Skip to main content

Mechanics of Random Fiber Networks: Structure–Properties Relation

  • Chapter
  • First Online:
Mechanics of Fibrous Materials and Applications

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 596))

Abstract

This chapter presents an overview of the mechanics of random fiber networks with emphasis on the structure–properties relationship. The discussion begins with a classification of the types of fibers, including thermal and athermal fibers, and the types of crosslinks commonly encountered in engineered and biological networks. Further, a classification of networks is presented. The parameters used to describe the network structure are introduced along with geometric relations between quantities such as the density, mean fiber segment length, and crosslink density. The large strains behavior of networks measured in tension and compression, as revealed by models and experiments performed with various types of network materials, is presented. This is characterized by strong non-linearity, large sensitivity of the overall response to network structural parameters, and a large Poisson effect. The strength of networks is discussed in the context of structures with and without pre-existing cracks. It is shown that the strength is independent of the fiber properties and depends on the density and strength of the crosslinks, as well as on the mean fiber segment length. Finally, the structure and mechanical behavior of networks with inter-fiber adhesive interactions are evaluated. These are controlled by the strength of adhesion. In networks with strong adhesion and relatively thin fibers, the fibers self-organize leading to the formation of a cellular network of fiber bundles. Such cellular networks are stable and have a mechanical behavior qualitatively similar to that of crosslinked networks of individual fibers. This discussion demonstrates the broad range of mechanical behaviors that can be obtained with various network structures, hinting to the usefulness of fiber networks in many applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akins, M. L., Luby-Phelps, K., Bank, R. A., & Mahendroo, M. (2011). Cervical softening during pregnancy: Regulated changes in collagen cross-linking and composition of matricellular proteins in the mouse1. Biology of Reproduction, 84, 1053–1062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alava, M., & Niskanen, K. (2006). The physics of paper. Reports on Progress in Physics, 69, 669–723.

    Article  Google Scholar 

  • Alexander, S. (1998). Physics Reports, 296, 65.

    Article  CAS  Google Scholar 

  • Astrom, J. A., Kumar, P. B. S., Vattulainen, I., & Karttunen, M. (2008). Strain hardening, avalanches, and strain softening in dense cross-linked actin networks. Physical Review E, 77, 051913.

    Article  CAS  Google Scholar 

  • Athesian, G. A. (2009). The role of interstitial fluid pressurization in articular cartilage lubrication. Journal of Biomechanics, 42, 1163–1176.

    Article  Google Scholar 

  • Ban, E., Barocas, V., Shephard, M. S., & Picu, R. C. (2016a). Effect of fiber crimp on the elasticity of random fiber networks with and without embedding matrices. Journal of Applied Mechanics, 83, 041008.

    Article  Google Scholar 

  • Ban, E., Picu, R. C., Barocas, V., & Shephard, M. S. (2016b). Softening in random networks of non-identical beams. Journal of the Mechanics and Physics of Solids, 87, 38–50.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ban, E., Zhang, S., Zarei, V., Barocas, V. H., Winkelstein, B. A., & Picu, R. C. (2017). Collagen organization in facet capsular ligaments varies with spinal region and with ligament deformation. Journal of Biomechanical Engineering, 139, 071009.

    Article  Google Scholar 

  • Bancelin, S., Lynch, B., Bonod-Bidaud, C., Ducourthial, G., Psilodimitrakopoulos, S., Dokladal, P., et al. (2015). Ex-vivo multiscale quantitation of skin biomechanics in wild-type and genetically-modified mice using multiphoton microscopy. Scientific Reports, 5, 17635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benitez, A. J., & Walther, A. (2017). Cellulose nanofibril nanopaper and bioinspired nanocomposites: A review to understand the mechanical properties space. Journal of Materials Chemistry A, 5, 16003–16024.

    Article  CAS  Google Scholar 

  • Berhan, L., & Sastry, A. M. (2003). On modeling bonds in fused, porous networks: 3D simulations of fibrous-particulate joints. Journal of Composite Materials, 37, 715–740.

