Skip to main content

Resistance to Anti-Cancer Therapeutics

  • Chapter
  • First Online:
Precision Cancer Medicine

Abstract

Resistance to anti-cancer agents is an issue that has plagued physicians and scientists since the development of effective anti-cancer drugs. The scope of the problem of resistance is reflected in the consistently high death rate for advanced cancers, even in the era of molecularly targeted agents. Resistance can be differentiated into broad categories in a number of different ways. First, resistance can be either intrinsic to the cancer and present prior to the receipt of therapy, or it can be acquired as an adaptation to a previously effective therapy. While intrinsic resistance is often due to incomplete drug penetration or lack of reliance on the pathway being targeted and often affects multiple classes of drugs, acquired resistance is generally more complex and involves acquisition of specific mutations or specific adaptations of the cancer or the microenvironment to limit the effectiveness of one or a few classes of agents. As our tools to more effectively detect mechanisms of resistance expands, so does the complexity of the mechanisms underlying this issue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ueda K, Cardarelli C, Gottesman MM, Pastan I (1987) Expression of a full-length cDNA for the human "MDR1" gene confers resistance to colchicine, doxorubicin, and vinblastine. Proc Natl Acad Sci U S A 84(9):3004–3008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fojo AT, Ueda K, Slamon DJ, Poplack DG, Gottesman MM, Pastan I (1987) Expression of a multidrug-resistance gene in human tumors and tissues. Proc Natl Acad Sci U S A 84(1):265–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cordon-Cardo C, O’Brien JP, Casals D, Rittman-Grauer L, Biedler JL, Melamed MR et al (1989) Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc Natl Acad Sci U S A 86(2):695–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schuetz EG, Schinkel AH, Relling MV, Schuetz JD (1996) P-glycoprotein: a major determinant of rifampicin-inducible expression of cytochrome P4503A in mice and humans. Proc Natl Acad Sci U S A 93(9):4001–4005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cole SP, Bhardwaj G, Gerlach JH, Mackie JE, Grant CE, Almquist KC et al (1992) Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 258(5088):1650–1654

    Article  CAS  PubMed  Google Scholar 

  6. Sauna ZE, Smith MM, Muller M, Kerr KM, Ambudkar SV (2001) The mechanism of action of multidrug-resistance-linked P-glycoprotein. J Bioenerg Biomembr 33(6):481–491

    Article  CAS  PubMed  Google Scholar 

  7. Callaghan R, Higgins CF (1995) Interaction of tamoxifen with the multidrug resistance P-glycoprotein. Br J Cancer 71(2):294–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen J, Balmaceda C, Bruce JN, Sisti MB, Huang M, Cheung YK et al (2006) Tamoxifen paradoxically decreases paclitaxel deposition into cerebrospinal fluid of brain tumor patients. J Neuro-Oncol 76(1):85–92

    Article  CAS  Google Scholar 

  9. El Hafny B, Chappey O, Piciotti M, Debray M, Boval B, Roux F (1997) Modulation of P-glycoprotein activity by glial factors and retinoic acid in an immortalized rat brain microvessel endothelial cell line. Neurosci Lett 236(2):107–111

    Article  PubMed  Google Scholar 

  10. Abolhoda A, Wilson AE, Ross H, Danenberg PV, Burt M, Scotto KW (1999) Rapid activation of MDR1 gene expression in human metastatic sarcoma after in vivo exposure to doxorubicin. Clin Cancer Res 5(11):3352–3356

    CAS  PubMed  Google Scholar 

  11. Patch AM, Christie EL, Etemadmoghadam D, Garsed DW, George J, Fereday S et al (2015) Whole-genome characterization of chemoresistant ovarian cancer. Nature 521(7553):489–494

    Article  CAS  PubMed  Google Scholar 

  12. Baker EK, El-Osta A (2003) The rise of DNA methylation and the importance of chromatin on multidrug resistance in cancer. Exp Cell Res 290(2):177–194

    Article  CAS  PubMed  Google Scholar 

  13. Kantharidis P, El-Osta A, de Silva M, Wall DM, Hu XF, Slater A et al (1997) Altered methylation of the human MDR1 promoter is associated with acquired multidrug resistance. Clin Cancer Res 3(11):2025–2032

    CAS  PubMed  Google Scholar 

  14. Navin N, Krasnitz A, Rodgers L, Cook K, Meth J, Kendall J et al (2010) Inferring tumor progression from genomic heterogeneity. Genome Res 20(1):68–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chaffer CL, Brueckmann I, Scheel C, Kaestli AJ, Wiggins PA, Rodrigues LO et al (2011) Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc Natl Acad Sci U S A 108(19):7950–7955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Alison MR, Islam S, Wright NA (2010) Stem cells in cancer: instigators and propagators? J Cell Sci 123(Pt 14):2357–2368

