cell lymphoma between newly diagnosed, untreated cases and those after rituximab treatment. Cancer Sci. 2012;103(8):1567–73. https://doi.org/10.1111/j.1349-7006.2012.02307.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Terui Y, Mishima Y, Sugimura N, Kojima K, Sakurai T, Mishima Y, Kuniyoshi R, Taniyama A, Yokoyama M, Sakajiri S, Takeuchi K, Watanabe C, Takahashi S, Ito Y, Hatake K. Identification of CD20 C-terminal deletion mutations associated with loss of CD20 expression in non-Hodgkin’s lymphoma. Clin Cancer Res. 2009;15(7):2523–30. https://doi.org/10.1158/1078-0432.Ccr-08-1403.

    Article  CAS  PubMed  Google Scholar 

  56. Mishima Y, Terui Y, Takeuchi K, Matsumoto-Mishima Y, Matsusaka S, Utsubo-Kuniyoshi R, Hatake K. The identification of irreversible rituximab-resistant lymphoma caused by CD20 gene mutations. Blood Cancer J. 2011;1(4):e15. https://doi.org/10.1038/bcj.2011.11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nakamaki T, Fukuchi K, Nakashima H, Ariizumi H, Maeda T, Saito B, Yanagisawa K, Tomoyasu S, Homma M, Shiozawa E, Yamochi-Onizuka T, Ota H. CD20 gene deletion causes a CD20-negative relapse in diffuse large B-cell lymphoma. Eur J Haematol. 2012;89(4):350–5. https://doi.org/10.1111/j.1600-0609.2012.01838.x.

    Article  PubMed  Google Scholar 

  58. Johnson NA, Leach S, Woolcock B, de Leeuw RJ, Bashashati A, Sehn LH, Connors JM, Chhanabhai M, Brooks-Wilson A, Gascoyne RD. CD20 mutations involving the rituximab epitope are rare in diffuse large B-cell lymphomas and are not a significant cause of R-CHOP failure. Haematologica. 2009;94(3):423–7. https://doi.org/10.3324/haematol.2008.001024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tomita A, Hiraga J, Kiyoi H, Ninomiya M, Sugimoto T, Ito M, Kinoshita T, Naoe T. Epigenetic regulation of CD20 protein expression in a novel B-cell lymphoma cell line, RRBL1, established from a patient treated repeatedly with rituximab-containing chemotherapy. Int J Hematol. 2007;86(1):49–57. https://doi.org/10.1532/ijh97.07028.

    Article  CAS  PubMed  Google Scholar 

  60. Sugimoto T, Tomita A, Hiraga J, Shimada K, Kiyoi H, Kinoshita T, Naoe T. Escape mechanisms from antibody therapy to lymphoma cells: downregulation of CD20 mRNA by recruitment of the HDAC complex and not by DNA methylation. Biochem Biophys Res Commun. 2009;390(1):48–53. https://doi.org/10.1016/j.bbrc.2009.09.059.

    Article  CAS  PubMed  Google Scholar 

  61. Shimizu R, Kikuchi J, Wada T, Ozawa K, Kano Y, Furukawa Y. HDAC inhibitors augment cytotoxic activity of rituximab by upregulating CD20 expression on lymphoma cells. Leukemia. 2010;24(10):1760–8. https://doi.org/10.1038/leu.2010.157.

    Article  CAS  PubMed  Google Scholar 

  62. Mankai A, Buhe V, Hammadi M, Youinou P, Ghedira I, Berthou C, Bordron A. Improvement of rituximab efficiency in chronic lymphocytic leukemia by CpG-mediated upregulation of CD20 expression independently of PU.1. Ann NY Acad Sci. 2009;1173:721–8. https://doi.org/10.1111/j.1749-6632.2009.04614.x.

    Article  CAS  PubMed  Google Scholar 

  63. Winiarska M, Nowis D, Bil J, Glodkowska-Mrowka E, Muchowicz A, Wanczyk M, Bojarczuk K, Dwojak M, Firczuk M, Wilczek E, Wachowska M, Roszczenko K, Miaczynska M, Chlebowska J, Basak GW, Golab J. Prenyltransferases regulate CD20 protein levels and influence anti-CD20 monoclonal antibody-mediated activation of complement-dependent cytotoxicity. J Biol Chem. 2012;287(38):31983–93. https://doi.org/10.1074/jbc.M112.374751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Scialdone A, Hasni MS, Damm JK, Lennartsson A, Gullberg U, Drott K. The HDAC inhibitor valproate induces a bivalent status of the CD20 promoter in CLL patients suggesting distinct epigenetic regulation of CD20 expression in CLL in vivo. Oncotarget. 2017;8(23):37409–22. https://doi.org/10.18632/oncotarget.16964.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Xue K, Gu JJ, Zhang Q, Mavis C, Hernandez-Ilizaliturri FJ, Czuczman MS, Guo Y. Vorinostat, a histone deacetylase (HDAC) inhibitor, promotes cell cycle arrest and re-sensitizes rituximab- and chemo-resistant lymphoma cells to chemotherapy agents. J Cancer Res Clin Oncol. 2016;142(2):379–87. https://doi.org/10.1007/s00432-015-2026-y.

    Article  CAS  PubMed  Google Scholar 

  66. Frys S, Simons Z, Hu Q, Barth MJ, Gu JJ, Mavis C, Skitzki J, Song L, Czuczman MS, Hernandez-Ilizaliturri FJ. Entinostat, a novel histone deacetylase inhibitor is active in B-cell lymphoma and enhances the anti-tumour activity of rituximab and chemotherapy agents. Br J Haematol. 2015;169(4):506–19. https://doi.org/10.1111/bjh.13318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Drott K, Hagberg H, Papworth K, Relander T, Jerkeman M. Valproate in combination with rituximab and CHOP as first-line therapy in diffuse large B-cell lymphoma (VALFRID). Blood Adv. 2018;2(12):1386–92. https://doi.org/10.1182/bloodadvances.2018019240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Budde LE, Zhang MM, Shustov AR, Pagel JM, Gooley TA, Oliveira GR, Chen TL, Knudsen NL, Roden JE, Kammerer BE, Frayo SL, Warr TA, Boyd TE, Press OW, Gopal AK. A phase I study of pulse high-dose vorinostat (V) plus rituximab (R), ifosphamide, carboplatin, and etoposide (ICE) in patients with relapsed lymphoma. Br J Haematol. 2013;161(2):183–91. https://doi.org/10.1111/bjh.12230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Venugopal P, Sivaraman S, Huang X-K, Nayini J, Gregory SA, Preisler HD. Effects of cytokines on CD20 antigen expression on tumor cells from patients with chronic lymphocytic leukemia. Leukemia Res. 2000;24(5):411–5. https://doi.org/10.1016/S0145-2126(99)00206-4.