    Article  CAS  Google Scholar 

  • Boal, D. (2012). Mechanics of the cell. Cambridge University Press.

    Google Scholar 

  • Borodulina, S., Kulachenko, A., Galland, S., & Nygards, M. (2012). The stress-strain curve of paper revisited. Nordic Pulp & Paper Research Journal, 27, 318.

    Article  CAS  Google Scholar 

  • Borodulina, S., Motamedian, H. R., & Kulachenko, A. (2016). Effect of fiber and bond strength variations on the tensile stiffness and strength of fiber networks. International Journal of Solids and Structures, 154, 19–32.

    Article  CAS  Google Scholar 

  • Bowden, F. P., & Tabor, D. (2001). The friction and lubrication of solids. Oxford: Oxford University Press.

    Google Scholar 

  • Boyce, M. C., & Arruda, E. M. (2000). Constitutive models of rubber elasticity: A review. Rubber Chemistry and Technology, 73, 504–523.

    Article  CAS  Google Scholar 

  • Broedersz, C. P., & MacKintosh, F. C. (2011). Molecular motors stiffen non-affine semiflexible polymer networks. Soft Matter, 7, 3186–3191.

    Article  CAS  Google Scholar 

  • Broedersz, C. P., & Mackintosh, F. C. (2014). Modeling semiflexible polymer networks. Reviews of Modern Physics, 86, 995–1036.

    Article  CAS  Google Scholar 

  • Broedersz, C. P., Sheinman, M., & MacKintosh, F. C. (2012). Filament-length-controlled elasticity in 3D fiber networks. Physical Review Letters, 108, 078102.

    Article  CAS  PubMed  Google Scholar 

  • Bustamante, C., Marko, J. F., Siggia, E. D., & Smith, S. (1994). Entropic elasticity of lambda-phage DNA. Science, 265, 1599–1600.

    Article  CAS  PubMed  Google Scholar 

  • Calladine, C. R. (1978). Buckminster Fuller’s “Tensegrity” structures and Clerk Maxwell’s rules for the construction of stiff frames. International Journal of Solids and Structures, 14, 161–172.

    Article  Google Scholar 

  • Chen, N., Koker, M. K. A., Uzun, S., & Silberstein, M. N. (2016a). In-situ X-ray study of the deformation mechanisms of non-woven polypropylene. International Journal of Solids and Structures, 97–98, 200–208.

    Article  CAS  Google Scholar 

  • Chen, Y., Ridruejo, A., González, C., Llorca, J., & Siegmund, T. (2016b). Notch effect in failure of fiberglass non-woven materials. International Journal of Solids and Structures, 96, 254–264.

    Article  CAS  Google Scholar 

  • Chocron, S., Pintor, A., Gálvez, F., Roselló, C., Cendón, D., & Sánchez-Gálvez, V. (2008). Lightweight polyethylene non-woven felts for ballistic impact applications: Material characterization. Composites Part B: Engineering, 39, 1240–1246.

    Article  CAS  Google Scholar 

  • Clark, J. D. A. (1985). Wet fibre compactibility. In Pulp technology and treatment for paper (p. 560). San Francisco: Miller Freeman Inc.

    Google Scholar 

  • Connelly, R., & Whiteley, W. (1966). Second order rigidity and pre-stress stability for tensegrity frameworks. SIAM Journal on Discrete Mathematics, 9, 453–491.

    Article  Google Scholar 

  • Deogekar, S., Islam, M. R., & Picu, R. C. (2019). Parameters controlling the strength of stochastic fibrous materials. International Journal of Solids and Structures (in press).

    Google Scholar 

  • Deogekar, S., & Picu, R. C. (2017). Structure-properties relation for random networks of fibers with non-circular cross-section. Physical Review E, 95, 033001.

    Article  CAS  PubMed  Google Scholar 

  • Deogekar, S., & Picu, R. C. (2018). On the strength of random fiber networks. Journal of the Mechanics and Physics of Solids, 116, 1–16.

    Article  Google Scholar 

  • Dodson, C. T. J., & Sampson, W. W. (1996). The effect of paper formation and grammage on its pore size distribution. Journal of Pulp and Paper Science, 22, J165–J169.

