Skip to main content

Positioning of the Centrosome and Golgi Complex

  • Chapter
  • First Online:
The Golgi Apparatus and Centriole

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 67))

Abstract

For over a century, the centrosome has been an organelle more easily tracked than understood, and the study of its peregrinations within the cell remains a chief underpinning of its functional investigation. Increasing attention and new approaches have been brought to bear on mechanisms that control centrosome localization in the context of cleavage plane determination, ciliogenesis, directional migration, and immunological synapse formation, among other cellular and developmental processes. The Golgi complex, often linked with the centrosome, presents a contrasting case of a pleiomorphic organelle for which functional studies advanced somewhat more rapidly than positional tracking. However, Golgi orientation and distribution has emerged as an area of considerable interest with respect to polarized cellular function. This chapter will review our current understanding of the mechanism and significance of the positioning of these organelles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADAP:

Adhesion- and degranulation-promoting adapter protein

Akt:

v-akt murine thymoma viral oncogene homolog 1

Arf1:

ADP-ribosylation factor 1

Arp2/3:

Actin-related protein 2/3

APC:

Antigen-presenting cell

BARS:

BFA-dependent ADP-ribosylation substrate

BICD2:

Bicaudal D2

CD3:

Cluster of differentiation 3

Cdc42:

Cell division control protein 42 homolog

Cdk1:

Cyclin-dependent kinase 1

CENPF:

Centromere protein F

CEP:

Centrosomal protein

CLIP-170:

Cytoplasmic linker protein 170 alpha-2

C-Nap1:

Centrosomal Nek2-associated protein 1

DAG:

Diacylglycerol

Dlg1:

Discs large-1

DOCK:

Dedicator of cytokinesis

EGF:

Epidermal growth factor

ELMO:

Engulfment and cell motility

EMS:

Endomesodermal

ERM:

Ezrin-radixin-moesin

Gαi:

G protein alpha i

GAS2L1:

Growth arrest specific 2-like 1

GEF:

Guanine nucleotide exchange factor

GKAP:

Guanylate kinase-associated protein

GM130:

Golgi membrane protein 130 kD

GMAP:

Golgi microtubule-associated protein

GOLPH3:

Golgi phosphoprotein 3

GRASP55:

Golgi reassembly-stacking protein of 55 kDa

GRASP65:

Golgi reassembly-stacking protein of 65 kDa

HS1:

Hematopoietic lineage cell-specific protein 1

IQGAP:

IQ motif-containing GTPase activating protein

IS:

Immunological synapse

KASH:

Klarsicht, ANC-1, Syne homology

KIF25:

kinesin family member 25

LIMK:

LIM domain kinase

LIS1:

Lissencephaly-1

Mst2:

Mammalian Ste20-like 2

MYO18A:

Myosin XVIIIA

Ncd:

Nonclaret disjunctional

Nde1:

Nuclear distribution E homolog 1

NE:

Nuclear envelope

Nek2A:

NIMA-related kinase 2A

NNE:

Notochord/neural/endoderm

Num1:

Nuclear migration protein 1

NuMA:

Nuclear mitotic apparatus

PAR:

Partitioning defective

PCP:

Planar cell polarity

PI3 kinase:

Phosphatidylinositol-3 kinase

PITPNA:

Phosphatidylinositol transfer protein alpha

PITPNB:

Phosphatidylinositol transfer protein beta

PKC:

Protein kinase C

PKD:

Protein kinase D

Plk1:

Polo-like kinase 1

PP1:

Protein phosphatase 1

PPP2CA:

Protein phosphatase 2A, catalytic subunit alpha

Rac:

Ras-related C3 botulinum toxin substrate

RanGTP:

GTP-bound form of ras-related nuclear protein

Rap1:

Ras-associated protein 1

Rho:

Ras homologous

ROCK:

Rho-associated protein kinase

RPE1:

Retinal pigmented epithelium-1

Slk:

Ste20-like kinase

STK25:

Serine/threonine protein kinase 25

STRAD:

STE20-related kinase adapter protein

SUN:

Sad1 and UNC-84

TBCCD1:

Tubulin binding cofactor C domain-containing protein

Wnt:

Wingless/integrated

Zyg-12:

Zygote defective-12

References

  • Adams M, Simms RJ, Abdelhamed Z, Dawe HR, Szymanska K, Logan CV, Wheway G, Pitt E, Gull K, Knowles MA, Blair E, Cross SH, Sayer JA, Johnson CA (2012) A meckelin-filamin A interaction mediates ciliogenesis. Hum Mol Genet 21:1272–1286

    Article  CAS  PubMed  Google Scholar 

  • Al Jord A, Lemaitre AI, Delgehyr N, Faucourt M, Spassky N, Meunier A (2014) Centriole amplification by mother and daughter centrioles differs in multiciliated cells. Nature 516:104–107

    Article  PubMed  CAS  Google Scholar 

  • Albrecht-Buehler G, Bushnell A (1979) The orientation of centrioles in migrating 3T3 cells. Exp Cell Res 120:111–118

    Article  CAS  PubMed  Google Scholar 

  • Alieva IB, Vorobjev IA (2004) Vertebrate primary cilia: a sensory part of centrosomal complex in tissue cells, but a “sleeping beauty” in cultured cells? Cell Biol Int 28:139–150

    Article  PubMed  Google Scholar 

  • Allena GM, Leeb KC, Barnharta EL, Tsuchidaa MA, Wilson CA, Gutierrez E, Groisman A, Mogilnerd A, Theriot JA (2018) Cell mechanics at the rear act to steer the direction of cell migration. BioRxiv. https://doi.org/10.1101/443408

  • Andersen EF, Halloran MC (2012) Centrosome movements in vivo correlate with specific neurite formation downstream of LIM homeodomain transcription factor activity. Development 139:3590–3599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson CT, Stearns T (2009) Centriole age underlies asynchronous primary cilium growth in mammalian cells. Curr Biol 19:1498–1502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andre J, Harrison S, Towers K, Qi X, Vaughan S, McKean PG, Ginger ML (2013) The tubulin cofactor C family member TBCCD1 orchestrates cytoskeletal filament formation. J Cell Sci 126:5350–5356

    Article  CAS  PubMed  Google Scholar 

  • Antic D, Stubbs JL, Suyama K, Kintner C, Scott MP, Axelrod JD (2010) Planar cell polarity enables posterior localization of nodal cilia and left-right axis determination during mouse and Xenopus embryogenesis. PLoS One 5:e8999

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Au FK, Jia Y, Jiang K, Grigoriev I, Hau BK, Shen Y, Du S, Akhmanova A, Qi RZ (2017) GAS2L1 is a centriole-associated protein required for centrosome dynamics and disjunction. Dev Cell 40:81–94

    Article  CAS  PubMed  Google Scholar 

  • Battle C, Ott CM, Burnette DT, Lippincott-Schwartz J, Schmidt CF (2015) Intracellular and extracellular forces drive primary cilia movement. Proc Natl Acad Sci USA 112:1410–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellaiche Y, Gho M, Kaltschmidt JA, Brand AH, Schweisguth F (2001) Frizzled regulates localization of cell-fate determinants and mitotic spindle rotation during asymmetric cell division. Nat Cell Biol 3:50–57

    Article  CAS  PubMed  Google Scholar 

  • Bertrand F, Esquerre M, Petit AE, Rodrigues M, Duchez S, Delon J, Valitutti S (2010) Activation of the ancestral polarity regulator protein kinase C zeta at the immunological synapse drives polarization of Th cell secretory machinery toward APCs. J Immunol 185:2887–2894

    Article  CAS  PubMed  Google Scholar 

  • Besson C, Bernard F, Corson F, Rouault H, Reynaud E, Keder A, Mazouni K, Schweisguth F (2015) Planar cell polarity breaks the symmetry of PAR protein distribution prior to mitosis in Drosophila sensory organ precursor cells. Curr Biol 25:1104–1110

    Article  CAS  PubMed  Google Scholar 

  • Bisgrove SR, Kropf DL (1998) Alignment of centrosomal and growth axes is a late event during polarization of Pelvetia compressa zygotes. Dev Biol 194:246–256

    Article  CAS  PubMed  Google Scholar 

  • Boehlke C, Janusch H, Hamann C, Powelske C, Mergen M, Herbst H, Kotsis F, Nitschke R, Kuehn EW (2015) A cilia independent role of Ift88/Polaris during cell migration. PLoS One 10:e0140378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bolhy S, Bouhlel I, Dultz E, Nayak T, Zuccolo M, Gatti X, Vallee R, Ellenberg J, Doye V (2011) A Nup133-dependent NPC-anchored network tethers centrosomes to the nuclear envelope in prophase. J Cell Biol 192:855–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bornens M (1977) Is the centriole bound to the nuclear membrane? Nature 270:80–82

    Article  CAS  PubMed  Google Scholar 

  • Bornens M (2012) The centrosome in cells and organisms. Science 335:422–426

    Article  CAS  PubMed  Google Scholar 

  • Borovina A, Superina S, Voskas D, Ciruna B (2010) Vangl2 directs the posterior tilting and asymmetric localization of motile primary cilia. Nat Cell Biol 12:407–412

    Article  CAS  PubMed  Google Scholar 

  • Bosveld F, Markova O, Guirao B, Martin C, Wang Z, Pierre A, Balakireva M, Gaugue I, Ainslie A, Christophorou N, Lubensky DK, Minc N, Bellaiche Y (2016) Epithelial tricellular junctions act as interphase cell shape sensors to orient mitosis. Nature 530:495–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bosveld F, Wang Z, Bellaiche Y (2018) Tricellular junctions: a hot corner of epithelial biology. Curr Opin Cell Biol 54:80–88

    Article  CAS  PubMed  Google Scholar 

  • Boutin C, Labedan P, Dimidschstein J, Richard F, Cremer H, Andre P, Yang Y, Montcouquiol M, Goffinet AM, Tissir F (2014) A dual role for planar cell polarity genes in ciliated cells. Proc Natl Acad Sci USA 111:E3129–E3138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brito DA, Strauss J, Magidson V, Tikhonenko I, Khodjakov A, Koonce MP (2005) Pushing forces drive the comet-like motility of microtubule arrays in Dictyostelium. Mol Biol Cell 16:3334–3340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brun-Usan M, Marin-Riera M, Grande C, Truchado-Garcia M, Salazar-Ciudad I (2017) A set of simple cell processes is sufficient to model spiral cleavage. Development 144:54–62

    Article  CAS  PubMed  Google Scholar 

  • Brust-Mascher I, Civelekoglu-Scholey G, Scholey JM (2015) Mechanism for anaphase B: evaluation of “slide-and-cluster” versus “slide-and-flux-or-elongate” models. Biophys J 108:2007–2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bryant DM, Datta A, Rodriguez-Fraticelli AE, Peranen J, Martin-Belmonte F, Mostov KE (2010) A molecular network for de novo generation of the apical surface and lumen. Nat Cell Biol 12:1035–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buendia B, Bre MH, Griffiths G, Karsenti E (1990) Cytoskeletal control of centrioles movement during the establishment of polarity in Madin-Darby canine kidney cells. J Cell Biol 110:1123–1135

    Article  CAS  PubMed  Google Scholar 

  • Burakov AV, Nadezhdina ES (2013) Association of nucleus and centrosome: magnet or velcro? Cell Biol Int 37:95–104