    Article  CAS  PubMed  Google Scholar 

  17. Ailles LE, Weissman IL (2007) Cancer stem cells in solid tumors. Curr Opin Biotechnol 18(5):460–466

    Article  CAS  PubMed  Google Scholar 

  18. Dallas NA, Xia L, Fan F, Gray MJ, Gaur P, van Buren G 2nd, et al. (2009) Chemoresistant colorectal cancer cells, the cancer stem cell phenotype, and increased sensitivity to insulin-like growth factor-I receptor inhibition. Cancer Res 69(5):1951–1957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Levina V, Marrangoni AM, DeMarco R, Gorelik E, Lokshin AE (2008) Drug-selected human lung cancer stem cells: cytokine network, tumorigenic and metastatic properties. PLoS One 3(8):e3077

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Polyak K, Weinberg RA (2009) Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9(4):265–273

    Article  CAS  PubMed  Google Scholar 

  21. Singh A, Settleman J (2010) EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29(34):4741–4751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Farmer P, Bonnefoi H, Anderle P, Cameron D, Wirapati P, Becette V et al (2009) A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nat Med 15(1):68–74

    Article  CAS  PubMed  Google Scholar 

  23. Edwards SL, Brough R, Lord CJ, Natrajan R, Vatcheva R, Levine DA et al (2008) Resistance to therapy caused by intragenic deletion in BRCA2. Nature 451(7182):1111–1115

    Article  CAS  PubMed  Google Scholar 

  24. Sakai W, Swisher EM, Karlan BY, Agarwal MK, Higgins J, Friedman C et al (2008) Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers. Nature 451(7182):1116–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Norquist B, Wurz KA, Pennil CC, Garcia R, Gross J, Sakai W et al (2011) Secondary somatic mutations restoring BRCA1/2 predict chemotherapy resistance in hereditary ovarian carcinomas. J Clin Oncol 29(22):3008–3015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li R, Yerganian G, Duesberg P, Kraemer A, Willer A, Rausch C et al (1997) Aneuploidy correlated 100% with chemical transformation of Chinese hamster cells. Proc Natl Acad Sci U S A 94(26):14506–14511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Duesberg P, Rausch C, Rasnick D, Hehlmann R (1998) Genetic instability of cancer cells is proportional to their degree of aneuploidy. Proc Natl Acad Sci U S A 95(23):13692–13697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Duesberg P, Stindl R, Hehlmann R (2000) Explaining the high mutation rates of cancer cells to drug and multidrug resistance by chromosome reassortments that are catalyzed by aneuploidy. Proc Natl Acad Sci U S A 97(26):14295–14300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stephens PJ, Greenman CD, Fu B, Yang F, Bignell GR, Mudie LJ et al (2011) Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144(1):27–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rausch T, Jones DT, Zapatka M, Stutz AM, Zichner T, Weischenfeldt J et al (2012) Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell 148(1–2):59–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Baca SC, Prandi D, Lawrence MS, Mosquera JM, Romanel A, Drier Y et al (2013) Punctuated evolution of prostate cancer genomes. Cell 153(3):666–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Campbell PJ, Yachida S, Mudie LJ, Stephens PJ, Pleasance ED, Stebbings LA et al (2010) The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467(7319):1109–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Brachova P, Thiel KW, Leslie KK (2013) The consequence of oncomorphic TP53 mutations in ovarian cancer. Int J Mol Sci 14(9):19257–19275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Seagle BL, Yang CP, Eng KH, Dandapani M, Odunsi-Akanji O, Goldberg GL et al (2015) TP53 hot spot mutations in ovarian cancer: selective resistance to microtubule stabilizers in vitro and differential survival outcomes from the cancer genome atlas. Gynecol Oncol 138(1):159–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Di Agostino S, Cortese G, Monti O, Dell’Orso S, Sacchi A, Eisenstein M et al (2008) The disruption of the protein complex mutantp53/p73 increases selectively the response of tumor cells to anticancer drugs. Cell Cycle 7(21):3440–3447

    Article  PubMed  Google Scholar 

  36. Chrisanthar R, Knappskog S, Lokkevik E, Anker G, Ostenstad B, Lundgren S et al (2011) Predictive and prognostic impact of TP53 mutations and MDM2 promoter genotype in primary breast cancer patients treated with epirubicin or paclitaxel. PLoS One 6(4):e19249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ahn DH, Javle M, Ahn CW, Jain A, Mikhail S, Noonan AM et al (2016) Next-generation sequencing survey of biliary tract cancer reveals the association between tumor somatic variants and chemotherapy resistance. Cancer 122(23):3657–3666