    Google Scholar 

  • Eichhorn, S. J., & Sampson, W. W. (2005). Statistical geometry of pores and statistics of porous nanofibrous assemblies. Journal of the Royal Society, Interface, 2, 309–318.

    Article  PubMed  PubMed Central  Google Scholar 

  • Farukh, F., Demirci, E., Sabuncuoglu, B., Acar, M., Pourdeyhimi, B., & Silberschmidt, V. V. (2014). Numerical analysis of progressive damage in nonwoven fibrous networks under tension. International Journal of Solids and Structures, 51, 1670–1685.

    Article  CAS  Google Scholar 

  • Federico, S., & Herzog, W. (2008). On the anisotropy and inhomogeneity of permeability in articular cartilage. Biomechanics and Modeling in Mechanobiology, 7, 367–378.

    Article  PubMed  Google Scholar 

  • Fixman, M., & Kovac, J. (1973). Polymer conformational statistics. III. Modified Gaussian models of stiff chains. Journal of Chemical Physics, 58, 1564.

    Google Scholar 

  • Fletcher, D. A., & Mullins, R. D. (2010). Cell mechanics and the cytoskeleton. Nature, 463, 485–492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forsstrom, J., Andreasson, B., & Wagberg, L. (2005). Influence of fiber/fiber joint strength and fibre flexibility on the strength of papers from unbleached kraft fibres. Nordic Pulp & Paper Research Journal, 20, 186–191.

    Article  Google Scholar 

  • Gibson, L. J., & Ashby, M. F. (1999). Cellular materials. Cambridge University Press.

    Google Scholar 

  • Glass, N. L., Rasmussen, C., Roca, M. G., & Read, N. D. (2004). Hyphal homing, fusion and mycelial interconnectedness. Trends in Microbiology, 12, 135–141.

    Article  CAS  PubMed  Google Scholar 

  • Goudsmit, S. (1945). Random distribution of lines on a plane. Reviews of Modern Physics, 17, 321–327.

    Article  Google Scholar 

  • Guth, E., & James, H. M. (1941). Elastic and thermoelastic properties of rubber like materials. Industrial and Engineering Chemistry, 33, 624–662.

    Article  CAS  Google Scholar 

  • Head, D. A. (2004). First-order rigidity transition and multiple stability regimes for random networks with internal stresses. Journal of Physics A: Mathematical and Theoretical, 37, 10771.

    Article  Google Scholar 

  • Head, D. A., Levine, A. J., & MacKintosh, F. C. (2003). Distinct regimes of elastic response and deformation modes of cross-linked cytoskeletal and semiflexible polymer networks. Physical Review E, 68, 61907.

    Article  CAS  Google Scholar 

  • Hendricks, J., Kawakatsu, T., Kawasaki, K., & Zimmermann, W. (1995). Confined semiflexible polymer chains. Physical Review E, 51, 2658–2661.

    Article  CAS  Google Scholar 

  • Heussinger, C., Schaefer, B., & Frey, E. (2007). Nonaffine rubber elasticity for stiff polymer networks. Physical Review E, 76, 1–12.

    Article  CAS  Google Scholar 

  • Heyden, S. (2000). Network modelling for the evaluation of mechanical properties of cellulose fibre fluff. Ph.D. thesis, Lund University, Sweden.

    Google Scholar 

  • Heyden, S., & Gustafsson, P. J. (1998). Simulation of fracture in a cellulose fibre network. Journal of Pulp and Paper Science, 25, 160–165.

    Google Scholar 

  • Huisman, E., van Dillen, T., Onck, P., & van der Giessen, E. (2007). Three-dimensional cross-linked F-actin networks: Relation between network architecture and mechanical behavior. Physical Review Letters, 99, 208103–208106.

    Article  CAS  PubMed  Google Scholar 

  • Ingber, D. E., Wang, N., & Stamenovic, D. (2014). Tensegity, biophysics and the mechanics of living systems. Reports on Progress in Physics, 77(4), 046603.