    Article  CAS  PubMed  Google Scholar 

  • Burakov A, Nadezhdina E, Slepchenko B, Rodionov V (2003) Centrosome positioning in interphase cells. J Cell Biol 162:963–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burute M, Prioux M, Blin G, Truchet S, Letort G, Tseng Q, Bessy T, Lowell S, Young J, Filhol O, Thery M (2017) Polarity reversal by centrosome repositioning primes cell scattering during epithelial-to-mesenchymal transition. Dev Cell 40:168–184

    Article  CAS  PubMed  Google Scholar 

  • Bustos-Moran E, Blas-Rus N, Martin-Cofreces NB, Sanchez-Madrid F (2016) Orchestrating lymphocyte polarity in cognate immune cell-cell interactions. Int Rev Cell Mol Biol 327:195–261

    Article  PubMed  PubMed Central  Google Scholar 

  • Buttrick GJ, Beaumont LM, Leitch J, Yau C, Hughes JR, Wakefield JG (2008) Akt regulates centrosome migration and spindle orientation in the early Drosophila melanogaster embryo. J Cell Biol 180:537–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao J, Crest J, Fasulo B, Sullivan W (2010) Cortical actin dynamics facilitate early-stage centrosome separation. Curr Biol 20:770–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlin LM, Evans R, Milewicz H, Fernandes L, Matthews DR, Perani M, Levitt J, Keppler MD, Monypenny J, Coolen T, Barber PR, Vojnovic B, Suhling K, Fraternali F, Ameer-Beg S, Parker PJ, Thomas NS, Ng T (2011) A targeted siRNA screen identifies regulators of Cdc42 activity at the natural killer cell immunological synapse. Sci Signal 4:ra81

    Article  PubMed  CAS  Google Scholar 

  • Carvajal-Gonzalez JM, Mulero-Navarro S, Mlodzik M (2016a) Centriole positioning in epithelial cells and its intimate relationship with planar cell polarity. Bioessays 38:1234–1245

    Article  PubMed  PubMed Central  Google Scholar 

  • Carvajal-Gonzalez JM, Roman AC, Mlodzik M (2016b) Positioning of centrioles is a conserved readout of Frizzled planar cell polarity signalling. Nat Commun 7:11135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chanet S, Sharan R, Khan Z, Martin AC (2017) Myosin 2-induced mitotic rounding enables columnar epithelial cells to interpret cortical spindle positioning cues. Curr Biol 27:3350–3358

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee A, Chinnappa K, Ramanan N, Mani S (2018) Centrosome inheritance does not regulate cell fate in granule neuron progenitors of the developing cerebellum. Cerebellum 17:685–691

    Article  CAS  PubMed  Google Scholar 

  • Chemin K, Bohineust A, Dogniaux S, Tourret M, Guegan S, Miro F, Hivroz C (2012) Cytokine secretion by CD4+ T cells at the immunological synapse requires Cdc42-dependent local actin remodeling but not microtubule organizing center polarity. J Immunol 189:2159–2168

    Article  CAS  PubMed  Google Scholar 

  • Chen TH, Hsu JJ, Zhao X, Guo C, Wong MN, Huang Y, Li Z, Garfinkel A, Ho CM, Tintut Y, Demer LL (2012) Left-right symmetry breaking in tissue morphogenesis via cytoskeletal mechanics. Circ Res 110:551–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chien YH, Srinivasan S, Keller R, Kintner C (2018) Mechanical strain determines cilia length, motility, and planar position in the left-right organizer. Dev Cell 45:316–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chin AS, Worley KE, Ray P, Kaur G, Fan J, Wan LQ (2018) Epithelial cell chirality revealed by three-dimensional spontaneous rotation. Proc Natl Acad Sci USA 115:12188–12193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen ST, Pedersen SF, Satir P, Veland IR, Schneider L (2008) The primary cilium coordinates signaling pathways in cell cycle control and migration during development and tissue repair. Curr Top Dev Biol 85:261–301

    Article  CAS  PubMed  Google Scholar 

  • Clare DK, Magescas J, Piolot T, Dumoux M, Vesque C, Pichard E, Dang T, Duvauchelle B, Poirier F, Delacour D (2014) Basal foot MTOC organizes pillar MTs required for coordination of beating cilia. Nat Commun 5:4888

    Article  CAS  PubMed  Google Scholar 

  • Colanzi A, Hidalgo Carcedo C, Persico A, Cericola C, Turacchio G, Bonazzi M, Luini A, Corda D (2007) The Golgi mitotic checkpoint is controlled by BARS-dependent fission of the Golgi ribbon into separate stacks in G2. EMBO J 26:2465–2476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Combs J, Kim SJ, Tan S, Ligon LA, Holzbaur EL, Kuhn J, Poenie M (2006) Recruitment of dynein to the Jurkat immunological synapse. Proc Natl Acad Sci USA 103:14883–14888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Courtois A, Schuh M, Ellenberg J, Hiiragi T (2012) The transition from meiotic to mitotic spindle assembly is gradual during early mammalian development. J Cell Biol 198:357–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cowan CR, Hyman AA (2004) Centrosomes direct cell polarity independently of microtubule assembly in C. elegans embryos. Nature 431:92–96

    Article  CAS  PubMed  Google Scholar 

  • Crespo CL, Vernieri C, Keller PJ, Garre M, Bender JR, Wittbrodt J, Pardi R (2014) The PAR complex controls the spatiotemporal dynamics of F-actin and the MTOC in directionally migrating leukocytes. J Cell Sci 127:4381–4395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cytrynbaum EN, Sommi P, Brust-Mascher I, Scholey JM, Mogilner A (2005) Early spindle assembly in Drosophila embryos: role of a force balance involving cytoskeletal dynamics and nuclear mechanics. Mol Biol Cell 16:4967–4981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Angelo A, Franco B (2011) The primary cilium in different tissues-lessons from patients and animal models. Pediatr Nephrol 26:655–662

    Article  PubMed  Google Scholar 

  • Dantas TJ, Carabalona A, Hu DJ, Vallee RB (2016) Emerging roles for motor proteins in progenitor cell behavior and neuronal migration during brain development. Cytoskeleton (Hoboken) 73:566–576

    Article  CAS  Google Scholar 

  • Das RM, Storey KG (2014) Apical abscission alters cell polarity and dismantles the primary cilium during neurogenesis. Science 343:200–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davenport AJ, Cross RS, Watson KA, Liao Y, Shi W, Prince HM, Beavis PA, Trapani JA, Kershaw MH, Ritchie DS, Darcy PK, Neeson PJ, Jenkins MR (2018) Chimeric antigen receptor T cells form nonclassical and potent immune synapses driving rapid cytotoxicity. Proc Natl Acad Sci USA 115:E2068–E2076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dawe HR, Farr H, Gull K (2007a) Centriole/basal body morphogenesis and migration during ciliogenesis in animal cells. J Cell Sci 120:7–15

    Article  CAS  PubMed  Google Scholar 

  • Dawe HR, Smith UM, Cullinane AR, Gerrelli D, Cox P, Badano JL, Blair-Reid S, Sriram N, Katsanis N, Attie-Bitach T, Afford SC, Copp AJ, Kelly DA, Gull K, Johnson CA (2007b) The Meckel-Gruber Syndrome proteins MKS1 and meckelin interact and are required for primary cilium formation. Hum Mol Genet 16:173–186

    Article  CAS  PubMed  Google Scholar 

  • Dawe HR, Adams M, Wheway G, Szymanska K, Logan CV, Noegel AA, Gull K, Johnson CA (2009) Nesprin-2 interacts with meckelin and mediates ciliogenesis via remodelling of the actin cytoskeleton. J Cell Sci 122:2716–2726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Anda FC, Pollarolo G, Da Silva JS, Camoletto PG, Feiguin F, Dotti CG (2005) Centrosome localization determines neuronal polarity. Nature 436:704–708

    Article  CAS  PubMed  Google Scholar 

  • de Anda FC, Meletis K, Ge X, Rei D, Tsai LH (2010) Centrosome motility is essential for initial axon formation in the neocortex. J Neurosci 30:10391–10406

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de la Roche M, Ritter AT, Angus KL, Dinsmore C, Earnshaw CH, Reiter JF, Griffiths GM (2013) Hedgehog signaling controls T cell killing at the immunological synapse. Science 342:1247–1250

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de la Roche M, Asano Y, Griffiths GM (2016) Origins of the cytolytic synapse. Nat Rev Immunol 16:421–432

    Article  PubMed  CAS  Google Scholar 

  • De Simone A, Nedelec F, Gonczy P (2016) Dynein transmits polarized actomyosin cortical flows to promote centrosome separation. Cell Rep 14:2250–2262

    Article  PubMed  CAS  Google Scholar 

  • Decarreau J, Wagenbach M, Lynch E, Halpern AR, Vaughan JC, Kollman J, Wordeman L (2017) The tetrameric kinesin Kif25 suppresses pre-mitotic centrosome separation to establish proper spindle orientation. Nat Cell Biol 19:384–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desai RA, Gao L, Raghavan S, Liu WF, Chen CS (2009) Cell polarity triggered by cell-cell adhesion via E-cadherin. J Cell Sci 122:905–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devenport D (2016) Tissue morphodynamics: translating planar polarity cues into polarized cell behaviors. Semin Cell Dev Biol 55:99–110

    Article  PubMed  PubMed Central  Google Scholar 

  • Diao A, Rahman D, Pappin DJ, Lucocq J, Lowe M (2003) The coiled-coil membrane protein golgin-84 is a novel rab effector required for Golgi ribbon formation. J Cell Biol 160:201–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doyle AD, Wang FW, Matsumoto K, Yamada KM (2009) One-dimensional topography underlies three-dimensional fibrillar cell migration. J Cell Biol 184:481–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drechsler H, McAinsh AD (2016) Kinesin-12 motors cooperate to suppress microtubule catastrophes and drive the formation of parallel microtubule bundles. Proc Natl Acad Sci USA 113:E1635–E1644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dujardin DL, Barnhart LE, Stehman SA, Gomes ER, Gundersen GG, Vallee RB (2003) A role for cytoplasmic dynein and LIS1 in directed cell movement. J Cell Biol 163:1205–1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dupin I, Camand E, Etienne-Manneville S (2009) Classical cadherins control nucleus and centrosome position and cell polarity. J Cell Biol 185:779–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dustin ML, Choudhuri K (2016) Signaling and polarized communication across the T cell immunological synapse. Annu Rev Cell Dev Biol 32:303–325

    Article  CAS  PubMed  Google Scholar 

  • Efimov A, Kharitonov A, Efimova N, Loncarek J, Miller PM, Andreyeva N, Gleeson P, Galjart N, Maia AR, McLeod IX, Yates JR 3rd, Maiato H, Khodjakov A, Akhmanova A, Kaverina I (2007) Asymmetric CLASP-dependent nucleation of noncentrosomal microtubules at the trans-Golgi network. Dev Cell 12:917–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eilers U, Klumperman J, Hauri HP (1989) Nocodazole, a microtubule-active drug, interferes with apical protein delivery in cultured intestinal epithelial cells (Caco-2). J Cell Biol 108:13–22

    Article  CAS  PubMed  Google Scholar 

  • Epting D, Slanchev K, Boehlke C, Hoff S, Loges NT, Yasunaga T, Indorf L, Nestel S, Lienkamp SS, Omran H, Kuehn EW, Ronneberger O, Walz G, Kramer-Zucker A (2015) The Rac1 regulator ELMO controls basal body migration and docking in multiciliated cells through interaction with Ezrin. Development 142:174–184