    Article  CAS  PubMed  Google Scholar 

  38. Curt GA, Carney DN, Cowan KH, Jolivet J, Bailey BD, Drake JC et al (1983) Unstable methotrexate resistance in human small-cell carcinoma associated with double minute chromosomes. N Engl J Med 308(4):199–202

    Article  CAS  PubMed  Google Scholar 

  39. Gong M, Yess J, Connolly T, Ivy SP, Ohnuma T, Cowan KH et al (1997) Molecular mechanism of antifolate transport-deficiency in a methotrexate-resistant MOLT-3 human leukemia cell line. Blood 89(7):2494–2499

    Article  CAS  PubMed  Google Scholar 

  40. Jansen G, Mauritz R, Drori S, Sprecher H, Kathmann I, Bunni M et al (1998) A structurally altered human reduced folate carrier with increased folic acid transport mediates a novel mechanism of antifolate resistance. J Biol Chem 273(46):30189–30198

    Article  CAS  PubMed  Google Scholar 

  41. Wong SC, Zhang L, Witt TL, Proefke SA, Bhushan A, Matherly LH (1999) Impaired membrane transport in methotrexate-resistant CCRF-CEM cells involves early translation termination and increased turnover of a mutant reduced folate carrier. J Biol Chem 274(15):10388–10394

    Article  CAS  PubMed  Google Scholar 

  42. Drori S, Jansen G, Mauritz R, Peters GJ, Assaraf YG (2000) Clustering of mutations in the first transmembrane domain of the human reduced folate carrier in GW1843U89-resistant leukemia cells with impaired antifolate transport and augmented folate uptake. J Biol Chem 275(40):30855–30863

    Article  CAS  PubMed  Google Scholar 

  43. Rothem L, Ifergan I, Kaufman Y, Priest DG, Jansen G, Assaraf YG (2002) Resistance to multiple novel antifolates is mediated via defective drug transport resulting from clustered mutations in the reduced folate carrier gene in human leukaemia cell lines. Biochem J 367(Pt 3):741–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rothem L, Aronheim A, Assaraf YG (2003) Alterations in the expression of transcription factors and the reduced folate carrier as a novel mechanism of antifolate resistance in human leukemia cells. J Biol Chem 278(11):8935–8941

    Article  CAS  PubMed  Google Scholar 

  45. Stark M, Wichman C, Avivi I, Assaraf YG (2009) Aberrant splicing of folylpolyglutamate synthetase as a novel mechanism of antifolate resistance in leukemia. Blood 113(18):4362–4369

    Article  CAS  PubMed  Google Scholar 

  46. Liani E, Rothem L, Bunni MA, Smith CA, Jansen G, Assaraf YG (2003) Loss of folylpoly-gamma-glutamate synthetase activity is a dominant mechanism of resistance to polyglutamylation-dependent novel antifolates in multiple human leukemia sublines. Int J Cancer 103(5):587–599

    Article  CAS  PubMed  Google Scholar 

  47. Mauritz R, Peters GJ, Priest DG, Assaraf YG, Drori S, Kathmann I et al (2002) Multiple mechanisms of resistance to methotrexate and novel antifolates in human CCRF-CEM leukemia cells and their implications for folate homeostasis. Biochem Pharmacol 63(2):105–115

    Article  CAS  PubMed  Google Scholar 

  48. Johnston PG, Lenz HJ, Leichman CG, Danenberg KD, Allegra CJ, Danenberg PV et al (1995) Thymidylate synthase gene and protein expression correlate and are associated with response to 5-fluorouracil in human colorectal and gastric tumors. Cancer Res 55(7):1407–1412

    CAS  PubMed  Google Scholar 

  49. Rooney PH, Stevenson DA, Marsh S, Johnston PG, Haites NE, Cassidy J et al (1998) Comparative genomic hybridization analysis of chromosomal alterations induced by the development of resistance to thymidylate synthase inhibitors. Cancer Res 58(22):5042–5045

    CAS  PubMed  Google Scholar 

  50. Ooyama A, Okayama Y, Takechi T, Sugimoto Y, Oka T, Fukushima M (2007) Genome-wide screening of loci associated with drug resistance to 5-fluorouracil-based drugs. Cancer Sci 98(4):577–583

    Article  CAS  PubMed  Google Scholar 

  51. Wang TL, Diaz LA Jr, Romans K, Bardelli A, Saha S, Galizia G et al (2004) Digital karyotyping identifies thymidylate synthase amplification as a mechanism of resistance to 5-fluorouracil in metastatic colorectal cancer patients. Proc Natl Acad Sci U S A 101(9):3089–3094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Watson RG, Muhale F, Thorne LB, Yu J, O’Neil BH, Hoskins JM et al (2010) Amplification of thymidylate synthetase in metastatic colorectal cancer patients pretreated with 5-fluorouracil-based chemotherapy. Eur J Cancer 46(18):3358–3364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sugimoto Y, Tsukahara S, Oh-hara T, Isoe T, Tsuruo T (1990) Decreased expression of DNA topoisomerase I in camptothecin-resistant tumor cell lines as determined by a monoclonal antibody. Cancer Res 50(21):6925–6930

    CAS  PubMed  Google Scholar 

  54. Fiorani P, Bruselles A, Falconi M, Chillemi G, Desideri A, Benedetti P (2003) Single mutation in the linker domain confers protein flexibility and camptothecin resistance to human topoisomerase I. J Biol Chem 278(44):43268–43275

    Article  CAS  PubMed  Google Scholar 

  55. Gongora C, Vezzio-Vie N, Tuduri S, Denis V, Causse A, Auzanneau C et al (2011) New topoisomerase I mutations are associated with resistance to camptothecin. Mol Cancer 10:64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tesauro C, della Rocca BM, Ottaviani A, Coletta A, Zuccaro L, Arno B, et al. Molecular mechanism of the camptothecin resistance of Glu710Gly topoisomerase IB mutant analyzed in vitro and in silico. Mol Cancer. 2013;12(1):100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Burgess DJ, Doles J, Zender L, Xue W, Ma B, McCombie WR et al (2008) Topoisomerase levels determine chemotherapy response in vitro and in vivo. Proc Natl Acad Sci U S A 105(26):9053–9058

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zwelling LA, Hinds M, Chan D, Mayes J, Sie KL, Parker E et al (1989) Characterization of an amsacrine-resistant line of human leukemia cells. Evidence for a drug-resistant form of topoisomerase II. J Biol Chem 264(28):16411–16420

    CAS  PubMed  Google Scholar 

  59. Hinds M, Deisseroth K, Mayes J, Altschuler E, Jansen R, Ledley FD et al (1991) Identification of a point mutation in the topoisomerase II gene from a human leukemia cell line containing an amsacrine-resistant form of topoisomerase II. Cancer Res 51(17):4729–4731

    CAS  PubMed  Google Scholar 

  60. Wijdeven RH, Pang B, van der Zanden SY, Qiao X, Blomen V, Hoogstraat M et al (2015) Genome-wide identification and characterization of novel factors conferring resistance to topoisomerase II poisons in cancer. Cancer Res 75(19):4176–4187

    Article  CAS  PubMed  Google Scholar 

  61. Theriault BL, Pajovic S, Bernardini MQ, Shaw PA, Gallie BL (2012) Kinesin family member 14: an independent prognostic marker and potential therapeutic target for ovarian cancer. Int J Cancer 130(8):1844–1854

    Article  CAS  PubMed  Google Scholar 

  62. Ehrlichova M, Mohelnikova-Duchonova B, Hrdy J, Brynychova V, Mrhalova M, Kodet R et al (2013) The association of taxane resistance genes with the clinical course of ovarian carcinoma. Genomics 102(2):96–101

    Article  CAS  PubMed  Google Scholar 

  63. Tan MH, De S, Bebek G, Orloff MS, Wesolowski R, Downs-Kelly E et al (2012) Specific kinesin expression profiles associated with taxane resistance in basal-like breast cancer. Breast Cancer Res Treat 131(3):849–858

    Article  CAS  PubMed  Google Scholar 

  64. Cabral F (2001) Factors determining cellular mechanisms of resistance to antimitotic drugs. Drug Resist Updat 4(1):3–8

    Article  CAS  PubMed  Google Scholar 

  65. Huzil JT, Chen K, Kurgan L, Tuszynski JA (2007) The roles of beta-tubulin mutations and isotype expression in acquired drug resistance. Cancer Informat 3:159–181

    Article  Google Scholar 

  66. Yin S, Zeng C, Hari M, Cabral F (2012) Random mutagenesis of beta-tubulin defines a set of dispersed mutations that confer paclitaxel resistance. Pharm Res 29(11):2994–3006

    Article  CAS  PubMed  Google Scholar 

  67. Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR et al (2006) Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5:67

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Kitada S, Andersen J, Akar S, Zapata JM, Takayama S, Krajewski S et al (1998) Expression of apoptosis-regulating proteins in chronic lymphocytic leukemia: correlations with in vitro and in vivo chemoresponses. Blood 91(9):3379–3389

    Article  CAS  PubMed  Google Scholar 

  69. Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D, Honess D et al (2009) Inhibition of hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324(5933):1457–1461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sakata K, Kwok TT, Murphy BJ, Laderoute KR, Gordon GR, Sutherland RM (1991) Hypoxia-induced drug resistance: comparison to P-glycoprotein-associated drug resistance. Br J Cancer 64(5):809–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pouyssegur J, Dayan F, Mazure NM (2006) Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 441(7092):437–443

    Article  CAS  PubMed  Google Scholar 

  72. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG (2013) Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 13(10):714–726

    Article  CAS  PubMed  Google Scholar 

  73. Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN et al (2001) Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293(5531):876–880

    Article  CAS  PubMed  Google Scholar 

  74. le Coutre P, Tassi E, Varella-Garcia M, Barni R, Mologni L, Cabrita G et al (2000) Induction of resistance to the Abelson inhibitor STI571 in human leukemic cells through gene amplification. Blood 95(5):1758–1766

    Article  PubMed  Google Scholar 

  75. Branford S, Rudzki Z, Walsh S, Grigg A, Arthur C, Taylor K et al (2002) High frequency of point mutations clustered within the adenosine triphosphate-binding region of BCR/ABL in patients with chronic myeloid leukemia or Ph-positive acute lymphoblastic leukemia who develop imatinib (STI571) resistance. Blood 99(9):3472–3475

    Article  CAS  PubMed  Google Scholar 

  76. Roche-Lestienne C, Soenen-Cornu V, Grardel-Duflos N, Lai JL, Philippe N, Facon T et al (2002) Several types of mutations of the Abl gene can be found in chronic myeloid leukemia patients resistant to STI571, and they can pre-exist to the onset of treatment. Blood 100(3):1014–1018

    Article  CAS  PubMed  Google Scholar 

  77. Roumiantsev S, Shah NP, Gorre ME, Nicoll J, Brasher BB, Sawyers CL et al (2002) Clinical resistance to the kinase inhibitor STI-571 in chronic myeloid leukemia by mutation of Tyr-253 in the Abl kinase domain P-loop. Proc Natl Acad Sci U S A 99(16):10700–10705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Weisberg E, Manley PW, Breitenstein W, Bruggen J, Cowan-Jacob SW, Ray A et al (2005) Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell 7(2):129–141

    Article  CAS  PubMed  Google Scholar 

  79. Shah NP, Tran C, Lee FY, Chen P, Norris D, Sawyers CL (2004) Overriding imatinib resistance with a novel ABL kinase inhibitor. Science 305(5682):399–401

    Article  CAS  PubMed  Google Scholar 

  80. O’Hare T, Shakespeare WC, Zhu X, Eide CA, Rivera VM, Wang F et al (2009) AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell 16(5):401–412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Heinrich MC, Corless CL, Blanke CD, Demetri GD, Joensuu H, Roberts PJ et al (2006) Molecular correlates of imatinib resistance in gastrointestinal stromal tumors. J Clin Oncol 24(29):4764–4774

    Article  CAS  PubMed  Google Scholar 

  82. Wardelmann E, Merkelbach-Bruse S, Pauls K, Thomas N, Schildhaus HU, Heinicke T et al (2006) Polyclonal evolution of multiple secondary KIT mutations in gastrointestinal stromal tumors under treatment with imatinib mesylate. Clin Cancer Res 12(6):1743–1749

    Article  CAS  PubMed  Google Scholar 

  83. Mahon FX, Belloc F, Lagarde V, Chollet C, Moreau-Gaudry F, Reiffers J et al (2003) MDR1 gene overexpression confers resistance to imatinib mesylate in leukemia cell line models. Blood 101(6):2368–2373

    Article  CAS  PubMed  Google Scholar 

  84. Burger H, van Tol H, Brok M, Wiemer EA, de Bruijn EA, Guetens G et al (2005) Chronic imatinib mesylate exposure leads to reduced intracellular drug accumulation by induction of the ABCG2 (BCRP) and ABCB1 (MDR1) drug transport pumps. Cancer Biol Ther 4(7):747–752

    Article  CAS  PubMed  Google Scholar 

  85. Kobayashi S, Boggon TJ, Dayaram T, Janne PA, Kocher O, Meyerson M et al (2005) EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med 352(8):786–792

    Article  CAS  PubMed  Google Scholar 

  86. Pao W, Miller VA, Politi KA, Riely GJ, Somwar R, Zakowski MF et al (2005) Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2(3):e73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Inukai M, Toyooka S, Ito S, Asano H, Ichihara S, Soh J et al (2006) Presence of epidermal growth factor receptor gene T790M mutation as a minor clone in non-small cell lung cancer. Cancer Res 66(16):7854–7858

    Article  CAS  PubMed  Google Scholar 

  88. Watanabe M, Kawaguchi T, Isa S, Ando M, Tamiya A, Kubo A et al (2015) Ultra-sensitive detection of the pretreatment EGFR T790M mutation in non-small cell lung cancer patients with an EGFR-activating mutation using droplet digital PCR. Clin Cancer Res 21(15):3552–3560

    Article  CAS  PubMed  Google Scholar 

  89. Bell DW, Gore I, Okimoto RA, Godin-Heymann N, Sordella R, Mulloy R et al (2005) Inherited susceptibility to lung cancer may be associated with the T790M drug resistance mutation in EGFR. Nat Genet 37(12):1315–1316

    Article  CAS  PubMed  Google Scholar 

  90. Oxnard GR, Miller VA, Robson ME, Azzoli CG, Pao W, Ladanyi M et al (2012) Screening for germline EGFR T790M mutations through lung cancer genotyping. J Thorac Oncol 7(6):1049–1052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yu HA, Arcila ME, Harlan Fleischut M, Stadler Z, Ladanyi M, Berger MF et al (2014) Germline EGFR T790M mutation found in multiple members of a familial cohort. J Thorac Oncol 9(4):554–558

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Bean J, Brennan C, Shih JY, Riely G, Viale A, Wang L et al (2007) MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci U S A 104(52):20932–20937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO et al (2007) MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316(5827):1039–1043

    Article  CAS  PubMed  Google Scholar 

  94. Turke AB, Zejnullahu K, Wu YL, Song Y, Dias-Santagata D, Lifshits E et al (2010) Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell 17(1):77–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yano S, Wang W, Li Q, Matsumoto K, Sakurama H, Nakamura T et al (2008) Hepatocyte growth factor induces gefitinib resistance of lung adenocarcinoma with epidermal growth factor receptor-activating mutations. Cancer Res 68(22):9479–9487

    Article  CAS  PubMed  Google Scholar 

  96. Shi H, Hugo W, Kong X, Hong A, Koya RC, Moriceau G et al (2014) Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy. Cancer Discov 4(1):80–93

    Article  CAS  PubMed  Google Scholar 

  97. Shi H, Moriceau G, Kong X, Lee MK, Lee H, Koya RC et al (2012) Melanoma whole-exome sequencing identifies (V600E)B-RAF amplification-mediated acquired B-RAF inhibitor resistance. Nat Commun 3:724

    Article  PubMed  CAS  Google Scholar 

  98. Poulikakos PI, Persaud Y, Janakiraman M, Kong X, Ng C, Moriceau G et al (2011) RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature 480(7377):387–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wagle N, Emery C, Berger MF, Davis MJ, Sawyer A, Pochanard P et al (2011) Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J Clin Oncol 29(22):3085–3096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Nazarian R, Shi H, Wang Q, Kong X, Koya RC, Lee H et al (2010) Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468(7326):973–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Paraiso KH, Xiang Y, Rebecca VW, Abel EV, Chen YA, Munko AC et al (2011) PTEN loss confers BRAF inhibitor resistance to melanoma cells through the suppression of BIM expression. Cancer Res 71(7):2750–2760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Tiacci E, Park JH, De Carolis L, Chung SS, Broccoli A, Scott S et al (2015) Targeting mutant BRAF in relapsed or refractory hairy-cell leukemia. N Engl J Med 373(18):1733–1747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Tsai YT, Lozanski G, Lehman A, Sass EJ, Hertlein E, Salunke SB et al (2015) BRAFV600E induces ABCB1/P-glycoprotein expression and drug resistance in B-cells via AP-1 activation. Leuk Res 39:1270–1277

    Article  CAS  Google Scholar 

  104. Wang SE, Xiang B, Guix M, Olivares MG, Parker J, Chung CH et al (2008) Transforming growth factor beta engages TACE and ErbB3 to activate phosphatidylinositol-3 kinase/Akt in ErbB2-overexpressing breast cancer and desensitizes cells to trastuzumab. Mol Cell Biol 28(18):5605–5620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ritter CA, Perez-Torres M, Rinehart C, Guix M, Dugger T, Engelman JA et al (2007) Human breast cancer cells selected for resistance to trastuzumab in vivo overexpress epidermal growth factor receptor and ErbB ligands and remain dependent on the ErbB receptor network. Clin Cancer Res 13(16):4909–4919

    Article  CAS  PubMed  Google Scholar 

  106. Motoyama AB, Hynes NE, Lane HA (2002) The efficacy of ErbB receptor-targeted anticancer therapeutics is influenced by the availability of epidermal growth factor-related peptides. Cancer Res 62(11):3151–3158

    CAS  PubMed  Google Scholar 

  107. Moulder SL, Yakes FM, Muthuswamy SK, Bianco R, Simpson JF, Arteaga CL (2001) Epidermal growth factor receptor (HER1) tyrosine kinase inhibitor ZD1839 (Iressa) inhibits HER2/neu (erbB2)-overexpressing breast cancer cells in vitro and in vivo. Cancer Res 61(24):8887–8895

    CAS  PubMed  Google Scholar 

  108. Berns K, Horlings HM, Hennessy BT, Madiredjo M, Hijmans EM, Beelen K et al (2007) A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 12(4):395–402

    Article  CAS  PubMed  Google Scholar 

  109. Nagata Y, Lan KH, Zhou X, Tan M, Esteva FJ, Sahin AA et al (2004) PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 6(2):117–127

    Article  CAS  PubMed  Google Scholar 

  110. Harris LN, You F, Schnitt SJ, Witkiewicz A, Lu X, Sgroi D et al (2007) Predictors of resistance to preoperative trastuzumab and vinorelbine for HER2-positive early breast cancer. Clin Cancer Res 13(4):1198–1207

    Article  CAS  PubMed  Google Scholar 

  111. Lu Y, Zi X, Zhao Y, Mascarenhas D, Pollak M (2001) Insulin-like growth factor-I receptor signaling and resistance to trastuzumab (Herceptin). J Natl Cancer Inst 93(24):1852–1857

    Article  CAS  PubMed  Google Scholar 

  112. Nahta R, Yuan LX, Zhang B, Kobayashi R, Esteva FJ (2005) Insulin-like growth factor-I receptor/human epidermal growth factor receptor 2 heterodimerization contributes to trastuzumab resistance of breast cancer cells. Cancer Res 65(23):11118–11128

    Article  CAS  PubMed  Google Scholar 

  113. Shattuck DL, Miller JK, Carraway KL 3rd, Sweeney C (2008) Met receptor contributes to trastuzumab resistance of Her2-overexpressing breast cancer cells. Cancer Res 68(5):1471–1477

    Article  CAS  PubMed  Google Scholar 

  114. Scaltriti M, Rojo F, Ocana A, Anido J, Guzman M, Cortes J et al (2007) Expression of p95HER2, a truncated form of the HER2 receptor, and response to anti-HER2 therapies in breast cancer. J Natl Cancer Inst 99(8):628–638

    Article  CAS  PubMed  Google Scholar 

  115. Garrett JT, Olivares MG, Rinehart C, Granja-Ingram ND, Sanchez V, Chakrabarty A et al (2011) Transcriptional and posttranslational up-regulation of HER3 (ErbB3) compensates for inhibition of the HER2 tyrosine kinase. Proc Natl Acad Sci U S A 108(12):5021–5026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Liu L, Greger J, Shi H, Liu Y, Greshock J, Annan R et al (2009) Novel mechanism of lapatinib resistance in HER2-positive breast tumor cells: activation of AXL. Cancer Res 69(17):6871–6878

    Article  CAS  PubMed  Google Scholar 

  117. Brady SW, Zhang J, Tsai MH, Yu D (2015) PI3K-independent mTOR activation promotes lapatinib resistance and IAP expression that can be effectively reversed by mTOR and Hsp90 inhibition. Cancer Biol Ther 16(3):402–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Stuhlmiller TJ, Miller SM, Zawistowski JS, Nakamura K, Beltran AS, Duncan JS et al (2015) Inhibition of Lapatinib-induced Kinome reprogramming in ERBB2-positive breast cancer by targeting BET family Bromodomains. Cell Rep 11(3):390–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Doebele RC, Pilling AB, Aisner DL, Kutateladze TG, Le AT, Weickhardt AJ et al (2012) Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer. Clin Cancer Res 18(5):1472–1482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Katayama R, Shaw AT, Khan TM, Mino-Kenudson M, Solomon BJ, Halmos B et al (2012) Mechanisms of acquired crizotinib resistance in ALK-rearranged lung Cancers. Sci Transl Med 4(120):120ra117

    Article  CAS  Google Scholar 

  121. Choi YL, Soda M, Yamashita Y, Ueno T, Takashima J, Nakajima T et al (2010) EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N Engl J Med 363(18):1734–1739

    Article  CAS  PubMed  Google Scholar 

  122. Sasaki T, Koivunen J, Ogino A, Yanagita M, Nikiforow S, Zheng W et al (2011) A novel ALK secondary mutation and EGFR signaling cause resistance to ALK kinase inhibitors. Cancer Res 71(18):6051–6060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Shaw AT, Kim DW, Mehra R, Tan DS, Felip E, Chow LQ et al (2014) Ceritinib in ALK-rearranged non-small-cell lung cancer. N Engl J Med 370(13):1189–1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Friboulet L, Li N, Katayama R, Lee CC, Gainor JF, Crystal AS et al (2014) The ALK inhibitor ceritinib overcomes crizotinib resistance in non-small cell lung cancer. Cancer Discov 4(6):662–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Franke NE, Niewerth D, Assaraf YG, van Meerloo J, Vojtekova K, van Zantwijk CH et al (2012) Impaired bortezomib binding to mutant beta5 subunit of the proteasome is the underlying basis for bortezomib resistance in leukemia cells. Leukemia 26(4):757–768

    Article  CAS  PubMed  Google Scholar 

  126. Shuqing L, Jianmin Y, Chongmei H, Hui C, Wang J (2011) Upregulated expression of the PSMB5 gene may contribute to drug resistance in patient with multiple myeloma when treated with bortezomib-based regimen. Exp Hematol 39(12):1117–1118

    Article  PubMed  CAS  Google Scholar 

  127. Nencioni A, Hua F, Dillon CP, Yokoo R, Scheiermann C, Cardone MH et al (2005) Evidence for a protective role of Mcl-1 in proteasome inhibitor-induced apoptosis. Blood 105(8):3255–3262

    Article  CAS  PubMed  Google Scholar 

  128. Cascone T, Herynk MH, Xu L, Du Z, Kadara H, Nilsson MB et al (2011) Upregulated stromal EGFR and vascular remodeling in mouse xenograft models of angiogenesis inhibitor-resistant human lung adenocarcinoma. J Clin Invest 121(4):1313–1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Crawford Y, Kasman I, Yu L, Zhong C, Wu X, Modrusan Z et al (2009) PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell 15(1):21–34

    Article  CAS  PubMed  Google Scholar 

  130. Casanovas O, Hicklin DJ, Bergers G, Hanahan D (2005) Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8(4):299–309

    Article  CAS  PubMed  Google Scholar 

  131. Hu YL, DeLay M, Jahangiri A, Molinaro AM, Rose SD, Carbonell WS et al (2012) Hypoxia-induced autophagy promotes tumor cell survival and adaptation to antiangiogenic treatment in glioblastoma. Cancer Res 72(7):1773–1783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Piao Y, Liang J, Holmes L, Zurita AJ, Henry V, Heymach JV et al (2012) Glioblastoma resistance to anti-VEGF therapy is associated with myeloid cell infiltration, stem cell accumulation, and a mesenchymal phenotype. Neuro-Oncology 14(11):1379–1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Woyach JA, Furman RR, Liu TM, Ozer HG, Zapatka M, Ruppert AS et al (2014) Resistance mechanisms for the Bruton’s tyrosine kinase inhibitor ibrutinib. N Engl J Med 370(24):2286–2294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Maddocks KJ, Ruppert AS, Lozanski G, Heerema NA, Zhao W, Abruzzo L et al (2015) Etiology of Ibrutinib therapy discontinuation and outcomes in patients with chronic lymphocytic leukemia. JAMA Oncol 1(1):80–87

    Article  PubMed  PubMed Central  Google Scholar 

  135. Albitar A, Ma W, De Dios I, Estrella J, Farooqui M, Wiestner A et al (2015) High sensitivity testing shows multiclonal mutations in patients with CLL treated with BTK inhibitor and lack of mutations in Ibrutinib-Naive patients. Blood 126:716

    Article  Google Scholar 

  136. Xu L, Tsakmaklis N, Yang G, Chen JG, Liu X, Demos M et al (2017) Acquired mutations associated with ibrutinib resistance in Waldenstrom macroglobulinemia. Blood 129(18):2519–2525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Cheng S, Guo A, Lu P, Ma J, Coleman M, Wang YL (2014) Functional characterization of BTK mutation that confers ibrutinib resistance: exploration of alternative kinase inhibitors. Leukemia 29:895–900

    Article  PubMed  CAS  Google Scholar 

  138. Zhou Q, Lee GS, Brady J, Datta S, Katan M, Sheikh A et al (2012) A hypermorphic missense mutation in PLCG2, encoding phospholipase Cgamma2, causes a dominantly inherited autoinflammatory disease with immunodeficiency. Am J Hum Genet 91(4):713–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Burger JA, Landau DA, Taylor-Weiner A, Bozic I, Zhang H, Sarosiek K et al (2016) Clonal evolution in patients with chronic lymphocytic leukaemia developing resistance to BTK inhibition. Nat Commun 7:11589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zhao X, Lwin T, Silva A, Shah B, Tao J, Fang B et al (2017) Unification of de novo and acquired ibrutinib resistance in mantle cell lymphoma. Nat Commun 8:14920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer A. Woyach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Woyach, J.A. (2019). Resistance to Anti-Cancer Therapeutics. In: Roychowdhury, S., Van Allen, E. (eds) Precision Cancer Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-23637-3_5

Download citation

Publish with us

Policies and ethics