    Article  PubMed  CAS  Google Scholar 

  • Islam, M. R., & Picu, R. C. (2018). Effect of network architecture on the mechanical behavior of random fiber networks. Journal of Applied Mechanics, 85, 081011.

    Article  CAS  Google Scholar 

  • Islam, M. R., Tudryn, G., Bucinell, R., Schadler, L. S., & Picu, R. C. (2017). Morphology and mechanics of fungal mycelium. Scientific Reports, 7, 13070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam, M. R., Tudryn, G., Bucinell, R., Schadler, L. S., & Picu, R. C. (2018). Mechanical behavior of mycelium-based particulate composites. Journal of Materials Science, 53, 16371–16382.

    Article  CAS  Google Scholar 

  • Jearanaisilawong, P. (2004). Investigation of deformation and failure mechanisms in woven and nonwoven fabrics under quasi-static loading conditions. Ph.D. thesis, Massachusetts Institute of Technology.

    Google Scholar 

  • Johnson, K. L., Kendall, K., & Roberts, A. D. (1971). Energy and the contact of elastic solids. Proceedings of the Royal Society, A324, 301–313.

    Article  Google Scholar 

  • Kabla, A., & Mahadevan, L. (2007). Nonlinear mechanics of soft fibrous networks. Journal of the Royal Society, Interface, 4, 99–106.

    Article  CAS  PubMed  Google Scholar 

  • Kallmes, O. J., & Corte, H. (1960). The structure of paper—The statistical geometry of an ideal two dimensional fiber network. Tappi Journal, 43, 737–752.

    CAS  Google Scholar 

  • Kasza, K. E., Broedersz, C. P., Koenderink, G. H., Lin, Y. C., Messner, W., Millman, E. A., et al. (2010). Actin filament length tunes elasticity of flexibly cross-linked actin networks. Biophysical Journal, 99, 1091–1100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koh, C. T., Strange, D. G. T., Tonsomboon, T., & Oyen, M. L. (2013). Failure mechanisms in fibrous scaffolds. Acta Biomaterialia, 9, 7326–7334.

    Article  CAS  PubMed  Google Scholar 

  • Kolluru, P. V., & Chasiotis, I. (2015). Interplay of molecular and specimen length scales in the large deformation mechanical behavior of polystyrene nanofibers. Polymer, 56, 507–515.

    Article  CAS  Google Scholar 

  • Kremer, K., & Grest, G. S. (1990). Dynamics of entangled linear polymeric melts: A molecular dynamics simulation. Journal of Chemical Physics, 92, 5057.

    Article  CAS  Google Scholar 

  • Kroy, K., & Frey, E. (1996). Force-extension relation and plateau modulus for wormlike chains. Physical Review Letters, 77, 306–310.

    Article  CAS  PubMed  Google Scholar 

  • Lake, S. P., & Barocas, V. H. (2011). Mechanical and structural contribution of non-fibrillar matrix in uniaxial tension: A collagen-agarose co-gel model. Annals of Biomedical Engineering, 39, 1891–1903.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, Y., & Kroger, M. (2012). A theoretical evaluation of the effects of carbon nanotube entanglement and bundling on the structural and mechanical properties of buckypaper. Carbon, 50, 1793–1806.

    Google Scholar 

  • Licup, A. J., Münster, S., Sharma, A., Sheinman, M., Jawerth, L. M., Fabry, B., et al. (2015). Stress controls the mechanics of collagen networks. Proceedings of the National Academy of Sciences, 112, 9573–9578.

    Article  CAS  Google Scholar 

  • Magnusson, M. S. (2016). Investigation of interfibre joint failure and how to tailor their properties for paper strength. Nordic Pulp & Paper Research Journal, 31, 109–122.

    Article  CAS  Google Scholar 

  • Magnusson, M. S., Zhang, X., & Östlund, S. (2013). Experimental evaluation of the interfibre joint strength of papermaking fibres in terms of manufacturing parameters and in two different loading directions. Experimental Mechanics, 53, 1621–1634.

    Article  Google Scholar 

  • Malakhovsky, I., & Michels, M. A. J. (2007). Effect of disorder strength on the fracture pattern in heterogeneous networks. Physical Review B, 76, 1–13.