    Article  CAS  PubMed  Google Scholar 

  • Etienne-Manneville S, Hall A (2001) Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCzeta. Cell 106:489–498

    Article  CAS  PubMed  Google Scholar 

  • Etienne-Manneville S, Manneville JB, Nicholls S, Ferenczi MA, Hall A (2005) Cdc42 and Par6-PKCzeta regulate the spatially localized association of Dlg1 and APC to control cell polarization. J Cell Biol 170:895–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Euteneuer U, Schliwa M (1984) Persistent, directional motility of cells and cytoplasmic fragments in the absence of microtubules. Nature 310:58–61

    Article  CAS  PubMed  Google Scholar 

  • Euteneuer U, Schliwa M (1986) The function of microtubules in directional cell movement. Ann N Y Acad Sci 466:867–886

    Article  CAS  PubMed  Google Scholar 

  • Euteneuer U, Schliwa M (1992) Mechanism of centrosome positioning during the wound response in BSC-1 cells. J Cell Biol 116:1157–1166

    Article  CAS  PubMed  Google Scholar 

  • Fan J, Ray P, Lu Y, Kaur G, Schwarz JJ, Wan LQ (2018) Cell chirality regulates intercellular junctions and endothelial permeability. Sci Adv 4:eaat2111

    Article  PubMed  PubMed Central  Google Scholar 

  • Farina F, Gaillard J, Guerin C, Coute Y, Sillibourne J, Blanchoin L, Thery M (2016) The centrosome is an actin-organizing centre. Nat Cell Biol 18:65–75

    Article  CAS  PubMed  Google Scholar 

  • Feinstein TN, Linstedt AD (2008) GRASP55 regulates Golgi ribbon formation. Mol Biol Cell 19:2696–2707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feldman JL, Marshall WF (2009) ASQ2 encodes a TBCC-like protein required for mother-daughter centriole linkage and mitotic spindle orientation. Curr Biol 19:1238–1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feldman JL, Priess JR (2012) A role for the centrosome and PAR-3 in the hand-off of MTOC function during epithelial polarization. Curr Biol 22:575–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feldman JL, Geimer S, Marshall WF (2007) The mother centriole plays an instructive role in defining cell geometry. PLoS Biol 5:e149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ferenz NP, Gable A, Wadsworth P (2010) Mitotic functions of kinesin-5. Semin Cell Dev Biol 21:255–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fielmich LE, Schmidt R, Dickinson DJ, Goldstein B, Akhmanova A, van den Heuvel S (2018) Optogenetic dissection of mitotic spindle positioning in vivo. elife 7:e38198

    Article  PubMed  PubMed Central  Google Scholar 

  • Finetti F, Paccani SR, Riparbelli MG, Giacomello E, Perinetti G, Pazour GJ, Rosenbaum JL, Baldari CT (2009) Intraflagellar transport is required for polarized recycling of the TCR/CD3 complex to the immune synapse. Nat Cell Biol 11:1332–1339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finetti F, Patrussi L, Masi G, Onnis A, Galgano D, Lucherini OM, Pazour GJ, Baldari CT (2014) Specific recycling receptors are targeted to the immune synapse by the intraflagellar transport system. J Cell Sci 127:1924–1937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fink G, Schuchardt I, Colombelli J, Stelzer E, Steinberg G (2006) Dynein-mediated pulling forces drive rapid mitotic spindle elongation in Ustilago maydis. EMBO J 25:4897–4908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fink J, Carpi N, Betz T, Betard A, Chebah M, Azioune A, Bornens M, Sykes C, Fetler L, Cuvelier D, Piel M (2011) External forces control mitotic spindle positioning. Nat Cell Biol 13:771–778

    Article  CAS  PubMed  Google Scholar 

  • Fuentealba LC, Eivers E, Geissert D, Taelman V, De Robertis EM (2008) Asymmetric mitosis: unequal segregation of proteins destined for degradation. Proc Natl Acad Sci USA 105:7732–7737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galli M, van den Heuvel S (2008) Determination of the cleavage plane in early C. elegans embryos. Annu Rev Genet 42:389–411

    Article  CAS  PubMed  Google Scholar 

  • Gallini S, Carminati M, De Mattia F, Pirovano L, Martini E, Oldani A, Asteriti IA, Guarguaglini G, Mapelli M (2016) NuMA phosphorylation by Aurora-A orchestrates spindle orientation. Curr Biol 26:458–469

    Article  CAS  PubMed  Google Scholar 

  • Gambarotto D, Zwettler FU, Le Guennec M, Schmidt-Cernohorska M, Fortun D, Borgers S, Heine J, Schloetel JG, Reuss M, Unser M, Boyden ES, Sauer M, Hamel V, Guichard P (2019) Imaging cellular ultrastructures using expansion microscopy (U-ExM). Nat Methods 16:71–74

    Article  CAS  PubMed  Google Scholar 

  • Garzon-Coral C, Fantana HA, Howard J (2016) A force-generating machinery maintains the spindle at the cell center during mitosis. Science 352:1124–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gogendeau D, Basto R (2010) Centrioles in flies: the exception to the rule? Semin Cell Dev Biol 21:163–173

    Article  PubMed  Google Scholar 

  • Gomes ER, Jani S, Gundersen GG (2005) Nuclear movement regulated by Cdc42, MRCK, myosin, and actin flow establishes MTOC polarization in migrating cells. Cell 121:451–463

    Article  CAS  PubMed  Google Scholar 

  • Gomez TS, Kumar K, Medeiros RB, Shimizu Y, Leibson PJ, Billadeau DD (2007) Formins regulate the actin-related protein 2/3 complex-independent polarization of the centrosome to the immunological synapse. Immunity 26:177–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goncalves J, Nolasco S, Nascimento R, Lopez Fanarraga M, Zabala JC, Soares H (2010) TBCCD1, a new centrosomal protein, is required for centrosome and Golgi apparatus positioning. EMBO Rep 11:194–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonczy P, Pichler S, Kirkham M, Hyman AA (1999) Cytoplasmic dynein is required for distinct aspects of MTOC positioning, including centrosome separation, in the one cell stage Caenorhabditis elegans embryo. J Cell Biol 147:135–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gotlieb AI, May LM, Subrahmanyan L, Kalnins VI (1981) Distribution of microtubule organizing centers in migrating sheets of endothelial cells. J Cell Biol 91:589–594

    Article  CAS  PubMed  Google Scholar 

  • Gotlieb AI, Subrahmanyan L, Kalnins VI (1983) Microtubule-organizing centers and cell migration: effect of inhibition of migration and microtubule disruption in endothelial cells. J Cell Biol 96:1266–1272

    Article  CAS  PubMed  Google Scholar 

  • Gotta M, Dong Y, Peterson YK, Lanier SM, Ahringer J (2003) Asymmetrically distributed C. elegans homologs of AGS3/PINS control spindle position in the early embryo. Curr Biol 13:1029–1037

    Article  CAS  PubMed  Google Scholar 

  • Goulding MB, Canman JC, Senning EN, Marcus AH, Bowerman B (2007) Control of nuclear centration in the C. elegans zygote by receptor-independent Galpha signaling and myosin II. J Cell Biol 178:1177–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenberg SR, Tan W, Lee WL (2018) Num1 versus NuMA: insights from two functionally homologous proteins. Biophys Rev 10:1631–1636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grill SW, Hyman AA (2005) Spindle positioning by cortical pulling forces. Dev Cell 8:461–465

    Article  CAS  PubMed  Google Scholar 

  • Grishchuk EL, Molodtsov MI, Ataullakhanov FI, McIntosh JR (2005) Force production by disassembling microtubules. Nature 438:384–388

    Article  CAS  PubMed  Google Scholar 

  • Gruber T, Fresser F, Jenny M, Uberall F, Leitges M, Baier G (2008) PKCtheta cooperates with atypical PKCzeta and PKCiota in NF-kappaB transactivation of T lymphocytes. Mol Immunol 45:117–126

    Article  CAS  PubMed  Google Scholar 

  • Guild J, Ginzberg MB, Hueschen CL, Mitchison TJ, Dumont S (2017) Increased lateral microtubule contact at the cell cortex is sufficient to drive mammalian spindle elongation. Mol Biol Cell 28:1975–1983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guirao B, Meunier A, Mortaud S, Aguilar A, Corsi JM, Strehl L, Hirota Y, Desoeuvre A, Boutin C, Han YG, Mirzadeh Z, Cremer H, Montcouquiol M, Sawamoto K, Spassky N (2010) Coupling between hydrodynamic forces and planar cell polarity orients mammalian motile cilia. Nat Cell Biol 12:341–350

    Article  CAS  PubMed  Google Scholar 

  • Gundersen GG, Bulinski JC (1988) Selective stabilization of microtubules oriented toward the direction of cell migration. Proc Natl Acad Sci USA 85:5946–5950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunn PA, Gliddon BL, Londrigan SL, Lew AM, van Driel IR, Gleeson PA (2011) The Golgi apparatus in the endomembrane-rich gastric parietal cells exist as functional stable mini-stacks dispersed throughout the cytoplasm. Biol Cell 103:559–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habib SJ, Chen BC, Tsai FC, Anastassiadis K, Meyer T, Betzig E, Nusse R (2013) A localized Wnt signal orients asymmetric stem cell division in vitro. Science 339:1445–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hale CM, Chen WC, Khatau SB, Daniels BR, Lee JS, Wirtz D (2011) SMRT analysis of MTOC and nuclear positioning reveals the role of EB1 and LIC1 in single-cell polarization. J Cell Sci 124:4267–4285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamaguchi M, Hiramoto Y (1986) Analysis of the role of astral rays in pronuclear migration in sand dollar eggs by the colcemid-UV method. Dev Growth Differ 28:143–156

    Article  Google Scholar 

  • Hammer JA, Wang J, Saeed M, Pedrosa A (2018) Origin, organization, dynamics, and function of actin and actomyosin networks at the T cell immunological synapse. Annu Rev Immunol 37:201–224. https://doi.org/10.1146/annurev-immunol-042718-041341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto M, Shinohara K, Wang J, Ikeuchi S, Yoshiba S, Meno C, Nonaka S, Takada S, Hatta K, Wynshaw-Boris A, Hamada H (2010) Planar polarization of node cells determines the rotational axis of node cilia. Nat Cell Biol 12:170–176

    Article  CAS  PubMed  Google Scholar 

  • Hatori R, Ando T, Sasamura T, Nakazawa N, Nakamura M, Taniguchi K, Hozumi S, Kikuta J, Ishii M, Matsuno K (2014) Left-right asymmetry is formed in individual cells by intrinsic cell chirality. Mech Dev 133:146–162

    Article  CAS  PubMed  Google Scholar 

  • Heppert JK, Pani AM, Roberts AM, Dickinson DJ, Goldstein B (2018) A CRISPR tagging-based screen reveals localized players in Wnt-directed asymmetric cell division. Genetics 208:1147–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hertwig O (1884) Das problem der befruchtung und der isotropie des eies. eine theorie der vererbung. Jena Z Med Naturwiss 18:276–318

    Google Scholar 

  • Hird SN, White JG (1993) Cortical and cytoplasmic flow polarity in early embryonic cells of Caenorhabditis elegans. J Cell Biol 121:1343–1355