    Article  CAS  Google Scholar 

  70. Sivaraman S, Deshpande CG, Ranganathan R, Huang X, Jajeh A, O’Brien T, Huang RW, Gregory SA, Venugopal P, Preisler HD. Tumor necrosis factor modulates CD 20 expression on cells from chronic lymphocytic leukemia: a new role for TNF alpha? Microsc Res Tech. 2000;50(3):251–7. https://doi.org/10.1002/1097-0029(20000801)50:3<251::Aid-jemt9>3.0.Co;2-7.

    Article  CAS  PubMed  Google Scholar 

  71. Tuscano JM, Ma Y, Martin SM, Kato J, O’Donnell RT. The Bs20x22 anti-CD20-CD22 bispecific antibody has more lymphomacidal activity than do the parent antibodies alone. Cancer Immunol Immunother. 2011;60(6):771–80. https://doi.org/10.1007/s00262-011-0978-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Li B, Zhang X, Shi S, Zhao L, Zhang D, Qian W, Zheng L, Gao J, Wang H, Guo Y. Construction and characterization of a bispecific anti-CD20 antibody with potent antitumor activity against B-cell lymphoma. Cancer Res. 2010;70(15):6293–302. https://doi.org/10.1158/0008-5472.can-10-0009.

    Article  CAS  PubMed  Google Scholar 

  73. Leonard JP, Coleman M, Ketas JC, Chadburn A, Furman R, Schuster MW, Feldman EJ, Ashe M, Schuster SJ, Wegener WA, Hansen HJ, Ziccardi H, Eschenberg M, Gayko U, Fields SZ, Cesano A, Goldenberg DM. Epratuzumab, a humanized anti-CD22 antibody, in aggressive non-Hodgkin’s lymphoma: phase I/II clinical trial results. Clin Cancer Res. 2004;10(16):5327–34. https://doi.org/10.1158/1078-0432.Ccr-04-0294.

    Article  CAS  PubMed  Google Scholar 

  74. Ogura M, Tobinai K, Hatake K, Davies A, Crump M, Ananthakrishnan R, Ishibashi T, Paccagnella ML, Boni J, Vandendries E, MacDonald D. Phase I study of Inotuzumab Ozogamicin combined with R-CVP for relapsed/refractory CD22+ B-cell non-Hodgkin lymphoma. Clin Cancer Res. 2016;22(19):4807–16. https://doi.org/10.1158/1078-0432.Ccr-15-2488.

    Article  CAS  PubMed  Google Scholar 

  75. Goebeler ME, Knop S, Viardot A, Kufer P, Topp MS, Einsele H, Noppeney R, Hess G, Kallert S, Mackensen A, Rupertus K, Kanz L, Libicher M, Nagorsen D, Zugmaier G, Klinger M, Wolf A, Dorsch B, Quednau BD, Schmidt M, Scheele J, Baeuerle PA, Leo E, Bargou RC. Bispecific T-cell engager (BiTE) antibody construct blinatumomab for the treatment of patients with relapsed/refractory non-Hodgkin lymphoma: final results from a phase I study. J Clin Oncol. 2016;34(10):1104–11. https://doi.org/10.1200/jco.2014.59.1586.

    Article  CAS  PubMed  Google Scholar 

  76. Palanca-Wessels MC, Czuczman M, Salles G, Assouline S, Sehn LH, Flinn I, Patel MR, Sangha R, Hagenbeek A, Advani R, Tilly H, Casasnovas O, Press OW, Yalamanchili S, Kahn R, Dere RC, Lu D, Jones S, Jones C, Chu YW, Morschhauser F. Safety and activity of the anti-CD79B antibody-drug conjugate polatuzumab vedotin in relapsed or refractory B-cell non-Hodgkin lymphoma and chronic lymphocytic leukaemia: a phase 1 study. Lancet Oncol. 2015;16(6):704–15. https://doi.org/10.1016/s1470-2045(15)70128-2.

    Article  CAS  PubMed  Google Scholar 

  77. Czuczman MS, Thall A, Witzig TE, Vose JM, Younes A, Emmanouilides C, Miller TP, Moore JO, Leonard JP, Gordon LI, Sweetenham J, Alkuzweny B, Finucane DM, Leigh BR. Phase I/II study of galiximab, an anti-CD80 antibody, for relapsed or refractory follicular lymphoma. J Clin Oncol. 2005;23(19):4390–8. https://doi.org/10.1200/jco.2005.09.018.

    Article  CAS  PubMed  Google Scholar 

  78. de Vos S, Forero-Torres A, Ansell SM, Kahl B, Cheson BD, Bartlett NL, Furman RR, Winter JN, Kaplan H, Timmerman J, Whiting NC, Drachman JG, Advani R. A phase II study of dacetuzumab (SGN-40) in patients with relapsed diffuse large B-cell lymphoma (DLBCL) and correlative analyses of patient-specific factors. J Hematol Oncol. 2014;7:44. https://doi.org/10.1186/1756-8722-7-44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Klepfish A, Gilles L, Ioannis K, Rachmilewitz EA, Schattner A. Enhancing the action of rituximab in chronic lymphocytic leukemia by adding fresh frozen plasma: complement/rituximab interactions & clinical results in refractory CLL. Ann NY Acad Sci. 2009;1173:865–73. https://doi.org/10.1111/j.1749-6632.2009.04803.x.

    Article  CAS  PubMed  Google Scholar 

  80. Xu W, Miao KR, Zhu DX, Fang C, Zhu HY, Dong HJ, Wang DM, Wu YJ, Qiao C, Li JY. Enhancing the action of rituximab by adding fresh frozen plasma for the treatment of fludarabine refractory chronic lymphocytic leukemia. Int J Cancer. 2011;128(9):2192–201. https://doi.org/10.1002/ijc.25560.

    Article  CAS  PubMed  Google Scholar 

  81. Ziller F, Macor P, Bulla R, Sblattero D, Marzari R, Tedesco F. Controlling complement resistance in cancer by using human monoclonal antibodies that neutralize complement-regulatory proteins CD55 and CD59. Eur J Immunol. 2005;35(7):2175–83. https://doi.org/10.1002/eji.200425920.

    Article  CAS  PubMed  Google Scholar 

  82. Golay J, Zaffaroni L, Vaccari T, Lazzari M, Borleri GM, Bernasconi S, Tedesco F, Rambaldi A, Introna M. Biologic response of B lymphoma cells to anti-CD20 monoclonal antibody rituximab in vitro: CD55 and CD59 regulate complement-mediated cell lysis. Blood. 2000;95(12):3900–8.