    Article  CAS  Google Scholar 

  • Marais, A., Magnusson, M. S., Joffre, T., Wernersson, E. L. G., & Wågberg, L. (2014). New insights into the mechanisms behind the strengthening of lignocellulosic fibrous networks with polyamines. Cellulose, 21, 3941–3950.

    Article  Google Scholar 

  • Marko, J. F., & Siggia, E. D. (1995). Stretching DNA. Macromolecules, 28, 8759–8770.

    Article  CAS  Google Scholar 

  • Mauri, A., Ehret, A. E., Perrini, M., Maake, C., Ochsenbein-Kolble, N., Ehrbar, M., et al. (2015). Deformation mechanism of human amnion: Quantitative studies based on second harmonic generation microscopy. Journal of Biomechanics, 48, 1606–1613.

    Article  PubMed  Google Scholar 

  • Maxwell, J. C. (1864). Philosophical Magazine, 27, 27.

    Google Scholar 

  • Mezeix, L., Bouvet, C., Huez, J., & Poquillon, D. (2009). Mechanical behavior of entangled fibers and entangled cross-linked fibers during compression. Journal of Materials Science, 44, 3652–3661.

    Article  CAS  Google Scholar 

  • Miles, R. E. (1964). Random polygons determined by random lines on a plane. Proceedings of the National Academy of Sciences of the United States of America, 52, 901–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mofrad, M. R. K. (2009). Rheology of the cytoskeleton. Annual Review of Fluid Mechanics, 41, 433–453.

    Article  Google Scholar 

  • Morse, D. (1998). Viscoelasticity of tightly entangled solutions of semiflexible polymers. Physical Review E, 58, 1237R.

    Article  Google Scholar 

  • Moukarzel, C., & Duxbury, P. M. (1995). Stressed backbone and elasticity of random central force systems. Physical Review Letters, 75, 4055–4059.

    Article  CAS  PubMed  Google Scholar 

  • Mullins, L. (1969). Softening of rubber by deformation. Rubber Chemistry and Technology, 42, 339–362.

    Article  CAS  Google Scholar 

  • Negi, V., & Picu, R. C. (2019a). Mechanical behavior of cross-linked random fiber networks with inter-fiber adhesion. Journal of the Mechanics and Physics of Solids, 122, 418–434.

    Article  CAS  Google Scholar 

  • Negi, V., & Picu, R. C. (2019b). Mechanical behavior of random fibrous mats with friction and adhesion. Soft Matter (submitted).

    Google Scholar 

  • Neumann, R. M. (1977). The entropy of a single Gaussian macromolecule in a noninteracting solvent. Journal of Chemical Physics, 66, 870–871.

    Article  CAS  Google Scholar 

  • Obukhov, S. P. (1995). First order rigidity transitions in random rod networks. Physical Review Letters, 74, 4472–4476.

    Article  CAS  PubMed  Google Scholar 

  • Odijk, T. (1995). Stiff chains and filaments under tension. Macromolecules, 28, 7016–7018.

    Article  CAS  Google Scholar 

  • Omelyanenko, N. P., Slutsky, L. I., & Mironov, S. P. (2017). Connective tissue: Histophysiology, biochemistry and molecular biology. CRC Press.

    Google Scholar 

  • Ovaska, M., Bertalan, Z., Miksic, A., Sugni, M., di Benedetto, C., Ferrario, C., et al. (2017). Deformation and fracture of echinoderm collagen networks. Journal of the Mechanical Behavior of Biomedical Materials, 65, 42–52.

    Article  CAS  PubMed  Google Scholar 

  • Oyen, M. L., Cook, R. F., & Calvin, S. E. (2004). Mechanical failure of human fetal membrane tissues. Journal of Materials Science, 15, 651–658.

    CAS  Google Scholar 

  • Picu, R. C. (2011). Mechanics of random fiber networks—A review. Soft Matter, 7, 6768–6785.