    Article  CAS  PubMed  Google Scholar 

  • Ho WC, Allan VJ, van Meer G, Berger EG, Kreis TE (1989) Reclustering of scattered Golgi elements occurs along microtubules. Eur J Cell Biol 48:250–263

    CAS  PubMed  Google Scholar 

  • Holmes JA, Dutcher SK (1989) Cellular asymmetry in Chlamydomonas reinhardtii. J Cell Sci 94:273–285

    PubMed  Google Scholar 

  • Holy TE, Dogterom M, Yurke B, Leibler S (1997) Assembly and positioning of microtubule asters in microfabricated chambers. Proc Natl Acad Sci USA 94:6228–6231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horton AC, Ehlers MD (2003) Dual modes of endoplasmic reticulum-to-Golgi transport in dendrites revealed by live-cell imaging. J Neurosci 23:6188–6199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horton AC, Racz B, Monson EE, Lin AL, Weinberg RJ, Ehlers MD (2005) Polarized secretory trafficking directs cargo for asymmetric dendrite growth and morphogenesis. Neuron 48:757–771

    Article  CAS  PubMed  Google Scholar 

  • Howard J, Garzon-Coral C (2017) Physical limits on the precision of mitotic spindle positioning by microtubule pushing forces: mechanics of mitotic spindle positioning. Bioessays. https://doi.org/10.1002/bies.201700122

    Article  Google Scholar 

  • Hurtado L, Caballero C, Gavilan MP, Cardenas J, Bornens M, Rios RM (2011) Disconnecting the Golgi ribbon from the centrosome prevents directional cell migration and ciliogenesis. J Cell Biol 193:917–933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huse M (2017) Mechanical forces in the immune system. Nat Rev Immunol 17:679–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyman AA, White JG (1987) Determination of cell division axes in the early embryogenesis of Caenorhabditis elegans. J Cell Biol 105:2123–2135

    Article  CAS  PubMed  Google Scholar 

  • Iden S, Collard JG (2008) Crosstalk between small GTPases and polarity proteins in cell polarization. Nat Rev Mol Cell Biol 9:846–859

    Article  CAS  PubMed  Google Scholar 

  • Ioannou A, Santama N, Skourides PA (2013) Xenopus laevis nucleotide binding protein 1 (xNubp1) is important for convergent extension movements and controls ciliogenesis via regulation of the actin cytoskeleton. Dev Biol 380:243–258

    Article  CAS  PubMed  Google Scholar 

  • Ishihara K, Nguyen PA, Wuhr M, Groen AC, Field CM, Mitchison TJ (2014) Organization of early frog embryos by chemical waves emanating from centrosomes. Philos Trans R Soc Lond Ser B Biol Sci 369(1650):20130454. https://doi.org/10.1098/rstb.2013.0454

    Article  Google Scholar 

  • Jackson CL (2018) Activators and effectors of the small G protein Arf1 in regulation of Golgi dynamics during the cell division cycle. Front Cell Dev Biol 6:29

    Article  PubMed  PubMed Central  Google Scholar 

  • Januschke J, Llamazares S, Reina J, Gonzalez C (2011) Drosophila neuroblasts retain the daughter centrosome. Nat Commun 2:243

    Article  PubMed  CAS  Google Scholar 

  • Januschke J, Reina J, Llamazares S, Bertran T, Rossi F, Roig J, Gonzalez C (2013) Centrobin controls mother-daughter centriole asymmetry in Drosophila neuroblasts. Nat Cell Biol 15:241–248

    Article  CAS  PubMed  Google Scholar 

  • Jeyifous O, Waites CL, Specht CG, Fujisawa S, Schubert M, Lin EI, Marshall J, Aoki C, de Silva T, Montgomery JM, Garner CC, Green WN (2009) SAP97 and CASK mediate sorting of NMDA receptors through a previously unknown secretory pathway. Nat Neurosci 12:1011–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang T, McKinley RF, McGill MA, Angers S, Harris TJ (2015) A Par-1-Par-3-centrosome cell polarity pathway and its tuning for isotropic cell adhesion. Curr Biol 25:2701–2708

    Article  CAS  PubMed  Google Scholar 

  • Jones C, Chen P (2008) Primary cilia in planar cell polarity regulation of the inner ear. Curr Top Dev Biol 85:197–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones C, Roper VC, Foucher I, Qian D, Banizs B, Petit C, Yoder BK, Chen P (2008) Ciliary proteins link basal body polarization to planar cell polarity regulation. Nat Genet 40:69–77

    Article  CAS  PubMed  Google Scholar 

  • Kaltschmidt JA, Davidson CM, Brown NH, Brand AH (2000) Rotation and asymmetry of the mitotic spindle direct asymmetric cell division in the developing central nervous system. Nat Cell Biol 2:7–12

    Article  CAS  PubMed  Google Scholar 

  • Kapitein LC, Peterman EJ, Kwok BH, Kim JH, Kapoor TM, Schmidt CF (2005) The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks. Nature 435:114–118

    Article  CAS  PubMed  Google Scholar 

  • Kasioulis I, Das RM, Storey KG (2017) Inter-dependent apical microtubule and actin dynamics orchestrate centrosome retention and neuronal delamination. eLife 6(6):e26215. https://doi.org/10.7554/eLife.26215

    Article  PubMed  PubMed Central  Google Scholar 

  • Kelliher MT, Yue Y, Ng A, Kamiyama D, Huang B, Verhey KJ, Wildonger J (2018) Autoinhibition of kinesin-1 is essential to the dendrite-specific localization of Golgi outposts. J Cell Biol 217:2531–2547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khodjakov A, Cole RW, Oakley BR, Rieder CL (2000) Centrosome-independent mitotic spindle formation in vertebrates. Curr Biol 10:59–67

    Article  CAS  PubMed  Google Scholar 

  • Kimura K, Kimura A (2011) Intracellular organelles mediate cytoplasmic pulling force for centrosome centration in the Caenorhabditis elegans early embryo. Proc Natl Acad Sci USA 108:137–142

    Article  CAS  PubMed  Google Scholar 

  • Kimura A, Onami S (2005) Computer simulations and image processing reveal length-dependent pulling force as the primary mechanism for C. elegans male pronuclear migration. Dev Cell 8:765–775

    Article  CAS  PubMed  Google Scholar 

  • Kiyomitsu T, Cheeseman IM (2012) Chromosome- and spindle-pole-derived signals generate an intrinsic code for spindle position and orientation. Nat Cell Biol 14:311–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiyomitsu T, Cheeseman IM (2013) Cortical dynein and asymmetric membrane elongation coordinately position the spindle in anaphase. Cell 154:391–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klos Dehring DA, Vladar EK, Werner ME, Mitchell JW, Hwang P, Mitchell BJ (2013) Deuterosome-mediated centriole biogenesis. Dev Cell 27:103–112

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Murayama T (2009) Cell cycle-dependent microtubule-based dynamic transport of cytoplasmic dynein in mammalian cells. PLoS One 4:e7827

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kobayashi T, Kim S, Lin YC, Inoue T, Dynlacht BD (2014) The CP110-interacting proteins Talpid3 and Cep290 play overlapping and distinct roles in cilia assembly. J Cell Biol 204:215–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koonce MP, Cloney RA, Berns MW (1984) Laser irradiation of centrosomes in newt eosinophils: evidence of centriole role in motility. J Cell Biol 98:1999–2010

    Article  CAS  PubMed  Google Scholar 

  • Koonce MP, Kohler J, Neujahr R, Schwartz JM, Tikhonenko I, Gerisch G (1999) Dynein motor regulation stabilizes interphase microtubule arrays and determines centrosome position. EMBO J 18:6786–6792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotak S, Gonczy P (2013) Mechanisms of spindle positioning: cortical force generators in the limelight. Curr Opin Cell Biol 25:741–748

    Article  CAS  PubMed  Google Scholar 

  • Kotak S, Gonczy P (2014) NuMA phosphorylation dictates dynein-dependent spindle positioning. Cell Cycle 13:177–178

    Article  CAS  PubMed  Google Scholar 

  • Kotak S, Busso C, Gonczy P (2012) Cortical dynein is critical for proper spindle positioning in human cells. J Cell Biol 199:97–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotak S, Busso C, Gonczy P (2013) NuMA phosphorylation by CDK1 couples mitotic progression with cortical dynein function. EMBO J 32:2517–2529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kreft ME, Di Giandomenico D, Beznoussenko GV, Resnik N, Mironov AA, Jezernik K (2010) Golgi apparatus fragmentation as a mechanism responsible for uniform delivery of uroplakins to the apical plasma membrane of uroepithelial cells. Biol Cell 102:593–607

    Article  CAS  PubMed  Google Scholar 

  • Kuhn JR, Poenie M (2002) Dynamic polarization of the microtubule cytoskeleton during CTL-mediated killing. Immunity 16:111–121

    Article  CAS  PubMed  Google Scholar 

  • Kuhne MR, Lin J, Yablonski D, Mollenauer MN, Ehrlich LI, Huppa J, Davis MM, Weiss A (2003) Linker for activation of T cells, zeta-associated protein-70, and Src homology 2 domain-containing leukocyte protein-76 are required for TCR-induced microtubule-organizing center polarization. J Immunol 171:860–866

    Article  CAS  PubMed  Google Scholar 

  • Kupfer A, Louvard D, Singer SJ (1982) Polarization of the Golgi apparatus and the microtubule-organizing center in cultured fibroblasts at the edge of an experimental wound. Proc Natl Acad Sci USA 79:2603–2607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laan L, Pavin N, Husson J, Romet-Lemonne G, van Duijn M, Lopez MP, Vale RD, Julicher F, Reck-Peterson SL, Dogterom M (2012) Cortical dynein controls microtubule dynamics to generate pulling forces that position microtubule asters. Cell 148:502–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambert JD, Nagy LM (2002) Asymmetric inheritance of centrosomally localized mRNAs during embryonic cleavages. Nature 420:682–686

    Article  CAS  PubMed  Google Scholar 

  • Lang E, Polec A, Lang A, Valk M, Blicher P, Rowe AD, Tonseth KA, Jackson CJ, Utheim TP, Janssen LMC, Eriksson J, Boe SO (2018) Coordinated collective migration and asymmetric cell division in confluent human keratinocytes without wounding. Nat Commun 9:3665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Larson ME, Bement WM (2017) Automated mitotic spindle tracking suggests a link between spindle dynamics, spindle orientation, and anaphase onset in epithelial cells. Mol Biol Cell 28:746–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lengefeld J, Barral Y (2018) Asymmetric segregation of aged spindle pole bodies during cell division: mechanisms and relevance beyond budding yeast. Bioessays 40:e1800038

    Article  PubMed  Google Scholar 

  • Lepelletier L, de Monvel JB, Buisson J, Desdouets C, Petit C (2013) Auditory hair cell centrioles undergo confined Brownian motion throughout the developmental migration of the kinocilium. Biophys J 105:48–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li D, Wang YL (2018) Coordination of cell migration mediated by site-dependent cell-cell contact. Proc Natl Acad Sci USA 115:10678–10683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Norrelykke SF, Cox EC (2008) Persistent cell motion in the absence of external signals: a search strategy for eukaryotic cells. PLoS One 3:e2093