    CAS  PubMed  Google Scholar 

  83. Barth MJ, Hernandez-Ilizaliturri FJ, Mavis C, Tsai PC, Gibbs JF, Deeb G, Czuczman MS. Ofatumumab demonstrates activity against rituximab-sensitive and -resistant cell lines, lymphoma xenografts and primary tumour cells from patients with B-cell lymphoma. Br J Haematol. 2012;156(4):490–8. https://doi.org/10.1111/j.1365-2141.2011.08966.x.

    Article  CAS  PubMed  Google Scholar 

  84. Golay J, Lazzari M, Facchinetti V, Bernasconi S, Borleri G, Barbui T, Rambaldi A, Introna M. CD20 levels determine the in vitro susceptibility to rituximab and complement of B-cell chronic lymphocytic leukemia: further regulation by CD55 and CD59. Blood. 2001;98(12):3383–9.

    Article  CAS  PubMed  Google Scholar 

  85. Takei K, Yamazaki T, Sawada U, Ishizuka H, Aizawa S. Analysis of changes in CD20, CD55, and CD59 expression on established rituximab-resistant B-lymphoma cell lines. Leuk Res. 2006;30(5):625–31. https://doi.org/10.1016/j.leukres.2005.09.008.

    Article  CAS  PubMed  Google Scholar 

  86. Hu W, Ge X, You T, Xu T, Zhang J, Wu G, Peng Z, Chorev M, Aktas BH, Halperin JA, Brown JR, Qin X. Human CD59 inhibitor sensitizes rituximab-resistant lymphoma cells to complement-mediated cytolysis. Cancer Res. 2011;71(6):2298–307. https://doi.org/10.1158/0008-5472.Can-10-3016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Terui Y, Sakurai T, Mishima Y, Mishima Y, Sugimura N, Sasaoka C, Kojima K, Yokoyama M, Mizunuma N, Takahashi S, Ito Y, Hatake K. Blockade of bulky lymphoma-associated CD55 expression by RNA interference overcomes resistance to complement-dependent cytotoxicity with rituximab. Cancer Sci. 2006;97(1):72–9. https://doi.org/10.1111/j.1349-7006.2006.00139.x.

    Article  CAS  PubMed  Google Scholar 

  88. Weng WK, Levy R. Expression of complement inhibitors CD46, CD55, and CD59 on tumor cells does not predict clinical outcome after rituximab treatment in follicular non-Hodgkin lymphoma. Blood. 2001;98(5):1352–7.

    Article  CAS  PubMed  Google Scholar 

  89. Dzietczenia J, Wrobel T, Mazur G, Poreba R, Jazwiec B, Kuliczkowski K. Expression of complement regulatory proteins: CD46, CD55, and CD59 and response to rituximab in patients with CD20+ non-Hodgkin’s lymphoma. Med Oncol. 2010;27(3):743–6. https://doi.org/10.1007/s12032-009-9278-9.

    Article  CAS  PubMed  Google Scholar 

  90. Teeling JL, French RR, Cragg MS, van den Brakel J, Pluyter M, Huang H, Chan C, Parren PW, Hack CE, Dechant M, Valerius T, van de Winkel JG, Glennie MJ. Characterization of new human CD20 monoclonal antibodies with potent cytolytic activity against non-Hodgkin lymphomas. Blood. 2004;104(6):1793–800. https://doi.org/10.1182/blood-2004-01-0039.

    Article  CAS  PubMed  Google Scholar 

  91. Saphire EO, Stanfield RL, Crispin MD, Parren PW, Rudd PM, Dwek RA, Burton DR, Wilson IA. Contrasting IgG structures reveal extreme asymmetry and flexibility. J Mol Biol. 2002;319(1):9–18. https://doi.org/10.1016/s0022-2836(02)00244-9.

    Article  CAS  PubMed  Google Scholar 

  92. Teeling JL, Mackus WJ, Wiegman LJ, van den Brakel JH, Beers SA, French RR, van Meerten T, Ebeling S, Vink T, Slootstra JW, Parren PW, Glennie MJ, van de Winkel JG. The biological activity of human CD20 monoclonal antibodies is linked to unique epitopes on CD20. J Immunol. 2006;177(1):362–71.

    Article  CAS  PubMed  Google Scholar 

  93. Barth MJ, Mavis C, Czuczman MS, Hernandez-Ilizaliturri FJ. Ofatumumab exhibits enhanced in vitro and in vivo activity compared to Rituximab in preclinical models of mantle cell lymphoma. Clin Cancer Res. 2015;21(19):4391–7. https://doi.org/10.1158/1078-0432.Ccr-15-0056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Beum PV, Lindorfer MA, Beurskens F, Stukenberg PT, Lokhorst HM, Pawluczkowycz AW, Parren PW, van de Winkel JG, Taylor RP. Complement activation on B lymphocytes opsonized with rituximab or ofatumumab produces substantial changes in membrane structure preceding cell lysis. J Immunol. 2008;181(1):822–32.

    Article  CAS  PubMed  Google Scholar 

  95. Pawluczkowycz AW, Beurskens FJ, Beum PV, Lindorfer MA, van de Winkel JG, Parren PW, Taylor RP. Binding of submaximal C1q promotes complement-dependent cytotoxicity (CDC) of B cells opsonized with anti-CD20 mAbs ofatumumab (OFA) or rituximab (RTX): considerably higher levels of CDC are induced by OFA than by RTX. J Immunol. 2009;183(1):749–58. https://doi.org/10.4049/jimmunol.0900632.

    Article  CAS  PubMed  Google Scholar 

  96. Coiffier B, Losic N, Ronn BB, Lepretre S, Pedersen LM, Gadeberg O, Frederiksen H, van Oers MH, Wooldridge J, Kloczko J, Holowiecki J, Hellmann A, Walewski J, Robak T, Petersen J. Pharmacokinetics and pharmacokinetic/pharmacodynamic associations of ofatumumab, a human monoclonal CD20 antibody, in patients with relapsed or refractory chronic lymphocytic leukaemia: a phase 1-2 study. Br J Haematol. 2010;150(1):58–71. https://doi.org/10.1111/j.1365-2141.2010.08193.x.

    Article  CAS  PubMed  Google Scholar 

  97. Wierda WG, Kipps TJ, Durig J, Griskevicius L, Stilgenbauer S, Mayer J, Smolej L, Hess G, Griniute R, Hernandez-Ilizaliturri FJ, Padmanabhan S, Gorczyca M, Chang CN, Chan G, Gupta I, Nielsen TG, Russell CA. Chemoimmunotherapy with O-FC in previously untreated patients with chronic lymphocytic leukemia. Blood. 2011;117(24):6450–8. https://doi.org/10.1182/blood-2010-12-323980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lemery SJ, Zhang J, Rothmann MD, Yang J, Earp J, Zhao H, McDougal A, Pilaro A, Chiang R, Gootenberg JE, Keegan P, Pazdur R. U.S. food and drug administration approval: ofatumumab for the treatment of patients with chronic lymphocytic leukemia refractory to fludarabine and alemtuzumab. Clin Cancer Res. 2010;16(17):4331–8. https://doi.org/10.1158/1078-0432.Ccr-10-0570.