    Article  CAS  Google Scholar 

  • Picu, R. C., Deogekar, S., & Islam, M. R. (2018). Poisson contraction and fiber kinematics in tissue: Insight from collagen network simulations. Journal of Biomechanical Engineering, 140, 021002.

    Article  Google Scholar 

  • Picu, R. C., & Sengab, A. (2018). Structural evolution and stability of non-cross-linked fiber networks with inter-fiber adhesion. Soft Matter, 14, 2254.

    Article  CAS  PubMed  Google Scholar 

  • Picu, R. C., & Subramanian, G. (2011). Correlated heterogeneous deformation of entangled fiber networks. Physical Review E, 83, 052160.

    Google Scholar 

  • Puxkandl, R., Zizakt, I., Paris, O., Keckes, J., Tesch, W., Bernstorff, S., et al. (2002). Viscoelastic properties of collagen: Synchrotron radiation investigations and structural model. Philosophical Transactions of the Royal Society of London, 357, 191–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quigley, A. S., Bancelin, S., Deska-Gauthier, D., Legare, F., Veres, S. P., & Kreplak, L. (2018). Combining tensile testing and structural analysis at the single collagen fibril level. Scientific Data, 5, 180229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raina, A., & Linder, C. (2014). A homogenization approach for nonwoven materials based on fiber undulations and reorientation. Journal of the Mechanics and Physics of Solids, 65, 12–34.

    Article  Google Scholar 

  • Richards, P. I. (1964). Averages of polygons formed by random lines. Proceedings of the National Academy of Sciences of the United States of America, 52, 1160–1164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ridruejo, A., González, C., & Llorca, J. (2012). Failure locus of polypropylene nonwoven fabrics under in-plane biaxial deformation. Comptes Rendus Mecanique, 340(4–5), 307–319.

    Article  CAS  Google Scholar 

  • Ridruejo, A., Jubera, R., González, C., & Llorca, J. (2015). Inverse notch sensitivity: Cracks can make nonwoven fabrics stronger. Journal of the Mechanics and Physics of Solids, 77, 61–69.

    Article  Google Scholar 

  • Rigdahl, M., & Hollmark, H. (1986). Network mechanics. In J. A. Bristow & P. Koleth (Eds.), Paper structure and properties (pp. 241–266, Ch. 12, p. 241). New York: Marcel Dekker.

    Google Scholar 

  • Rodney, D., Fivel, M., & Dendievel, R. (2005). Discrete modeling of the mechanics of entangled materials. Physical Review Letters, 95, 108004.

    Article  PubMed  CAS  Google Scholar 

  • Roman, B., & Bico, J. (2010). Elasto-capilarity: Deforming an elastic structure with a droplet. Journal of Physics, 22, 493101.

    CAS  PubMed  Google Scholar 

  • Rubinstein, M., & Colby, R. H. (2003). Polymer physics. Oxford: Oxford University Press.

    Google Scholar 

  • Scheibel, T. (2008). Fibrous proteins. CRC Press.

    Google Scholar 

  • Schmied, F. J., Teichert, C., Kappel, L., Hirn, U., Bauer, W., & Schennach, R. (2013). What holds paper together: Nanometre scale exploration of bonding between paper fibres. Scientific Reports, 3, 1–6.

    Article  Google Scholar 

  • Sengab, A., & Picu, R. C. (2018). Filamentary structures self-organized due to adhesion. Physical Review E, 97, 032506.

    Article  CAS  PubMed  Google Scholar 

  • Shahsavari, A., & Picu, R. C. (2012). Model selection for athermal cross-linked fiber networks. Physical Review E, 86, 011923.

    Article  CAS  Google Scholar 

  • Shahsavari, A., & Picu, R. C. (2013a). Elasticity of sparsely cross-linked random fiber networks. Philosophical Magazine Letters, 93, 356–361.

    Article  CAS  Google Scholar 

  • Shahsavari, A., & Picu, R. C. (2013b). Size effect on mechanical behavior of random fiber networks. International Journal of Solids and Structures, 50, 3332–3338.