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li W, Yi P, Zhu Z, Zhang X, Ou G (2017) Centriole translocation and degeneration during ciliogenesis in Caenorhabditis elegans neurons. EMBO J 36:2553–2566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao G, Nagasaki T, Gundersen GG (1995) Low concentrations of nocodazole interfere with fibroblast locomotion without significantly affecting microtubule level: implications for the role of dynamic microtubules in cell locomotion. J Cell Sci 108:3473–3483

    CAS  PubMed  Google Scholar 

  • Lim WM, Ito Y, Sakata-Sogawa K, Tokunaga M (2018) CLIP-170 is essential for MTOC repositioning during T cell activation by regulating dynein localisation on the cell surface. Sci Rep 8:17447

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin J, Hou KK, Piwnica-Worms H, Shaw AS (2009) The polarity protein Par1b/EMK/MARK2 regulates T cell receptor-induced microtubule-organizing center polarization. J Immunol 183:1215–1221

    Article  CAS  PubMed  Google Scholar 

  • Lin CH, Li H, Lee YN, Cheng YJ, Wu RM, Chien CT (2015) Lrrk regulates the dynamic profile of dendritic Golgi outposts through the golgin Lava lamp. J Cell Biol 210:471–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liro MJ, Rose LS (2016) Mitotic spindle positioning in the ems cell of Caenorhabditis elegans requires LET-99 and LIN-5/NuMA. Genetics 204:1177–1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Kapoor TM, Chen JK, Huse M (2013) Diacylglycerol promotes centrosome polarization in T cells via reciprocal localization of dynein and myosin II. Proc Natl Acad Sci USA 110:11976–11981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Welf ES, Haugh JM (2015) Linking morphodynamics and directional persistence of T lymphocyte migration. J R Soc Interface 12(106):20141412. https://doi.org/10.1098/rsif.2014.1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lobikin M, Wang G, Xu J, Hsieh YW, Chuang CF, Lemire JM, Levin M (2012) Early, nonciliary role for microtubule proteins in left-right patterning is conserved across kingdoms. Proc Natl Acad Sci USA 109:12586–12591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu MS, Johnston CA (2013) Molecular pathways regulating mitotic spindle orientation in animal cells. Development 140:1843–1856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Q, Insinna C, Ott C, Stauffer J, Pintado PA, Rahajeng J, Baxa U, Walia V, Cuenca A, Hwang YS, Daar IO, Lopes S, Lippincott-Schwartz J, Jackson PK, Caplan S, Westlake CJ (2015) Early steps in primary cilium assembly require EHD1/EHD3-dependent ciliary vesicle formation. Nat Cell Biol 17:228–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luxton GW, Gundersen GG (2011) Orientation and function of the nuclear-centrosomal axis during cell migration. Curr Opin Cell Biol 23:579–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machicoane M, de Frutos CA, Fink J, Rocancourt M, Lombardi Y, Garel S, Piel M, Echard A (2014) SLK-dependent activation of ERMs controls LGN-NuMA localization and spindle orientation. J Cell Biol 205:791–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makrogianneli K, Carlin LM, Keppler MD, Matthews DR, Ofo E, Coolen A, Ameer-Beg SM, Barber PR, Vojnovic B, Ng T (2009) Integrating receptor signal inputs that influence small Rho GTPase activation dynamics at the immunological synapse. Mol Cell Biol 29:2997–3006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malech HL, Root RK, Gallin JI (1977) Structural analysis of human neutrophil migration. Centriole, microtubule, and microfilament orientation and function during chemotaxis. J Cell Biol 75:666–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malinova TS, Huveneers S (2018) Sensing of cytoskeletal forces by asymmetric adherens junctions. Trends Cell Biol 28:328–341

    Article  CAS  PubMed  Google Scholar 

  • Malone CJ, Misner L, Le Bot N, Tsai MC, Campbell JM, Ahringer J, White JG (2003) The C. elegans hook protein, ZYG-12, mediates the essential attachment between the centrosome and nucleus. Cell 115:825–836

    Article  CAS  PubMed  Google Scholar 

  • Manneville JB, Jehanno M, Etienne-Manneville S (2010) Dlg1 binds GKAP to control dynein association with microtubules, centrosome positioning, and cell polarity. J Cell Biol 191:585–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mapelli M, Gonzalez C (2012) On the inscrutable role of Inscuteable: structural basis and functional implications for the competitive binding of NuMA and Inscuteable to LGN. Open Biol 2:120102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mardin BR, Lange C, Baxter JE, Hardy T, Scholz SR, Fry AM, Schiebel E (2010) Components of the Hippo pathway cooperate with Nek2 kinase to regulate centrosome disjunction. Nat Cell Biol 12:1166–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mardin BR, Agircan FG, Lange C, Schiebel E (2011) Plk1 controls the Nek2A-PP1gamma antagonism in centrosome disjunction. Curr Biol 21:1145–1151

    Article  CAS  PubMed  Google Scholar 

  • Mardin BR, Isokane M, Cosenza MR, Kramer A, Ellenberg J, Fry AM, Schiebel E (2013) EGF-induced centrosome separation promotes mitotic progression and cell survival. Dev Cell 25:229–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall WF (2012) Centriole asymmetry determines algal cell geometry. Curr Opin Plant Biol 15:632–637

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin-Cofreces NB, Sanchez-Madrid F (2018) Sailing to and docking at the immune synapse: role of tubulin dynamics and molecular motors. Front Immunol 9:1174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martin-Cofreces NB, Robles-Valero J, Cabrero JR, Mittelbrunn M, Gordon-Alonso M, Sung CH, Alarcon B, Vazquez J, Sanchez-Madrid F (2008) MTOC translocation modulates IS formation and controls sustained T cell signaling. J Cell Biol 182:951–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayor R, Etienne-Manneville S (2016) The front and rear of collective cell migration. Nat Rev Mol Cell Biol 17:97–109

    Article  CAS  PubMed  Google Scholar 

  • Mazo G, Soplop N, Wang WJ, Uryu K, Tsou MF (2016) Spatial control of primary ciliogenesis by subdistal appendages alters sensation-associated properties of cilia. Dev Cell 39:424–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCaffrey LM, Macara IG (2012) Signaling pathways in cell polarity. Cold Spring Harb Perspect Biol 4:a009654

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meads T, Schroer TA (1995) Polarity and nucleation of microtubules in polarized epithelial cells. Cell Motil Cytoskeleton 32:273–288

    Article  CAS  PubMed  Google Scholar 

  • Meng W, Mushika Y, Ichii T, Takeichi M (2008) Anchorage of microtubule minus ends to adherens junctions regulates epithelial cell-cell contacts. Cell 135:948–959

    Article  CAS  PubMed  Google Scholar 

  • Mikhaylova M, Bera S, Kobler O, Frischknecht R, Kreutz MR (2016) A dendritic Golgi satellite between ERGIC and retromer. Cell Rep 14:189–199

    Article  CAS  PubMed  Google Scholar 

  • Miller PM, Folkmann AW, Maia AR, Efimova N, Efimov A, Kaverina I (2009) Golgi-derived CLASP-dependent microtubules control Golgi organization and polarized trafficking in motile cells. Nat Cell Biol 11:1069–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minc N, Burgess D, Chang F (2011) Influence of cell geometry on division-plane positioning. Cell 144:414–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minegishi K, Hashimoto M, Ajima R, Takaoka K, Shinohara K, Ikawa Y, Nishimura H, McMahon AP, Willert K, Okada Y, Sasaki H, Shi D, Fujimori T, Ohtsuka T, Igarashi Y, Yamaguchi TP, Shimono A, Shiratori H, Hamada H (2017) A Wnt5 activity asymmetry and intercellular signaling via PCP proteins polarize node cells for left-right symmetry breaking. Dev Cell 40:439–452 e434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirvis M, Stearns T, James Nelson W (2018) Cilium structure, assembly, and disassembly regulated by the cytoskeleton. Biochem J 475:2329–2353

    Article  CAS  PubMed  Google Scholar 

  • Mirzadeh Z, Han YG, Soriano-Navarro M, Garcia-Verdugo JM, Alvarez-Buylla A (2010) Cilia organize ependymal planar polarity. J Neurosci 30:2600–2610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell B, Jacobs R, Li J, Chien S, Kintner C (2007) A positive feedback mechanism governs the polarity and motion of motile cilia. Nature 447:97–101

    Article  CAS  PubMed  Google Scholar 

  • Mitchison T, Wuhr M, Nguyen P, Ishihara K, Groen A, Field CM (2012) Growth, interaction, and positioning of microtubule asters in extremely large vertebrate embryo cells. Cytoskeleton 69:738–750

    Article  CAS  PubMed  Google Scholar 

  • Nadezhdina ES, Fais D, Chentsov YS (1979) On the association of centrioles with the interphase nucleus. Eur J Cell Biol 19:109–115

    CAS  PubMed  Google Scholar 

  • Nath S, Christian L, Tan SY, Ki S, Ehrlich LI, Poenie M (2016) Dynein separately partners with NDE1 and dynactin to orchestrate T cell focused secretion. J Immunol 197:2090–2101

    Article  CAS  PubMed  Google Scholar 

  • Natividad RJ, Lalli ML, Muthuswamy SK, Asthagiri AR (2018) Golgi stabilization, not its front-rear bias, is associated with EMT-enhanced fibrillar migration. Biophys J 115:2067–2077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negishi T, Nishida H (2017) Asymmetric and unequal cell divisions in ascidian embryos. Results Probl Cell Differ 61:261–284

    Article  CAS  PubMed  Google Scholar 

  • Negishi T, Yasuo H (2015) Distinct modes of mitotic spindle orientation align cells in the dorsal midline of ascidian embryos. Dev Biol 408:66–78

    Article  CAS  PubMed  Google Scholar 

  • Nielsen BS, Malinda RR, Schmid FM, Pedersen SF, Christensen ST, Pedersen LB (2015) PDGFRbeta and oncogenic mutant PDGFRalpha D842V promote disassembly of primary cilia through a PLCgamma- and AURKA-dependent mechanism. J Cell Sci 128:3543–3549

    Article  CAS  PubMed  Google Scholar 

  • Nonaka S, Yoshiba S, Watanabe D, Ikeuchi S, Goto T, Marshall WF, Hamada H (2005) De novo formation of left-right asymmetry by posterior tilt of nodal cilia. PLoS Biol 3:e268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Neill PR, Castillo-Badillo JA, Meshik X, Kalyanaraman V, Melgarejo K, Gautam N (2018) Membrane flow drives an adhesion-independent amoeboid cell migration mode. Dev Cell 46:9–22 e24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Obino D, Farina F, Malbec O, Saez PJ, Maurin M, Gaillard J, Dingli F, Loew D, Gautreau A, Yuseff MI, Blanchoin L, Thery M, Lennon-Dumenil AM (2016) Actin nucleation at the centrosome controls lymphocyte polarity. Nat Commun 7:10969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohata S, Alvarez-Buylla A (2016) Planar organization of multiciliated ependymal (E1) cells in the brain ventricular epithelium. Trends Neurosci 39:543–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohata S, Herranz-Perez V, Nakatani J, Boletta A, Garcia-Verdugo JM, Alvarez-Buylla A (2015) Mechanosensory genes Pkd1 and Pkd2 contribute to the planar polarization of brain ventricular epithelium. J Neurosci 35:11153–11168

    Article  CAS  PubMed  Google Scholar 

  • Okada Y, Takeda S, Tanaka Y, Belmonte JI, Hirokawa N (2005) Mechanism of nodal flow: a conserved symmetry breaking event in left-right axis determination. Cell 121:633–644

    Article  CAS  PubMed  Google Scholar 

  • Okumura M, Natsume T, Kanemaki MT, Kiyomitsu T (2018) Dynein-Dynactin-NuMA clusters generate cortical spindle-pulling forces as a multi-arm ensemble. eLife 7:e36559

    Article  PubMed  PubMed Central  Google Scholar 

  • Omer S, Greenberg SR, Lee WL (2018) Cortical dynein pulling mechanism is regulated by differentially targeted attachment molecule Num1. eLife 7:e36745

    Article  PubMed  PubMed Central  Google Scholar 

  • Omura F, Fukui Y (1985) Dictyostelium MTOC: structure and linkage to the nucleus. Protoplasma 127:212–221

    Article  Google Scholar 

  • Ori-McKenney KM, Jan LY, Jan YN (2012) Golgi outposts shape dendrite morphology by functioning as sites of acentrosomal microtubule nucleation in neurons. Neuron 76:921–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palazzo AF, Joseph HL, Chen YJ, Dujardin DL, Alberts AS, Pfister KK, Vallee RB, Gundersen GG (2001) Cdc42, dynein, and dynactin regulate MTOC reorientation independent of Rho-regulated microtubule stabilization. Curr Biol 11:1536–1541

    Article  CAS  PubMed  Google Scholar 

  • Pan J, You Y, Huang T, Brody SL (2007) RhoA-mediated apical actin enrichment is required for ciliogenesis and promoted by Foxj1. J Cell Sci 120:1868–1876

    Article  CAS  PubMed  Google Scholar 

  • Paridaen JT, Wilsch-Brauninger M, Huttner WB (2013) Asymmetric inheritance of centrosome-associated primary cilium membrane directs ciliogenesis after cell division. Cell 155:333–344

    Article  CAS  PubMed  Google Scholar 

  • Park DH, Rose LS (2008) Dynamic localization of LIN-5 and GPR-1/2 to cortical force generation domains during spindle positioning. Dev Biol 315:42–54

    Article  CAS  PubMed  Google Scholar 

  • Park TJ, Mitchell BJ, Abitua PB, Kintner C, Wallingford JB (2008) Dishevelled controls apical docking and planar polarization of basal bodies in ciliated epithelial cells. Nat Genet 40:871–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pecreaux J, Redemann S, Alayan Z, Mercat B, Pastezeur S, Garzon-Coral C, Hyman AA, Howard J (2016) The mitotic spindle in the one-cell C. elegans embryo is positioned with high precision and stability. Biophys J 111:1773–1784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peyre E, Jaouen F, Saadaoui M, Haren L, Merdes A, Durbec P, Morin X (2011) A lateral belt of cortical LGN and NuMA guides mitotic spindle movements and planar division in neuroepithelial cells. J Cell Biol 193:141–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piel M, Meyer P, Khodjakov A, Rieder CL, Bornens M (2000) The respective contributions of the mother and daughter centrioles to centrosome activity and behavior in vertebrate cells. J Cell Biol 149:317–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pitaval A, Senger F, Letort G, Gidrol X, Guyon L, Sillibourne J, Thery M (2017) Microtubule stabilization drives 3D centrosome migration to initiate primary ciliogenesis. J Cell Biol 216:3713–3728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plotnikova OV, Pugacheva EN, Golemis EA (2009) Primary cilia and the cell cycle. Methods Cell Biol 94:137–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poulson ND, Lechler T (2010) Robust control of mitotic spindle orientation in the developing epidermis. J Cell Biol 191:915–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pouthas F, Girard P, Lecaudey V, Ly TB, Gilmour D, Boulin C, Pepperkok R, Reynaud EG (2008) In migrating cells, the Golgi complex and the position of the centrosome depend on geometrical constraints of the substratum. J Cell Sci 121:2406–2414

    Article  CAS  PubMed  Google Scholar 

  • Puthenveedu MA, Bachert C, Puri S, Lanni F, Linstedt AD (2006) GM130 and GRASP65-dependent lateral cisternal fusion allows uniform Golgi-enzyme distribution. Nat Cell Biol 8:238–248

    Article  CAS  PubMed  Google Scholar 

  • Quann EJ, Merino E, Furuta T, Huse M (2009) Localized diacylglycerol drives the polarization of the microtubule-organizing center in T cells. Nat Immunol 10:627–635

    Article  CAS  PubMed  Google Scholar 

  • Quann EJ, Liu X, Altan-Bonnet G, Huse M (2011) A cascade of protein kinase C isozymes promotes cytoskeletal polarization in T cells. Nat Immunol 12:647–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quassollo G, Wojnacki J, Salas DA, Gastaldi L, Marzolo MP, Conde C, Bisbal M, Couve A, Caceres A (2015) A RhoA signaling pathway regulates dendritic Golgi outpost formation. Curr Biol 25:971–982

    Article  CAS  PubMed  Google Scholar 

  • Raaijmakers JA, van Heesbeen RG, Meaders JL, Geers EF, Fernandez-Garcia B, Medema RH, Tanenbaum ME (2012) Nuclear envelope-associated dynein drives prophase centrosome separation and enables Eg5-independent bipolar spindle formation. EMBO J 31:4179–4190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raff JW, Glover DM (1989) Centrosomes, and not nuclei, initiate pole cell formation in Drosophila embryos. Cell 57:611–619

    Article  CAS  PubMed  Google Scholar 

  • Rao S, Kirschen GW, Szczurkowska J, Di Antonio A, Wang J, Ge S, Shelly M (2018) Repositioning of somatic Golgi apparatus is essential for the dendritic establishment of adult-born hippocampal neurons. J Neurosci 38:631–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rattner JB, Berns MW (1976) Centriole behavior in early mitosis of rat kangaroo cells (PTK2). Chromosoma 54:387–395

    Article  CAS  PubMed  Google Scholar 

  • Rebollo E, Sampaio P, Januschke J, Llamazares S, Varmark H, Gonzalez C (2007) Functionally unequal centrosomes drive spindle orientation in asymmetrically dividing Drosophila neural stem cells. Dev Cell 12:467–474

    Article  CAS  PubMed  Google Scholar 

  • Rebollo E, Roldan M, Gonzalez C (2009) Spindle alignment is achieved without rotation after the first cell cycle in Drosophila embryonic neuroblasts. Development 136:3393–3397

    Article  CAS  PubMed  Google Scholar 

  • Reffay M, Petitjean L, Coscoy S, Grasland-Mongrain E, Amblard F, Buguin A, Silberzan P (2011) Orientation and polarity in collectively migrating cell structures: statics and dynamics. Biophys J 100:2566–2575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Regolini MF (2013) Centrosome: is it a geometric, noise resistant, 3D interface that translates morphogenetic signals into precise locations in the cell? Ital J Anat Embryol 118:19–66

    PubMed  Google Scholar 

  • Reilein A, Nelson WJ (2005) APC is a component of an organizing template for cortical microtubule networks. Nat Cell Biol 7:463–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinsch S, Karsenti E (1994) Orientation of spindle axis and distribution of plasma membrane proteins during cell division in polarized MDCKII cells. J Cell Biol 126:1509–1526

    Article  CAS  PubMed  Google Scholar 

  • Reversat A, Yuseff MI, Lankar D, Malbec O, Obino D, Maurin M, Penmatcha NV, Amoroso A, Sengmanivong L, Gundersen GG, Mellman I, Darchen F, Desnos C, Pierobon P, Lennon-Dumenil AM (2015) Polarity protein Par3 controls B-cell receptor dynamics and antigen extraction at the immune synapse. Mol Biol Cell 26:1273–1285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rindler MJ, Ivanov IE, Sabatini DD (1987) Microtubule-acting drugs lead to the nonpolarized delivery of the influenza hemagglutinin to the cell surface of polarized Madin-Darby canine kidney cells. J Cell Biol 104:231–241

    Article  CAS  PubMed  Google Scholar 

  • Rios RM, Sanchis A, Tassin AM, Fedriani C, Bornens M (2004) GMAP-210 recruits gamma-tubulin complexes to cis-Golgi membranes and is required for Golgi ribbon formation. Cell 118:323–335

    Article  CAS  PubMed  Google Scholar 

  • Ritter AT, Asano Y, Stinchcombe JC, Dieckmann NM, Chen BC, Gawden-Bone C, van Engelenburg S, Legant W, Gao L, Davidson MW, Betzig E, Lippincott-Schwartz J, Griffiths GM (2015) Actin depletion initiates events leading to granule secretion at the immunological synapse. Immunity 42:864–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson JT, Wojcik EJ, Sanders MA, McGrail M, Hays TS (1999) Cytoplasmic dynein is required for the nuclear attachment and migration of centrosomes during mitosis in Drosophila. J Cell Biol 146:597–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Boulan E, Macara IG (2014) Organization and execution of the epithelial polarity programme. Nat Rev Mol Cell Biol 15:225–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Fraticelli AE, Auzan M, Alonso MA, Bornens M, Martin-Belmonte F (2012) Cell confinement controls centrosome positioning and lumen initiation during epithelial morphogenesis. J Cell Biol 198:1011–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogalski AA, Bergmann JE, Singer SJ (1984) Effect of microtubule assembly status on the intracellular processing and surface expression of an integral protein of the plasma membrane. J Cell Biol 99:1101–1109

    Article  CAS  PubMed  Google Scholar 

  • Rosenblatt J, Cramer LP, Baum B, McGee KM (2004) Myosin II-dependent cortical movement is required for centrosome separation and positioning during mitotic spindle assembly. Cell 117:361–372

    Article  CAS  PubMed  Google Scholar 

  • Ross L, Normark BB (2015) Evolutionary problems in centrosome and centriole biology. J Evol Biol 28:995–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roszko I, Afonso C, Henrique D, Mathis L (2006) Key role played by RhoA in the balance between planar and apico-basal cell divisions in the chick neuroepithelium. Dev Biol 298:212–224

    Article  CAS  PubMed  Google Scholar 

  • Roux KJ, Crisp ML, Liu Q, Kim D, Kozlov S, Stewart CL, Burke B (2009) Nesprin 4 is an outer nuclear membrane protein that can induce kinesin-mediated cell polarization. Proc Natl Acad Sci USA 106:2194–2199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakakibara A, Sato T, Ando R, Noguchi N, Masaoka M, Miyata T (2014) Dynamics of centrosome translocation and microtubule organization in neocortical neurons during distinct modes of polarization. Cereb Cortex 24:1301–1310

    Article  PubMed  Google Scholar 

  • Salle J, Xie J, Ershov D, Lacassin M, Dmitrieff S, Minc N (2018) Asymmetric division through a reduction of microtubule centering forces. J Cell Biol 218(3):771. https://doi.org/10.1083/jcb.201807102

    Article  CAS  PubMed  Google Scholar 

  • Salpingidou G, Smertenko A, Hausmanowa-Petrucewicz I, Hussey PJ, Hutchison CJ (2007) A novel role for the nuclear membrane protein emerin in association of the centrosome to the outer nuclear membrane. J Cell Biol 178:897–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salvarezza SB, Deborde S, Schreiner R, Campagne F, Kessels MM, Qualmann B, Caceres A, Kreitzer G, Rodriguez-Boulan E (2009) LIM kinase 1 and cofilin regulate actin filament population required for dynamin-dependent apical carrier fission from the trans-Golgi network. Mol Biol Cell 20:438–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salzmann V, Chen C, Chiang CY, Tiyaboonchai A, Mayer M, Yamashita YM (2014) Centrosome-dependent asymmetric inheritance of the midbody ring in Drosophila germline stem cell division. Mol Biol Cell 25:267–275

    Article  PubMed  PubMed Central  Google Scholar 

  • Sameshima M, Imai Y, Hashimoto Y (1988) The position of the microtubule-organizing center relative to the nucleus is independent of the direction of cell migration in Dictyostelium discoideum. Cell Motil Cytoskeleton 9:111–116

    Article  CAS  PubMed  Google Scholar 

  • Sardet C, Paix A, Prodon F, Dru P, Chenevert J (2007) From oocyte to 16-cell stage: cytoplasmic and cortical reorganizations that pattern the ascidian embryo. Dev Dyn 236:1716–1731

    Article  CAS  PubMed  Google Scholar 

  • Saturno DM, Castanzo DT, Williams M, Parikh DA, Jaeger EC, Lyczak R (2017) Sustained centrosome-cortical contact ensures robust polarization of the one-cell C. elegans embryo. Dev Biol 422:135–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlessinger K, McManus EJ, Hall A (2007) Cdc42 and noncanonical Wnt signal transduction pathways cooperate to promote cell polarity. J Cell Biol 178:355–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt KN, Kuhns S, Neuner A, Hub B, Zentgraf H, Pereira G (2012) Cep164 mediates vesicular docking to the mother centriole during early steps of ciliogenesis. J Cell Biol 199:1083–1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmoranzer J, Kreitzer G, Simon SM (2003) Migrating fibroblasts perform polarized, microtubule-dependent exocytosis towards the leading edge. J Cell Sci 116:4513–4519

    Article  CAS  PubMed  Google Scholar 

  • Schmoranzer J, Fawcett JP, Segura M, Tan S, Vallee RB, Pawson T, Gundersen GG (2009) Par3 and dynein associate to regulate local microtubule dynamics and centrosome orientation during migration. Curr Biol 19:1065–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schutze K, Maniotis A, Schliwa M (1991) The position of the microtubule-organizing center in directionally migrating fibroblasts depends on the nature of the substratum. Proc Natl Acad Sci USA 88:8367–8371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schweickert A, Weber T, Beyer T, Vick P, Bogusch S, Feistel K, Blum M (2007) Cilia-driven leftward flow determines laterality in Xenopus. Curr Biol 17:60–66

    Article  CAS  PubMed  Google Scholar 

  • Segalen M, Johnston CA, Martin CA, Dumortier JG, Prehoda KE, David NB, Doe CQ, Bellaiche Y (2010) The Fz-Dsh planar cell polarity pathway induces oriented cell division via Mud/NuMA in Drosophila and zebrafish. Dev Cell 19:740–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seldin L, Muroyama A, Lechler T (2016) NuMA-microtubule interactions are critical for spindle orientation and the morphogenesis of diverse epidermal structures. elife 5:e12504

    Article  PubMed  PubMed Central  Google Scholar 

  • Sepich DS, Solnica-Krezel L (2016) Intracellular Golgi Complex organization reveals tissue specific polarity during zebrafish embryogenesis. Dev Dyn 245:678–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serrador JM, Cabrero JR, Sancho D, Mittelbrunn M, Urzainqui A, Sanchez-Madrid F (2004) HDAC6 deacetylase activity links the tubulin cytoskeleton with immune synapse organization. Immunity 20:417–428

    Article  CAS  PubMed  Google Scholar 

  • Sharp DJ, Brown HM, Kwon M, Rogers GC, Holland G, Scholey JM (2000) Functional coordination of three mitotic motors in Drosophila embryos. Mol Biol Cell 11:241–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silkworth WT, Nardi IK, Paul R, Mogilner A, Cimini D (2012) Timing of centrosome separation is important for accurate chromosome segregation. Mol Biol Cell 23:401–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silverman E, Zhao J, Merriam JC, Nagasaki T (2017) Intracellular position of centrioles and the direction of homeostatic epithelial cell movements in the mouse cornea. J Histochem Cytochem 65:83–91

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Solecki DJ (2015) Polarity transitions during neurogenesis and germinal zone exit in the developing central nervous system. Front Cell Neurosci 9:62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slaats GG, Ghosh AK, Falke LL, Le Corre S, Shaltiel IA, van de Hoek G, Klasson TD, Stokman MF, Logister I, Verhaar MC, Goldschmeding R, Nguyen TQ, Drummond IA, Hildebrandt F, Giles RH (2014) Nephronophthisis-associated CEP164 regulates cell cycle progression, apoptosis and epithelial-to-mesenchymal transition. PLoS Genet 10:e1004594

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smith E, Hegarat N, Vesely C, Roseboom I, Larch C, Streicher H, Straatman K, Flynn H, Skehel M, Hirota T, Kuriyama R, Hochegger H (2011) Differential control of Eg5-dependent centrosome separation by Plk1 and Cdk1. EMBO J 30:2233–2245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith P, Azzam M, Hinck L (2017) Extracellular regulation of the mitotic spindle and fate determinants driving asymmetric cell division. Results Probl Cell Differ 61:351–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solecki DJ, Trivedi N, Govek EE, Kerekes RA, Gleason SS, Hatten ME (2009) Myosin II motors and F-actin dynamics drive the coordinated movement of the centrosome and soma during CNS glial-guided neuronal migration. Neuron 63:63–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spassky N, Meunier A (2017) The development and functions of multiciliated epithelia. Nat Rev Mol Cell Biol 18:423–436

    Article  CAS  PubMed  Google Scholar 

  • Spear PC, Erickson CA (2012) Apical movement during interkinetic nuclear migration is a two-step process. Dev Biol 370:33–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Splinter D, Tanenbaum ME, Lindqvist A, Jaarsma D, Flotho A, Yu KL, Grigoriev I, Engelsma D, Haasdijk ED, Keijzer N, Demmers J, Fornerod M, Melchior F, Hoogenraad CC, Medema RH, Akhmanova A (2010) Bicaudal D2, dynein, and kinesin-1 associate with nuclear pore complexes and regulate centrosome and nuclear positioning during mitotic entry. PLoS Biol 8:e1000350

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Srsen V, Fant X, Heald R, Rabouille C, Merdes A (2009) Centrosome proteins form an insoluble perinuclear matrix during muscle cell differentiation. BMC Cell Biol 10:28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stinchcombe JC, Majorovits E, Bossi G, Fuller S, Griffiths GM (2006) Centrosome polarization delivers secretory granules to the immunological synapse. Nature 443:462–465

    Article  CAS  PubMed  Google Scholar 

  • Stinchcombe JC, Randzavola LO, Angus KL, Mantell JM, Verkade P, Griffiths GM (2015) Mother centriole distal appendages mediate centrosome docking at the immunological synapse and reveal mechanistic parallels with ciliogenesis. Curr Biol 25:3239–3244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strome S (1993) Determination of cleavage planes. Cell 72:3–6

    Article  CAS  PubMed  Google Scholar 

  • Strugnell GE, Wang AM, Wheatley DN (1996) Primary cilium expression in cells from normal and aberrant human skin. J Submicrosc Cytol Pathol 28:215–225

    CAS  PubMed  Google Scholar 

  • Sugioka K, Bowerman B (2018) Combinatorial contact cues specify cell division orientation by directing cortical myosin flows. Dev Cell 46:257–270 e255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugiyama Y, Stump RJ, Nguyen A, Wen L, Chen Y, Wang Y, Murdoch JN, Lovicu FJ, McAvoy JW (2010) Secreted frizzled-related protein disrupts PCP in eye lens fiber cells that have polarised primary cilia. Dev Biol 338:193–201

    Article  CAS  PubMed  Google Scholar 

  • Tambe DT, Hardin CC, Angelini TE, Rajendran K, Park CY, Serra-Picamal X, Zhou EH, Zaman MH, Butler JP, Weitz DA, Fredberg JJ, Trepat X (2011) Collective cell guidance by cooperative intercellular forces. Nat Mater 10:469–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka M, Kikuchi T, Uno H, Okita K, Kitanishi-Yumura T, Yumura S (2017) Turnover and flow of the cell membrane for cell migration. Sci Rep 7:12970

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tanenbaum ME, Medema RH (2010) Mechanisms of centrosome separation and bipolar spindle assembly. Dev Cell 19:797–806

    Article  CAS  PubMed  Google Scholar 

  • Tanenbaum ME, Macurek L, Galjart N, Medema RH (2008) Dynein, Lis1 and CLIP-170 counteract Eg5-dependent centrosome separation during bipolar spindle assembly. EMBO J 27:3235–3245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang D, Mar K, Warren G, Wang Y (2008) Molecular mechanism of mitotic Golgi disassembly and reassembly revealed by a defined reconstitution assay. J Biol Chem 283:6085–6094

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi K, Maeda R, Ando T, Okumura T, Nakazawa N, Hatori R, Nakamura M, Hozumi S, Fujiwara H, Matsuno K (2011) Chirality in planar cell shape contributes to left-right asymmetric epithelial morphogenesis. Science 333:339–341

    Article  CAS  PubMed  Google Scholar 

  • Tanimoto H, Kimura A, Minc N (2016) Shape-motion relationships of centering microtubule asters. J Cell Biol 212:777–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tassin AM, Maro B, Bornens M (1985) Fate of microtubule-organizing centers during myogenesis in vitro. J Cell Biol 100:35–46

    Article  CAS  PubMed  Google Scholar 

  • Taverna E, Mora-Bermudez F, Strzyz PJ, Florio M, Icha J, Haffner C, Norden C, Wilsch-Brauninger M, Huttner WB (2016) Non-canonical features of the Golgi apparatus in bipolar epithelial neural stem cells. Sci Rep 6:21206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tee YH, Shemesh T, Thiagarajan V, Hariadi RF, Anderson KL, Page C, Volkmann N, Hanein D, Sivaramakrishnan S, Kozlov MM, Bershadsky AD (2015) Cellular chirality arising from the self-organization of the actin cytoskeleton. Nat Cell Biol 17:445–457

    Article  CAS  PubMed  Google Scholar 

  • Thery M, Racine V, Pepin A, Piel M, Chen Y, Sibarita JB, Bornens M (2005) The extracellular matrix guides the orientation of the cell division axis. Nat Cell Biol 7:947–953

    Article  CAS  PubMed  Google Scholar 

  • Theveneau E, Marchant L, Kuriyama S, Gull M, Moepps B, Parsons M, Mayor R (2010) Collective chemotaxis requires contact-dependent cell polarity. Dev Cell 19:39–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tikhonenko I, Magidson V, Graf R, Khodjakov A, Koonce MP (2013) A kinesin-mediated mechanism that couples centrosomes to nuclei. Cell Mol Life Sci 70:1285–1296

    Article  CAS  PubMed  Google Scholar 

  • Tisler M, Thumberger T, Schneider I, Schweickert A, Blum M (2017) Leftward flow determines laterality in conjoined twins. Curr Biol 27:543–548

    Article  CAS  PubMed  Google Scholar 

  • Tolar P (2017) Cytoskeletal control of B cell responses to antigens. Nat Rev Immunol 17:621–634

    Article  CAS  PubMed  Google Scholar 

  • Tolic-Norrelykke IM, Sacconi L, Stringari C, Raabe I, Pavone FS (2005) Nuclear and division-plane positioning revealed by optical micromanipulation. Curr Biol 15:1212–1216