    Article  CAS  PubMed  Google Scholar 

  99. Wierda WG, Kipps TJ, Mayer J, Stilgenbauer S, Williams CD, Hellmann A, Robak T, Furman RR, Hillmen P, Trneny M, Dyer MJ, Padmanabhan S, Piotrowska M, Kozak T, Chan G, Davis R, Losic N, Wilms J, Russell CA, Osterborg A. Ofatumumab as single-agent CD20 immunotherapy in fludarabine-refractory chronic lymphocytic leukemia. J Clin Oncol. 2010;28(10):1749–55. https://doi.org/10.1200/jco.2009.25.3187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Robak T, Warzocha K, Govind Babu K, Kulyaba Y, Kuliczkowski K, Abdulkadyrov K, Loscertales J, Kryachok I, Kloczko J, Rekhtman G, Homenda W, Blonski JZ, McKeown A, Gorczyca MM, Carey JL, Chang CN, Lisby S, Gupta IV, Grosicki S. Ofatumumab plus fludarabine and cyclophosphamide in relapsed chronic lymphocytic leukemia: results from the COMPLEMENT 2 trial. Leuk Lymphoma. 2017;58(5):1084–93. https://doi.org/10.1080/10428194.2016.1233536.

    Article  CAS  PubMed  Google Scholar 

  101. van Imhoff GW, McMillan A, Matasar MJ, Radford J, Ardeshna KM, Kuliczkowski K, Kim W, Hong X, Goerloev JS, Davies A, Barrigon MDC, Ogura M, Leppa S, Fennessy M, Liao Q, van der Holt B, Lisby S, Hagenbeek A. Ofatumumab versus rituximab salvage chemoimmunotherapy in relapsed or refractory diffuse large B-cell lymphoma: The ORCHARRD study. J Clin Oncol. 2017;35(5):544–51. https://doi.org/10.1200/jco.2016.69.0198.

    Article  CAS  PubMed  Google Scholar 

  102. Czuczman MS, Kahanic S, Forero A, Davis G, Munteanu M, Van Den Neste E, Offner F, Bron D, Quick D, Fowler N. Results of a phase II study of bendamustine and ofatumumab in untreated indolent B cell non-Hodgkin’s lymphoma. Ann Hematol. 2015;94(4):633–41. https://doi.org/10.1007/s00277-014-2269-8.

    Article  CAS  PubMed  Google Scholar 

  103. Coiffier B, Radford J, Bosly A, Martinelli G, Verhoef G, Barca G, Davies A, Decaudin D, Gallop-Evans E, Padmanabhan-Iyer S, Van Eygen K, Wu KL, Gupta IV, Lin TS, Goldstein N, Jewell RC, Winter P, Lisby S (2013) A multicentre, phase II trial of ofatumumab monotherapy in relapsed/progressive diffuse large B-cell lymphoma. Br J Haematol 163 (3): 334-342. doi:https://doi.org/10.1111/bjh.12537

    Article  CAS  PubMed  Google Scholar 

  104. Matasar MJ, Czuczman MS, Rodriguez MA, Fennessy M, Shea TC, Spitzer G, Lossos IS, Kharfan-Dabaja MA, Joyce R, Fayad L, Henkel K, Liao Q, Edvardsen K, Jewell RC, Fecteau D, Singh RP, Lisby S, Moskowitz CH. Ofatumumab in combination with ICE or DHAP chemotherapy in relapsed or refractory intermediate grade B-cell lymphoma. Blood. 2013;122(4):499–506. https://doi.org/10.1182/blood-2012-12-472027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Czuczman MS, Fayad L, Delwail V, Cartron G, Jacobsen E, Kuliczkowski K, Link BK, Pinter-Brown L, Radford J, Hellmann A, Gallop-Evans E, DiRienzo CG, Goldstein N, Gupta I, Jewell RC, Lin TS, Lisby S, Schultz M, Russell CA, Hagenbeek A. Ofatumumab monotherapy in rituximab-refractory follicular lymphoma: results from a multicenter study. Blood. 2012;119(16):3698–704. https://doi.org/10.1182/blood-2011-09-378323.

    Article  CAS  PubMed  Google Scholar 

  106. Diebolder CA, Beurskens FJ, de Jong RN, Koning RI, Strumane K, Lindorfer MA, Voorhorst M, Ugurlar D, Rosati S, Heck AJ, van de Winkel JG, Wilson IA, Koster AJ, Taylor RP, Saphire EO, Burton DR, Schuurman J, Gros P, Parren PW. Complement is activated by IgG hexamers assembled at the cell surface. Science. 2014;343(6176):1260–3. https://doi.org/10.1126/science.1248943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. de Jong RN, Beurskens FJ, Verploegen S, Strumane K, van Kampen MD, Voorhorst M, Horstman W, Engelberts PJ, Oostindie SC, Wang G, Heck AJ, Schuurman J, Parren PW. A novel platform for the potentiation of therapeutic antibodies based on antigen-dependent formation of IgG hexamers at the cell surface. PLoS Biol. 2016;14(1):e1002344. https://doi.org/10.1371/journal.pbio.1002344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Clynes RA, Towers TL, Presta LG, Ravetch JV. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med. 2000;6(4):443–6. https://doi.org/10.1038/74704.

    Article  CAS  PubMed  Google Scholar 

  109. Nimmerjahn F, Ravetch JV. Fcgamma receptors as regulators of immune responses. Nat Rev Immunol. 2008;8(1):34–47. https://doi.org/10.1038/nri2206.

    Article  CAS  PubMed  Google Scholar 

  110. Cartron G, Dacheux L, Salles G, Solal-Celigny P, Bardos P, Colombat P, Watier H. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood. 2002;99(3):754–8.

    Article  CAS  PubMed  Google Scholar 

  111. Cartron G, Dacheux L, Salles G, Solal-Celigny P, Bardos P, Colombat P, Watier H. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcγRIIIa gene. Blood. 2002;99(3):754–8. https://doi.org/10.1182/blood.V99.3.754.

    Article  CAS  PubMed  Google Scholar 

  112. Kenkre VP, Hong F, Cerhan JR, Lewis M, Sullivan L, Williams ME, Gascoyne RD, Horning SJ, Kahl BS. Fc gamma receptor 3A and 2A polymorphisms do not predict response to Rituximab in follicular lymphoma. Clin Cancer Res. 2016;22(4):821–6. https://doi.org/10.1158/1078-0432.Ccr-15-1848.

    Article  CAS  PubMed  Google Scholar 

  113. Ghesquieres H, Cartron G, Seymour JF, Delfau-Larue MH, Offner F, Soubeyran P, Perrot A, Brice P, Bouabdallah R, Sonet A, Dupuis J, Casasnovas O, Catalano JV, Delmer A, Jardin F, Verney A, Dartigues P, Salles G. Clinical outcome of patients with follicular lymphoma receiving chemoimmunotherapy in the PRIMA study is not affected by FCGR3A and FCGR2A polymorphisms. Blood. 2012;120(13):2650–7. https://doi.org/10.1182/blood-2012-05-431825.

    Article  CAS  PubMed  Google Scholar 

  114. Persky DO, Dornan D, Goldman BH, Braziel RM, Fisher RI, Leblanc M, Maloney DG, Press OW, Miller TP, Rimsza LM. Fc gamma receptor 3a genotype predicts overall survival in follicular lymphoma patients treated on SWOG trials with combined monoclonal antibody plus chemotherapy but not chemotherapy alone. Haematologica. 2012;97(6):937–42. https://doi.org/10.3324/haematol.2011.050419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ahlgrimm M, Pfreundschuh M, Kreuz M, Regitz E, Preuss KD, Bittenbring J. The impact of Fc-gamma receptor polymorphisms in elderly patients with diffuse large B-cell lymphoma treated with CHOP with or without rituximab. Blood. 2011;118(17):4657–62. https://doi.org/10.1182/blood-2011-04-346411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Fabisiewicz A, Paszkiewicz-Kozik E, Osowiecki M, Walewski J, Siedlecki JA. FcgammaRIIA and FcgammaRIIIA polymorphisms do not influence survival and response to rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone immunochemotherapy in patients with diffuse large B-cell lymphoma. Leuk Lymphoma. 2011;52(8):1604–6. https://doi.org/10.3109/10428194.2011.574760.

    Article  CAS  PubMed  Google Scholar 

  117. Weng WK, Levy R. Genetic polymorphism of the inhibitory IgG Fc receptor FcgammaRIIb is not associated with clinical outcome in patients with follicular lymphoma treated with rituximab. Leuk Lymphoma. 2009;50(5):723–7. https://doi.org/10.1080/10428190902829441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Carlotti E, Palumbo GA, Oldani E, Tibullo D, Salmoiraghi S, Rossi A, Golay J, Pulsoni A, Foa R, Rambaldi A. FcgammaRIIIA and FcgammaRIIA polymorphisms do not predict clinical outcome of follicular non-Hodgkin’s lymphoma patients treated with sequential CHOP and rituximab. Haematologica. 2007;92(8):1127–30.

    Article  CAS  PubMed  Google Scholar 

  119. Mitrovic Z, Aurer I, Radman I, Ajdukovic R, Sertic J, Labar B. FCgammaRIIIA and FCgammaRIIA polymorphisms are not associated with response to rituximab and CHOP in patients with diffuse large B-cell lymphoma. Haematologica. 2007;92(7):998–9.

    Article  CAS  PubMed  Google Scholar 

  120. Galimberti S, Palumbo GA, Caracciolo F, Benedetti E, Pelosini M, Brizzi S, Ciabatti E, Fazzi R, Stelitano C, Quintana G, Conte E, Tibullo D, Di Raimondo F, Petrini M. The efficacy of rituximab plus Hyper-CVAD regimen in mantle cell lymphoma is independent of FCgammaRIIIa and FCgammaRIIa polymorphisms. J Chemother. 2007;19(3):315–21. https://doi.org/10.1179/joc.2007.19.3.315.

    Article  CAS  PubMed  Google Scholar 

  121. Farag SS, Flinn IW, Modali R, Lehman TA, Young D, Byrd JC. Fc gamma RIIIa and Fc gamma RIIa polymorphisms do not predict response to rituximab in B-cell chronic lymphocytic leukemia. Blood. 2004;103(4):1472–4. https://doi.org/10.1182/blood-2003-07-2548.

    Article  CAS  PubMed  Google Scholar 

  122. Weng WK, Levy R. Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol. 2003;21(21):3940–7. https://doi.org/10.1200/jco.2003.05.013.

    Article  CAS  PubMed  Google Scholar 

  123. Weng WK, Negrin RS, Lavori P, Horning SJ. Immunoglobulin G Fc receptor FcgammaRIIIa 158 V/F polymorphism correlates with rituximab-induced neutropenia after autologous transplantation in patients with non-Hodgkin’s lymphoma. J Clin Oncol. 2010;28(2):279–84. https://doi.org/10.1200/jco.2009.25.0274.

    Article  CAS  PubMed  Google Scholar 

  124. Li SC, Chen YC, Evens AM, Lee CC, Liao HF, Yu CC, Tung YT, Su YC. Rituximab-induced late-onset neutropenia in newly diagnosed B-cell lymphoma correlates with Fc receptor FcgammaRIIIa 158 (V/F) polymorphism. Am J Hematol. 2010;85(10):810–2. https://doi.org/10.1002/ajh.21818.

    Article  PubMed  Google Scholar 

  125. Keane C, Nourse JP, Crooks P, Nguyen-Van D, Mutsando H, Mollee P, Lea RA, Gandhi MK. Homozygous FCGR3A-158V alleles predispose to late onset neutropenia after CHOP-R for diffuse large B-cell lymphoma. Intern Med J. 2012;42(10):1113–9. https://doi.org/10.1111/j.1445-5994.2011.02587.x.

    Article  CAS  PubMed  Google Scholar 

  126. Weng WK, Weng WK, Levy R. Immunoglobulin G Fc receptor polymorphisms do not correlate with response to chemotherapy or clinical course in patients with follicular lymphoma. Leuk Lymphoma. 2009;50(9):1494–500. https://doi.org/10.1080/10428190903128660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Lim SH, Vaughan AT, Ashton-Key M, Williams EL, Dixon SV, Chan HT, Beers SA, French RR, Cox KL, Davies AJ, Potter KN, Mockridge CI, Oscier DG, Johnson PW, Cragg MS, Glennie MJ. Fc gamma receptor IIb on target B cells promotes rituximab internalization and reduces clinical efficacy. Blood. 2011;118(9):2530–40. https://doi.org/10.1182/blood-2011-01-330357.

    Article  PubMed  Google Scholar 

  128. Lee CS, Ashton-Key M, Cogliatti S, Rondeau S, Schmitz S-FH, Ghielmini M, Cragg MS, Johnson P. Expression of the inhibitory Fc gamma receptor IIB (FCGR2B, CD32B) on follicular lymphoma cells lowers the response rate to rituximab monotherapy (SAKK 35/98). Br J Haematol. 2015;168(1):145–8. https://doi.org/10.1111/bjh.13071.