    Article  Google Scholar 

  • Sharma, A., Licup, A. J., Rens, R., Vahabi, M., Jansen, A., Koenderink, G. H., et al. (2016). Strain-driven criticality underlies nonlinear mechanics of fibrous networks. Physical Review E, 94, 042407.

    Article  CAS  PubMed  Google Scholar 

  • Storm, C., Pastore, J. J., MacKintosh, F. C., Lubensky, T. C., & Janmey, P. A. (2005). Non-linear elasticity in biological gels. Nature, 435, 191–194.

    Article  CAS  PubMed  Google Scholar 

  • Stoyan, D., Kendall, W. S., & Mecke, J. (1987). Stochastic geometry and its applications. Probability and mathematical statistics. : Wiley.

    Google Scholar 

  • Ting, T. C. T., & Chen, T. (2005). Poisson ratio for anisotropic elastic materials can have no bounds. Quarterly Journal of Mechanics and Applied Mathematics, 58, 73–82.

    Article  Google Scholar 

  • Torgnysdotter, A., & Wågberg, L. (2003). Study of the joint strength between regenerated cellulose fibres and its influence on the sheet strength. Nordic Pulp & Paper Research Journal, 18, 455–459.

    Article  CAS  Google Scholar 

  • Treloar, L. R. G. (1954). The photoelastic properties of short chain molecular networks. Transactions of the Faraday Society, 50, 881–896.

    Article  CAS  Google Scholar 

  • Treloar, L. R. G. (1975). Physics of rubber elasticity. Oxford: Oxford University Press.

    Google Scholar 

  • Treloar, L. R. G., & Riding, G. (1979). A non-Gaussian theory of rubber in biaxial strain: Mechanical properties. Proceedings of the Royal Society of London, A369, 261–280.

    Article  Google Scholar 

  • Vader, D., Kabla, A., Weitz, D., & Mahadevan, L. (2009). Strain-induced alignment in collagen gels. PLoS ONE, 4, 5902.

    Article  Google Scholar 

  • van Dillen, T., Onck, P. R., & van der Giessen, E. (2008). Models for stiffening in cross-linked biopolymer networks: A comparative study. Journal of the Mechanics and Physics of Solids, 56, 2240–2264.

    Article  CAS  Google Scholar 

  • Vernerey, F. J. (2018). Transient response of non-linear polymer networks: A kinetic theory. Journal of the Mechanics and Physics of Solids, 115, 230–247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volkov, A. N., & Zhigilei, L. V. (2010). Structural stability of carbon nanotube films: The role of bending buckling. ACS Nano, 4, 6187–6195.

    Google Scholar 

  • Weisel, J. W., & Litvinov, R. I. (2013). Mechanisms of fibrin polymerization and clinical implications. Blood, 121, 1712–1719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welling, L. W., Zupka, M. T., & Welling, D. J. (1995). Mechanical properties of basement membrane. Physiology, 10, 30–35.

    Article  Google Scholar 

  • Wen, Q., Basu, A., Janmey, P., & Yodh, A. (2012). Non-affine deformations in polymer hydrogels. Soft Matter, 8, 8039–8049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wendorff, J. H., Agarwal, S., & Greiner, A. (2012). Electrospinning: Materials, processing and applications. Weinheim: Wiley.

    Book  Google Scholar 

  • Wilhelm, J., & Frey, E. (1996). Radial distribution function of semiflexible polymers. Physical Review Letters, 77, 2581–2585.

    Article  CAS  PubMed  Google Scholar 

  • Zagar, G., Onck, P., & van der Giessen, E. (2015). Two fundamental mechanisms govern the stiffening of crosslinked networks. Biophysical Journal, 108, 1470–1479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catalin R. Picu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 CISM International Centre for Mechanical Sciences

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Picu, C.R. (2020). Mechanics of Random Fiber Networks: Structure–Properties Relation. In: Picu, C., Ganghoffer, JF. (eds) Mechanics of Fibrous Materials and Applications. CISM International Centre for Mechanical Sciences, vol 596. Springer, Cham. https://doi.org/10.1007/978-3-030-23846-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23846-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23845-2

  • Online ISBN: 978-3-030-23846-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics