Skip to main content

Advertisement

Log in

Specific kinesin expression profiles associated with taxane resistance in basal-like breast cancer

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Breast cancer is a genetically heterogenous disease with subtypes differing in prognosis and chemosensitivity. The basal-like breast cancer (BLBC) molecular subtype is associated with poorer outcomes, but is more responsive to taxane-based chemotherapy. Kinesins are intracellular transport proteins that interact with microtubules, which are also the mechanistic target for taxanes. We investigated the relationship between taxane resistance in BLBC and kinesins using both expression and functional studies. Kinesin (KIF) expression was evaluated in three settings in relation to taxane resistance: (i) the NCI-60 cancer cell lines, (ii) pre-treatment samples from four BLBC patient cohorts receiving neoadjuvant chemotherapy regimens with and without taxanes, and (iii) post-treatment samples from residual breast cancer following neoadjuvant taxane-containing chemotherapy. We used a novel functional approach to gene modification, validation-based insertional mutagenesis, to select kinesin-overexpressing clones of BLBC cells for evaluation of related mechanisms of taxane resistance. In the NCI-60 cell line dataset, overexpression of the kinesin KIFC3 is significantly correlated with resistance to both docetaxel (P < 0.001) and paclitaxel (P < 0.001), but not to platinum-based chemotherapy, including carboplatin (P = 0.49) and cisplatin (P = 0.10). Overexpression of KIFC3 and KIF5A in pre-chemotherapy samples similarly predicted resistance to paclitaxel in the MDACC cohorts (P = 0.01); no KIF predicted resistance to fluorouracil–epirubicin–cyclophosphamide or cisplatin in BLBC patient cohorts treated without taxanes. KIF12 is the most overexpressed KIF gene in post-chemotherapy taxane-resistant residual breast cancers (2.8-fold-change). Functional studies established that overexpression of KIFC3, KIF5A, and KIF12 were specific in mediating resistance to docetaxel and not vincristine or doxorubicin. Mutation of the ATP-binding domain of a kinesin abolished its ability to mediate docetaxel resistance. Overall, kinesin overexpression correlates with specific taxane resistance in BLBC cell lines and tissues. Our results suggest a novel approach for drug development to overcome taxane resistance in breast cancer through concurrent or sequential use of kinesin inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ATP:

Adenosine triphosphate

BLBC:

Basal-like breast cancer

CC:

Cleveland Clinic

DFCI:

Dana-Farber Cancer Institute

EORTC:

European Organization for Research and Treatment of Cancer

GI50:

Concentration required to reduce growth by 50%

KIF:

Kinesin superfamily

MDACC:

MD Anderson Cancer Center

pCR:

Pathological complete response

PLR:

Penalized Logistic Regression

RD:

Residual disease (invasive cancer)

RT-PCR:

Reverse transcriptase-polymerase chain reaction

TGI:

Concentration required for total growth inhibition

VBIM:

Validation-based insertional mutagenesis

References

  1. Shalli K, Brown I, Heys SD, Schofield AC (2005) Alterations of beta-tubulin isotypes in breast cancer cells resistant to docetaxel. FASEB J 19(10):1299–1301. doi:10.1096/fj.04-3178fje

    PubMed  CAS  Google Scholar 

  2. Dumontet C, Sikic BI (1999) Mechanisms of action of and resistance to antitubulin agents: microtubule dynamics, drug transport, and cell death. J Clin Oncol 17(3):1061–1070

    PubMed  CAS  Google Scholar 

  3. Kamath K, Wilson L, Cabral F, Jordan MA (2005) BetaIII-tubulin induces paclitaxel resistance in association with reduced effects on microtubule dynamic instability. J Biol Chem 280(13):12902–12907. doi:10.1074/jbc.M414477200

    Article  PubMed  CAS  Google Scholar 

  4. Bauer JA, Chakravarthy AB, Rosenbluth JM, Mi D, Seeley EH, De Matos Granja-Ingram N, Olivares MG, Kelley MC, Mayer IA, Meszoely IM, Means-Powell JA, Johnson KN, Tsai CJ, Ayers GD, Sanders ME, Schneider RJ, Formenti SC, Caprioli RM, Pietenpol JA (2010) Identification of markers of taxane sensitivity using proteomic and genomic analyses of breast tumors from patients receiving neoadjuvant paclitaxel and radiation. Clin Cancer Res 16(2):681–690. doi:10.1158/1078-0432.CCR-09-1091

    Article  PubMed  CAS  Google Scholar 

  5. Andre F, Hatzis C, Anderson K, Sotiriou C, Mazouni C, Mejia J, Wang B, Hortobagyi GN, Symmans WF, Pusztai L (2007) Microtubule-associated protein-tau is a bifunctional predictor of endocrine sensitivity and chemotherapy resistance in estrogen receptor-positive breast cancer. Clin Cancer Res 13(7):2061–2067. doi:10.1158/1078-0432.CCR-06-2078

    Article  PubMed  CAS  Google Scholar 

  6. McGrogan BT, Gilmartin B, Carney DN, McCann A (2008) Taxanes, microtubules and chemoresistant breast cancer. Biochim Biophys Acta 1785(2):96–132. doi:10.1016/j.bbcan.2007.10.004

    PubMed  CAS  Google Scholar 

  7. Chang JC, Wooten EC, Tsimelzon A, Hilsenbeck SG, Gutierrez MC, Elledge R, Mohsin S, Osborne CK, Chamness GC, Allred DC, O’Connell P (2003) Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer. Lancet 362(9381):362–369. doi:10.1016/S0140-6736(03)14023-8

    Article  PubMed  CAS  Google Scholar 

  8. Juul N, Szallasi Z, Eklund AC, Li Q, Burrell RA, Gerlinger M, Valero V, Andreopoulou E, Esteva FJ, Symmans WF, Desmedt C, Haibe-Kains B, Sotiriou C, Pusztai L, Swanton C (2010) Assessment of an RNA interference screen-derived mitotic and ceramide pathway metagene as a predictor of response to neoadjuvant paclitaxel for primary triple-negative breast cancer: a retrospective analysis of five clinical trials. Lancet Oncol 11(4):358–365. doi:10.1016/S1470-2045(10)70018-8

    Article  PubMed  CAS  Google Scholar 

  9. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752. doi:10.1038/35021093

    Article  PubMed  CAS  Google Scholar 

  10. Martin M, Mackey J, Vogel C (2007) Benefit from adjuvant taxanes and endocrine responsiveness in breast cancer. Breast 16 Suppl 2:S127–S131. doi:10.1016/j.breast.2007.09.001

    Article  PubMed  Google Scholar 

  11. Lu T, Jackson MW, Singhi AD, Kandel ES, Yang M, Zhang Y, Gudkov AV, Stark GR (2009) Validation-based insertional mutagenesis identifies lysine demethylase FBXL11 as a negative regulator of NFkappaB. Proc Natl Acad Sci USA 106(38):16339–16344. doi:10.1073/pnas.0908560106

    Article  PubMed  CAS  Google Scholar 

  12. De S, Cipriano R, Jackson MW, Stark GR (2009) Overexpression of kinesins mediates docetaxel resistance in breast cancer cells. Cancer Res 69(20):8035–8042. doi:10.1158/0008-5472.CAN-09-1224

    Article  PubMed  CAS  Google Scholar 

  13. Hirokawa N, Noda Y (2008) Intracellular transport and kinesin superfamily proteins, KIFs: structure, function, and dynamics. Physiol Rev 88(3):1089–1118. doi:10.1152/physrev.00023.2007

    Article  PubMed  CAS  Google Scholar 

  14. Lee JK, Coutant C, Kim YC, Qi Y, Theodorescu D, Symmans WF, Baggerly K, Rouzier R, Pusztai L (2010) Prospective comparison of clinical and genomic multivariate predictors of response to neoadjuvant chemotherapy in breast cancer. Clin Cancer Res 16(2):711–718. doi:10.1158/1078-0432.CCR-09-2247

    Article  PubMed  CAS  Google Scholar 

  15. Shoemaker RH (2006) The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer 6(10):813–823. doi:10.1038/nrc1951

    Article  PubMed  CAS  Google Scholar 

  16. Coombes KR, Wang J, Baggerly KA (2007) Microarrays: retracing steps. Nat Med 13(11):1276–1277; author reply 1277–1278. doi:10.1038/nm1107-1276b

    Google Scholar 

  17. Hu Z, Fan C, Oh DS, Marron JS, He X, Qaqish BF, Livasy C, Carey LA, Reynolds E, Dressler L, Nobel A, Parker J, Ewend MG, Sawyer LR, Wu J, Liu Y, Nanda R, Tretiakova M, Ruiz Orrico A, Dreher D, Palazzo JP, Perreard L, Nelson E, Mone M, Hansen H, Mullins M, Quackenbush JF, Ellis MJ, Olopade OI, Bernard PS, Perou CM (2006) The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics 7:96. doi:10.1186/1471-2164-7-96

    Article  PubMed  Google Scholar 

  18. Symmans WF, Peintinger F, Hatzis C, Rajan R, Kuerer H, Valero V, Assad L, Poniecka A, Hennessy B, Green M, Buzdar AU, Singletary SE, Hortobagyi GN, Pusztai L (2007) Measurement of residual breast cancer burden to predict survival after neoadjuvant chemotherapy. J Clin Oncol 25(28):4414–4422. doi:10.1200/JCO.2007.10.6823

    Article  PubMed  Google Scholar 

  19. Ogston KN, Miller ID, Payne S, Hutcheon AW, Sarkar TK, Smith I, Schofield A, Heys SD (2003) A new histological grading system to assess response of breast cancers to primary chemotherapy: prognostic significance and survival. Breast 12(5):320–327

    Article  PubMed  Google Scholar 

  20. Silver DP, Richardson AL, Eklund AC, Wang ZC, Szallasi Z, Li Q, Juul N, Leong CO, Calogrias D, Buraimoh A, Fatima A, Gelman RS, Ryan PD, Tung NM, De Nicolo A, Ganesan S, Miron A, Colin C, Sgroi DC, Ellisen LW, Winer EP, Garber JE (2010) Efficacy of neoadjuvant Cisplatin in triple-negative breast cancer. J Clin Oncol 28(7):1145–1153. doi:10.1200/JCO.2009.22.4725

    Article  PubMed  CAS  Google Scholar 

  21. Farmer P, Bonnefoi H, Anderle P, Cameron D, Wirapati P, Becette V, Andre S, Piccart M, Campone M, Brain E, Macgrogan G, Petit T, Jassem J, Bibeau F, Blot E, Bogaerts J, Aguet M, Bergh J, Iggo R, Delorenzi M (2009) A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nat Med 15(1):68–74. doi:10.1038/nm.1908

    Article  PubMed  CAS  Google Scholar 

  22. Tibshirani R, Hastie T, Narasimhan B, Chu G (2002) Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci USA 99(10):6567–6572

    Article  PubMed  CAS  Google Scholar 

  23. Katoh M (2005) Characterization of KIF12 gene in silico. Oncol Rep 13(2):367–370

    PubMed  CAS  Google Scholar 

  24. Nakata T, Hirokawa N (1995) Point mutation of adenosine triphosphate-binding motif generated rigor kinesin that selectively blocks anterograde lysosome membrane transport. J Cell Biol 131(4):1039–1053

    Article  PubMed  CAS  Google Scholar 

  25. Kan CE, Patton JT, Stark GR, Jackson MW (2007) p53-mediated growth suppression in response to Nutlin-3 in cyclin D1 transformed cells occurs independently of p21. Cancer Res 67(20):9862–9868. doi:10.1158/0008-5472.CAN-07-0259

    Article  PubMed  CAS  Google Scholar 

  26. Wordeman L, Wagenbach M, Maney T (1999) Mutations in the ATP-binding domain affect the subcellular distribution of mitotic centromere-associated kinesin (MCAK). Cell Biol Int 23(4):275–286. doi:10.1006/cbir.1999.0359

    Article  PubMed  CAS  Google Scholar 

  27. Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, Chen H, Omeroglu G, Meterissian S, Omeroglu A, Hallett M, Park M (2008) Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 14(5):518–527. doi:10.1038/nm1764

    Article  PubMed  CAS  Google Scholar 

  28. Wennmalm K, Ostman A, Bergh J (2009) Stromal signature identifies basal breast cancers. Nat Med 15(3):237–238; author reply 238. doi:10.1038/nm0309-237

    Google Scholar 

  29. Smorenburg CH, Sparreboom A, Bontenbal M, Verweij J (2001) Combination chemotherapy of the taxanes and antimetabolites: its use and limitations. Eur J Cancer 37(18):2310–2323

    Article  PubMed  CAS  Google Scholar 

  30. Purcell JW, Davis J, Reddy M, Martin S, Samayoa K, Vo H, Thomsen K, Bean P, Kuo WL, Ziyad S, Billig J, Feiler HS, Gray JW, Wood KW, Cases S (2010) Activity of the kinesin spindle protein inhibitor ispinesib (SB-715992) in models of breast cancer. Clin Cancer Res 16(2):566–576. doi:10.1158/1078-0432.CCR-09-1498

    Article  PubMed  CAS  Google Scholar 

  31. Woessner R, Tunquist B, Lemieux C, Chlipala E, Jackinsky S, Dewolf W Jr, Voegtli W, Cox A, Rana S, Lee P, Walker D (2009) ARRY-520, a novel KSP inhibitor with potent activity in hematological and taxane-resistant tumor models. Anticancer Res 29(11):4373–4380

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the participating patients for their contributions. We also thank Charissa Peterson for her able technical assistance. The National Institutes of Health and the William Randolph Hearst Foundations funded this study. MHT is a Lee Foundation (Singapore) Fellow and the Ambrose Monell Foundation Cancer Genomic Medicine Clinical Fellow, and GB is an NCI R25T Fellow. GTS is the co-holder of the Zapis Chair of Breast Cancer Research; GRS is the Distinguished Scientist of the Cleveland Clinic; and CE is the holder of the Sondra J. and Stephen R. Hardis Chair of Cancer Genomic Medicine at the Cleveland Clinic and is an American Cancer Society Clinical Research Professor. No funding organization was involved in the design, conduct, analysis, writing or submission of this manuscript.

Competing interests

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charis Eng.

Additional information

Min Han Tan and Sarmishtha De contributed equally and should be considered joint first authors.

G. Thomas Budd, George R. Stark and Charis Eng are joint senior authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, M.H., De, S., Bebek, G. et al. Specific kinesin expression profiles associated with taxane resistance in basal-like breast cancer. Breast Cancer Res Treat 131, 849–858 (2012). https://doi.org/10.1007/s10549-011-1500-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-011-1500-8

Keywords

Navigation