    Article  CAS  PubMed  Google Scholar 

  129. Shields RL, Lai J, Keck R, O’Connell LY, Hong K, Meng YG, Weikert SH, Presta LG. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J Biol Chem. 2002;277(30):26733–40. https://doi.org/10.1074/jbc.M202069200.

    Article  CAS  PubMed  Google Scholar 

  130. Shinkawa T, Nakamura K, Yamane N, Shoji-Hosaka E, Kanda Y, Sakurada M, Uchida K, Anazawa H, Satoh M, Yamasaki M, Hanai N, Shitara K. The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J Biol Chem. 2003;278(5):3466–73. https://doi.org/10.1074/jbc.M210665200.

    Article  CAS  PubMed  Google Scholar 

  131. Ferrara C, Stuart F, Sondermann P, Brunker P, Umana P. The carbohydrate at FcgammaRIIIa Asn-162. An element required for high affinity binding to non-fucosylated IgG glycoforms. J Biol Chem. 2006;281(8):5032–6. https://doi.org/10.1074/jbc.M510171200.

    Article  CAS  PubMed  Google Scholar 

  132. Mössner E, Brünker P, Moser S, Püntener U, Schmidt C, Herter S, Grau R, Gerdes C, Nopora A, van Puijenbroek E, Ferrara C, Sondermann P, Jäger C, Strein P, Fertig G, Friess T, Schüll C, Bauer S, Dal Porto J, Del Nagro C, Dabbagh K, Dyer MJS, Poppema S, Klein C, Umaña P. Increasing the efficacy of CD20 antibody therapy through the engineering of a new type II anti-CD20 antibody with enhanced direct and immune effector cell–mediated B-cell cytotoxicity. Blood. 2010;115(22):4393–402. https://doi.org/10.1182/blood-2009-06-225979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Alduaij W, Ivanov A, Honeychurch J, Cheadle EJ, Potluri S, Lim SH, Shimada K, Chan CHT, Tutt A, Beers SA, Glennie MJ, Cragg MS, Illidge TM. Novel type II anti-CD20 monoclonal antibody (GA101) evokes homotypic adhesion and actin-dependent, lysosome-mediated cell death in B-cell malignancies. Blood. 2011;117(17):4519–29. https://doi.org/10.1182/blood-2010-07-296913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kern DJ, James BR, Blackwell S, Gassner C, Klein C, Weiner GJ. GA101 induces NK-cell activation and antibody-dependent cellular cytotoxicity more effectively than rituximab when complement is present. Leuk Lymphoma. 2013;54(11):2500–5. https://doi.org/10.3109/10428194.2013.781169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Herter S, Herting F, Mundigl O, Waldhauer I, Weinzierl T, Fauti T, Muth G, Ziegler-Landesberger D, Van Puijenbroek E, Lang S, Duong MN, Reslan L, Gerdes CA, Friess T, Baer U, Burtscher H, Weidner M, Dumontet C, Umana P, Niederfellner G, Bacac M, Klein C. Preclinical activity of the type II CD20 antibody GA101 (obinutuzumab) compared with rituximab and ofatumumab in vitro and in xenograft models. Mol Cancer Ther. 2013;12(10):2031–42. https://doi.org/10.1158/1535-7163.mct-12-1182.

    Article  CAS  PubMed  Google Scholar 

  136. Golay J, Da Roit F, Bologna L, Ferrara C, Leusen JH, Rambaldi A, Klein C, Introna M. Glycoengineered CD20 antibody obinutuzumab activates neutrophils and mediates phagocytosis through CD16B more efficiently than rituximab. Blood. 2013;122(20):3482–91. https://doi.org/10.1182/blood-2013-05-504043.

    Article  CAS  PubMed  Google Scholar 

  137. Awasthi A, Ayello J, Van de Ven C, Elmacken M, Sabulski A, Barth MJ, Czuczman MS, Islam H, Klein C, Cairo MS. Obinutuzumab (GA101) compared to rituximab significantly enhances cell death and antibody-dependent cytotoxicity and improves overall survival against CD20(+) rituximab-sensitive/-resistant Burkitt lymphoma (BL) and precursor B-acute lymphoblastic leukaemia (pre-B-ALL): potential targeted therapy in patients with poor risk CD20(+) BL and pre-B-ALL. Br J Haematol. 2015;171(5):763–75. https://doi.org/10.1111/bjh.13764.

    Article  CAS  PubMed  Google Scholar 

  138. Freeman CL, Morschhauser F, Sehn L, Dixon M, Houghton R, Lamy T, Fingerle-Rowson G, Wassner-Fritsch E, Gribben JG, Hallek M, Salles G, Cartron G. Cytokine release in patients with CLL treated with obinutuzumab and possible relationship with infusion-related reactions. Blood. 2015;126(24):2646–9. https://doi.org/10.1182/blood-2015-09-670802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Goede V, Fischer K, Busch R, Engelke A, Eichhorst B, Wendtner CM, Chagorova T, de la Serna J, Dilhuydy MS, Illmer T, Opat S, Owen CJ, Samoylova O, Kreuzer KA, Stilgenbauer S, Dohner H, Langerak AW, Ritgen M, Kneba M, Asikanius E, Humphrey K, Wenger M, Hallek M. Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. N Engl J Med. 2014;370(12):1101–10. https://doi.org/10.1056/NEJMoa1313984.

    Article  CAS  PubMed  Google Scholar 

  140. Salles GA, Morschhauser F, Solal-Celigny P, Thieblemont C, Lamy T, Tilly H, Gyan E, Lei G, Wenger M, Wassner-Fritsch E, Cartron G. Obinutuzumab (GA101) in patients with relapsed/refractory indolent non-Hodgkin lymphoma: results from the phase II GAUGUIN study. J Clin Oncol. 2013;31(23):2920–6. https://doi.org/10.1200/jco.2012.46.9718.

    Article  CAS  PubMed  Google Scholar 

  141. Byrd JC, Flynn JM, Kipps TJ, Boxer M, Kolibaba KS, Carlile DJ, Fingerle-Rowson G, Tyson N, Hirata J, Sharman JP. Randomized phase 2 study of obinutuzumab monotherapy in symptomatic, previously untreated chronic lymphocytic leukemia. Blood. 2016;127(1):79–86. https://doi.org/10.1182/blood-2015-03-634394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Sehn LH, Chua N, Mayer J, Dueck G, Trneny M, Bouabdallah K, Fowler N, Delwail V, Press O, Salles G, Gribben J, Lennard A, Lugtenburg PJ, Dimier N, Wassner-Fritsch E, Fingerle-Rowson G, Cheson BD. Obinutuzumab plus bendamustine versus bendamustine monotherapy in patients with rituximab-refractory indolent non-Hodgkin lymphoma (GADOLIN): a randomised, controlled, open-label, multicentre, phase 3 trial. Lancet Oncol. 2016;17(8):1081–93. https://doi.org/10.1016/s1470-2045(16)30097-3.

    Article  CAS  PubMed  Google Scholar 

  143. Morschhauser FA, Cartron G, Thieblemont C, Solal-Céligny P, Haioun C, Bouabdallah R, Feugier P, Bouabdallah K, Asikanius E, Lei G, Wenger M, Wassner-Fritsch E, Salles GA. Obinutuzumab (GA101) monotherapy in relapsed/refractory diffuse large B-cell lymphoma or mantle-cell lymphoma: results from the phase II GAUGUIN study. J Clin Oncol. 2013;31(23):2912–9. https://doi.org/10.1200/jco.2012.46.9585.

    Article  CAS  PubMed  Google Scholar 

  144. Vitolo U, Trneny M, Belada D, Burke JM, Carella AM, Chua N, Abrisqueta P, Demeter J, Flinn I, Hong X, Kim WS, Pinto A, Shi YK, Tatsumi Y, Oestergaard MZ, Wenger M, Fingerle-Rowson G, Catalani O, Nielsen T, Martelli M, Sehn LH. Obinutuzumab or rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone in previously untreated diffuse large B-cell lymphoma. J Clin Oncol. 2017;35(31):3529–37. https://doi.org/10.1200/jco.2017.73.3402.

    Article  CAS  PubMed  Google Scholar 

  145. Manshouri T, K-a D, Wang X, Giles FJ, O’Brien SM, Saffer H, Thomas D, Jilani I, Kantarjian HM, Keating MJ, Albitar M. Circulating CD20 is detectable in the plasma of patients with chronic lymphocytic leukemia and is of prognostic significance. Blood. 2003;101(7):2507–13. https://doi.org/10.1182/blood-2002-06-1639.

    Article  CAS  PubMed  Google Scholar 

  146. Giles FJ, Vose JM, Do KA, Johnson MM, Manshouri T, Bociek G, Bierman PJ, O’Brien SM, Keating MJ, Kantarjian HM, Armitage JO, Albitar M. Circulating CD20 and CD52 in patients with non-Hodgkin’s lymphoma or Hodgkin’s disease. Br J Haematol. 2003;123(5):850–7.

    Article  CAS  PubMed  Google Scholar 

  147. Alatrash G, Albitar M, O’Brien S, Wang X, Manshouri T, Faderl S, Ferrajoli A, Burger J, Garcia-Manero G, Kantarjian HM, Lerner S, Keating MJ, Wierda WG. Circulating CD52 and CD20 levels at end of treatment predict for progression and survival in patients with chronic lymphocytic leukaemia treated with fludarabine, cyclophosphamide and rituximab (FCR). Br J Haematol. 2010;148(3):386–93. https://doi.org/10.1111/j.1365-2141.2009.07965.x.

    Article  CAS  PubMed  Google Scholar 

  148. Manshouri T, Do KA, Wang X, Giles FJ, O’Brien SM, Saffer H, Thomas D, Jilani I, Kantarjian HM, Keating MJ, Albitar M. Circulating CD20 is detectable in the plasma of patients with chronic lymphocytic leukemia and is of prognostic significance. Blood. 2003;101(7):2507–13. https://doi.org/10.1182/blood-2002-06-1639.

    Article  CAS  PubMed  Google Scholar 

  149. Keating MJ, O’Brien S, Albitar M. Emerging information on the use of rituximab in chronic lymphocytic leukemia. Semin Oncol. 2002;29(1 Suppl 2):70–4.

    Article  CAS  PubMed  Google Scholar 

  150. Jäger U, Fridrik M, Zeitlinger M, Heintel D, Hopfinger G, Burgstaller S, Mannhalter C, Oberaigner W, Porpaczy E, Skrabs C, Einberger C, Drach J, Raderer M, Gaiger A, Putman M, Greil R. Rituximab serum concentrations during immuno-chemotherapy of follicular lymphoma correlate with patient gender, bone marrow infiltration and clinical response. Haematologica. 2012;97(9):1431–8. https://doi.org/10.3324/haematol.2011.059246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Pfreundschuh M, Müller C, Zeynalova S, Kuhnt E, Wiesen MHJ, Held G, Rixecker T, Poeschel V, Zwick C, Reiser M, Schmitz N, Murawski N. Suboptimal dosing of rituximab in male and female patients with DLBCL. Blood. 2014;123(5):640–6. https://doi.org/10.1182/blood-2013-07-517037.

    Article  CAS  PubMed  Google Scholar 

  152. Berinstein NL, Grillo-Lopez AJ, White CA, Bence-Bruckler I, Maloney D, Czuczman M, Green D, Rosenberg J, McLaughlin P, Shen D. Association of serum Rituximab (IDEC-C2B8) concentration and anti-tumor response in the treatment of recurrent low-grade or follicular non-Hodgkin’s lymphoma. Ann Oncol. 1998;9(9):995–1001. https://doi.org/10.1023/A:1008416911099.

    Article  CAS  PubMed  Google Scholar 

  153. Jazirehi AR, Vega MI, Bonavida B. Development of rituximab-resistant lymphoma clones with altered cell signaling and cross-resistance to chemotherapy. Cancer Res. 2007;67(3):1270–81. https://doi.org/10.1158/0008-5472.Can-06-2184.

    Article  CAS  PubMed  Google Scholar 

  154. Olejniczak SH, Hernandez-Ilizaliturri FJ, Clements JL, Czuczman MS. Acquired resistance to rituximab is associated with chemotherapy resistance resulting from decreased Bax and Bak expression. Clin Cancer Res. 2008;14(5):1550–60. https://doi.org/10.1158/1078-0432.Ccr-07-1255.

    Article  CAS  PubMed  Google Scholar 

  155. Friess T, Gerdes C, Nopora A, Patre M, Preiss S, van Puijenbroek E, Schuell C, Bauer S, Umana P, Klein C. GA101, a novel humanized type II CD20 antibody with glycoengineered Fc and enhanced cell death induction, mediates superior efficacy in a variety of NHL xenograft models in comparison to Rituximab. Blood. 2007;110(11):2338.

    Google Scholar 

  156. Honeychurch J, Alduaij W, Azizyan M, Cheadle EJ, Pelicano H, Ivanov A, Huang P, Cragg MS, Illidge TM. Antibody-induced nonapoptotic cell death in human lymphoma and leukemia cells is mediated through a novel reactive oxygen species-dependent pathway. Blood. 2012;119(15):3523–33. https://doi.org/10.1182/blood-2011-12-395541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Awasthi A, Rolland DCM, Ayello J, van de Ven C, Basrur V, Conlon K, Fermin D, Barth MJ, Klein C, Elenitoba-Johnson KSJ, Lim MS, Cairo MS. A comparative global phosphoproteomics analysis of obinutuzumab (GA101) versus rituximab (RTX) against RTX sensitive and resistant Burkitt lymphoma (BL) demonstrates differential phosphorylation of signaling pathway proteins after treatment. Oncotarget. 2017;8(69):113895–909. https://doi.org/10.18632/oncotarget.23040.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Decaup E, Jean C, Laurent C, Gravelle P, Fruchon S, Capilla F, Marrot A, Al Saati T, Frenois FX, Laurent G, Klein C, Varoqueaux N, Savina A, Fournie JJ, Bezombes C. Anti-tumor activity of obinutuzumab and rituximab in a follicular lymphoma 3D model. Blood Cancer J. 2013;3:e131. https://doi.org/10.1038/bcj.2013.32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Chihara D, Fanale MA. Management of anaplastic large cell lymphoma. Hematol Oncol Clin North Am. 2017;31(2):209–22. https://doi.org/10.1016/j.hoc.2016.11.001.

    Article  PubMed  Google Scholar 

  160. Alperovich A, Younes A. Targeting CD30 using Brentuximab Vedotin in the treatment of Hodgkin lymphoma. Cancer J. 2016;22(1):23–6. https://doi.org/10.1097/ppo.0000000000000168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Bartlett NL, Smith MR, Siddiqi T, Advani RH, O’Connor OA, Sharman JP, Feldman T, Savage KJ, Shustov AR, Diefenbach CS, Oki Y, Palanca-Wessels MC, Uttarwar M, Li M, Yang J, Jacobsen ED. Brentuximab vedotin activity in diffuse large B-cell lymphoma with CD30 undetectable by visual assessment of conventional immunohistochemistry. Leuk Lymphoma. 2017;58(7):1607–16. https://doi.org/10.1080/10428194.2016.1256481.

    Article  CAS  PubMed  Google Scholar 

  162. Venugopal P, Leslie WT, O’Brien T, Gregory SA. CD20-negative relapse after 131I–Anti-CD20 therapy. J Clin Oncol. 1999;17(11):3692–3. https://doi.org/10.1200/jco.1999.17.11.3692.

    Article  CAS  PubMed  Google Scholar 

  163. Al-Rohil RN, Torres-Cabala CA, Patel A, Tetzlaff MT, Ivan D, Nagarajan P, Curry JL, Miranda RN, Duvic M, Prieto VG, Aung PP. Loss of CD30 expression after treatment with brentuximab vedotin in a patient with anaplastic large cell lymphoma: a novel finding. J Cutan Pathol. 2016;43(12):1161–6. https://doi.org/10.1111/cup.12797.

    Article  PubMed  Google Scholar 

  164. Arai H, Furuichi S, Nakamura Y, Nakamura Y, Ichikawa M, Mitani K. ALK-negative anaplastic large cell lymphoma with loss of CD30 expression during treatment with brentuximab vedotin. [Rinsho ketsueki] Jpn J Clin Hematol. 2016;57(5):634–7. https://doi.org/10.11406/rinketsu.57.634.

    Article  Google Scholar 

  165. Chen R, Hou J, Newman E, Kim Y, Donohue C, Liu X, Thomas SH, Forman SJ, Kane SE. CD30 downregulation, MMAE resistance, and MDR1 upregulation are all associated with resistance to Brentuximab Vedotin. Mol Cancer Ther. 2015;14(6):1376–84. https://doi.org/10.1158/1535-7163.Mct-15-0036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Dornan D, Bennett F, Chen Y, Dennis M, Eaton D, Elkins K, French D, Go MAT, Jack A, Junutula JR, Koeppen H, Lau J, McBride J, Rawstron A, Shi X, Yu N, Yu S-F, Yue P, Zheng B, Ebens A, Polson AG. Therapeutic potential of an anti-CD79b antibody–drug conjugate, anti–CD79b-vc-MMAE, for the treatment of non-Hodgkin lymphoma. Blood. 2009;114(13):2721–9. https://doi.org/10.1182/blood-2009-02-205500.

    Article  CAS  PubMed  Google Scholar 

  167. Kohnke T, Krupka C, Tischer J, Knosel T, Subklewe M. Increase of PD-L1 expressing B-precursor ALL cells in a patient resistant to the CD19/CD3-bispecific T cell engager antibody blinatumomab. J Hematol Oncol. 2015;8:111. https://doi.org/10.1186/s13045-015-0213-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Braig F, Brandt A, Goebeler M, Tony HP, Kurze AK, Nollau P, Bumm T, Bottcher S, Bargou RC, Binder M. Resistance to anti-CD19/CD3 BiTE in acute lymphoblastic leukemia may be mediated by disrupted CD19 membrane trafficking. Blood. 2017;129(1):100–4. https://doi.org/10.1182/blood-2016-05-718395.

    Article  CAS  PubMed  Google Scholar 

  169. Aldoss I, Song J, Stiller T, Nguyen T, Palmer J, O’Donnell M, Stein AS, Marcucci G, Forman S, Pullarkat V. Correlates of resistance and relapse during blinatumomab therapy for relapsed/refractory acute lymphoblastic leukemia. Am J Hematol. 2017;92(9):858–65. https://doi.org/10.1002/ajh.24783.

    Article  CAS  PubMed  Google Scholar 

  170. Sun LL, Ellerman D, Mathieu M, Hristopoulos M, Chen X, Li Y, Yan X, Clark R, Reyes A, Stefanich E, Mai E, Young J, Johnson C, Huseni M, Wang X, Chen Y, Wang P, Wang H, Dybdal N, Chu YW, Chiorazzi N, Scheer JM, Junttila T, Totpal K, Dennis MS, Ebens AJ. Anti-CD20/CD3 T cell-dependent bispecific antibody for the treatment of B cell malignancies. Sci Transl Med. 2015;7(287):287ra270. https://doi.org/10.1126/scitranslmed.aaa4802.

    Article  Google Scholar 

Download references

Acknowledgements

S.C.G. is supported by Hyundai Hope on Wheels.

Disclosure of Conflict of Interest

No potential conflicts of interest were disclosed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew J. Barth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barth, M.J., Goldman, S.C. (2019). Resistance to Monoclonal Antibody Therapeutics in Lymphoma. In: Xavier, A., Cairo, M. (eds) Resistance to Targeted Therapies in Lymphomas . Resistance to Targeted Anti-Cancer Therapeutics, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-030-24424-8_2

Download citation

Publish with us

Policies and ethics