    Article  CAS  PubMed  Google Scholar 

  • Tsun A, Qureshi I, Stinchcombe JC, Jenkins MR, de la Roche M, Kleczkowska J, Zamoyska R, Griffiths GM (2011) Centrosome docking at the immunological synapse is controlled by Lck signaling. J Cell Biol 192:663–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueda M, Graf R, MacWilliams HK, Schliwa M, Euteneuer U (1997) Centrosome positioning and directionality of cell movements. Proc Natl Acad Sci USA 94:9674–9678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaisberg EA, Koonce MP, McIntosh JR (1993) Cytoplasmic dynein plays a role in mammalian mitotic spindle formation. J Cell Biol 123:849–858

    Article  CAS  PubMed  Google Scholar 

  • Vaisberg EA, Grissom PM, McIntosh JR (1996) Mammalian cells express three distinct dynein heavy chains that are localized to different cytoplasmic organelles. J Cell Biol 133:831–842

    Article  CAS  PubMed  Google Scholar 

  • Valente C, Colanzi A (2015) Mechanisms and regulation of the mitotic inheritance of the Golgi complex. Front Cell Dev Biol 3:79

    Article  PubMed  PubMed Central  Google Scholar 

  • van Heesbeen RG, Tanenbaum ME, Medema RH (2014) Balanced activity of three mitotic motors is required for bipolar spindle assembly and chromosome segregation. Cell Rep 8:948–956

    Article  PubMed  CAS  Google Scholar 

  • Venhuizen JH, Zegers MM (2017) Making heads or tails of it: cell-cell adhesion in cellular and supracellular polarity in collective migration. Cold Spring Harb Perspect Biol 9:a027854

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vogel SK, Pavin N, Maghelli N, Julicher F, Tolic-Norrelykke IM (2009) Self-organization of dynein motors generates meiotic nuclear oscillations. PLoS Biol 7:e1000087

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vorobjev IA, Chentsov Yu S (1982) Centrioles in the cell cycle. I. Epithelial cells. J Cell Biol 93:938–949

    Article  CAS  PubMed  Google Scholar 

  • Wakida NM, Botvinick EL, Lin J, Berns MW (2010) An intact centrosome is required for the maintenance of polarization during directional cell migration. PLoS One 5:e15462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walz G (2017) Role of primary cilia in non-dividing and post-mitotic cells. Cell Tissue Res 369:11–25

    Article  PubMed  PubMed Central  Google Scholar 

  • Wan LQ, Ronaldson K, Guirguis M, Vunjak-Novakovic G (2013) Micropatterning of cells reveals chiral morphogenesis. Stem Cell Res Ther 4:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang L, Dynlacht BD (2018) The regulation of cilium assembly and disassembly in development and disease. Development 145:dev151407. https://doi.org/10.1242/dev.151407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Tsai JW, Imai JH, Lian WN, Vallee RB, Shi SH (2009) Asymmetric centrosome inheritance maintains neural progenitors in the neocortex. Nature 461:947–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Brust-Mascher I, Civelekoglu-Scholey G, Scholey JM (2013) Patronin mediates a switch from kinesin-13-dependent poleward flux to anaphase B spindle elongation. J Cell Biol 203:35–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Jiang Q, Zhang C (2014) The role of mitotic kinases in coupling the centrosome cycle with the assembly of the mitotic spindle. J Cell Sci 127:4111–4122

    Article  CAS  PubMed  Google Scholar 

  • Wang JC, Lee JY, Christian S, Dang-Lawson M, Pritchard C, Freeman SA, Gold MR (2017) The Rap1-cofilin-1 pathway coordinates actin reorganization and MTOC polarization at the B cell immune synapse. J Cell Sci 130:1094–1109

    CAS  PubMed  Google Scholar 

  • Waters JC, Cole RW, Rieder CL (1993) The force-producing mechanism for centrosome separation during spindle formation in vertebrates is intrinsic to each aster. J Cell Biol 122:361–372

    Article  CAS  PubMed  Google Scholar 

  • Wei JH, Seemann J (2010) Unraveling the Golgi ribbon. Traffic 11:1391–1400

    Article  PubMed  PubMed Central  Google Scholar 

  • Werner ME, Hwang P, Huisman F, Taborek P, Yu CC, Mitchell BJ (2011) Actin and microtubules drive differential aspects of planar cell polarity in multiciliated cells. J Cell Biol 195:19–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westlake CJ, Baye LM, Nachury MV, Wright KJ, Ervin KE, Phu L, Chalouni C, Beck JS, Kirkpatrick DS, Slusarski DC, Sheffield VC, Scheller RH, Jackson PK (2011) Primary cilia membrane assembly is initiated by Rab11 and transport protein particle II (TRAPPII) complex-dependent trafficking of Rabin8 to the centrosome. Proc Natl Acad Sci USA 108:2759–2764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wheatley DN, Wang AM, Strugnell GE (1996) Expression of primary cilia in mammalian cells. Cell Biol Int 20:73–81

    Article  CAS  PubMed  Google Scholar 

  • Williams SE, Ratliff LA, Postiglione MP, Knoblich JA, Fuchs E (2014) Par3-mInsc and Galphai3 cooperate to promote oriented epidermal cell divisions through LGN. Nat Cell Biol 16:758–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witkos TM, Lowe M (2015) The golgin family of coiled-coil tethering proteins. Front Cell Dev Biol 3:86

    PubMed  Google Scholar 

  • Wong MK, Gotlieb AI (1988) The reorganization of microfilaments, centrosomes, and microtubules during in vitro small wound reendothelialization. J Cell Biol 107:1777–1783

    Article  CAS  PubMed  Google Scholar 

  • Woodland HR, Fry AM (2008) Pix proteins and the evolution of centrioles. PLoS One 3:e3778

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Woolner S, Papalopulu N (2012) Spindle position in symmetric cell divisions during epiboly is controlled by opposing and dynamic apicobasal forces. Dev Cell 22:775–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright RL, Adler SA, Spanier JG, Jarvik JW (1989) Nucleus-basal body connector in Chlamydomonas: evidence for a role in basal body segregation and against essential roles in mitosis or in determining cell polarity. Cell Motil Cytoskeleton 14:516–526

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Misra G, Russell RJ, Ladd AJ, Lele TP, Dickinson RB (2011) Effects of dynein on microtubule mechanics and centrosome positioning. Mol Biol Cell 22:4834–4841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wuhr M, Tan ES, Parker SK, Detrich HW 3rd, Mitchison TJ (2010) A model for cleavage plane determination in early amphibian and fish embryos. Curr Biol 20:2040–2045

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xie Z, Hur SK, Zhao L, Abrams CS, Bankaitis VA (2018) A Golgi lipid signaling pathway controls apical Golgi distribution and cell polarity during neurogenesis. Dev Cell 44:725–740 e724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing M, Peterman MC, Davis RL, Oegema K, Shiau AK, Field SJ (2016) GOLPH3 drives cell migration by promoting Golgi reorientation and directional trafficking to the leading edge. Mol Biol Cell 27:3828–3840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Takeda S, Nakata T, Noda Y, Tanaka Y, Hirokawa N (2002) Role of KIFC3 motor protein in Golgi positioning and integration. J Cell Biol 158:293–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Van Keymeulen A, Wakida NM, Carlton P, Berns MW, Bourne HR (2007) Polarity reveals intrinsic cell chirality. Proc Natl Acad Sci USA 104:9296–9300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav S, Puri S, Linstedt AD (2009) A primary role for Golgi positioning in directed secretion, cell polarity, and wound healing. Mol Biol Cell 20:1728–1736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav S, Puthenveedu MA, Linstedt AD (2012) Golgin160 recruits the dynein motor to position the Golgi apparatus. Dev Cell 23:153–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yalgin C, Ebrahimi S, Delandre C, Yoong LF, Akimoto S, Tran H, Amikura R, Spokony R, Torben-Nielsen B, White KP, Moore AW (2015) Centrosomin represses dendrite branching by orienting microtubule nucleation. Nat Neurosci 18:1437–1445

    Article  CAS  PubMed  Google Scholar 

  • Yamashita YM, Mahowald AP, Perlin JR, Fuller MT (2007) Asymmetric inheritance of mother versus daughter centrosome in stem cell division. Science 315:518–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye B, Zhang Y, Song W, Younger SH, Jan LY, Jan YN (2007) Growing dendrites and axons differ in their reliance on the secretory pathway. Cell 130:717–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi J, Wu X, Chung AH, Chen JK, Kapoor TM, Hammer JA (2013) Centrosome repositioning in T cells is biphasic and driven by microtubule end-on capture-shrinkage. J Cell Biol 202:779–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo SK, Lam PY, Eichelberg MR, Zasadil L, Bement WM, Huttenlocher A (2012) The role of microtubules in neutrophil polarity and migration in live zebrafish. J Cell Sci 125:5702–5710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshiura S, Ohta N, Matsuzaki F (2012) Tre1 GPCR signaling orients stem cell divisions in the Drosophila central nervous system. Dev Cell 22:79–91

    Article  CAS  PubMed  Google Scholar 

  • Yount AL, Zong H, Walczak CE (2015) Regulatory mechanisms that control mitotic kinesins. Exp Cell Res 334:70–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan S, Zhao L, Brueckner M, Sun Z (2015) Intraciliary calcium oscillations initiate vertebrate left-right asymmetry. Curr Biol 25:556–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yukawa M, Yamada Y, Yamauchi T, Toda T (2018) Two spatially distinct kinesin-14 proteins, Pkl1 and Klp2, generate collaborative inward forces against kinesin-5 Cut7 in S. pombe. J Cell Sci 131(1):jcs210740. https://doi.org/10.1242/jcs.210740

    Article  CAS  PubMed  Google Scholar 

  • Yuseff MI, Reversat A, Lankar D, Diaz J, Fanget I, Pierobon P, Randrian V, Larochette N, Vascotto F, Desdouets C, Jauffred B, Bellaiche Y, Gasman S, Darchen F, Desnos C, Lennon-Dumenil AM (2011) Polarized secretion of lysosomes at the B cell synapse couples antigen extraction to processing and presentation. Immunity 35:361–374

    Article  CAS  PubMed  Google Scholar 

  • Yvon AM, Walker JW, Danowski B, Fagerstrom C, Khodjakov A, Wadsworth P (2002) Centrosome reorientation in wound-edge cells is cell type specific. Mol Biol Cell 13:1871–1880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaritsky A, Welf ES, Tseng YY, Angeles Rabadan M, Serra-Picamal X, Trepat X, Danuser G (2015) Seeds of locally aligned motion and stress coordinate a collective cell migration. Biophys J 109:2492–2500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeligs JD, Wollman SH (1979) Mitosis in rat thyroid epithelial cells in vivo. II. Centrioles and pericentriolar material. J Ultrastruct Res 66:97–108

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Wang YL (2017) Centrosome defines the rear of cells during mesenchymal migration. Mol Biol Cell 28:3240–3251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao T, Graham OS, Raposo A, St Johnston D (2012) Growing microtubules push the oocyte nucleus to polarize the Drosophila dorsal-ventral axis. Science 336:999–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Y, Wildonger J, Ye B, Zhang Y, Kita A, Younger SH, Zimmerman S, Jan LY, Jan YN (2008) Dynein is required for polarized dendritic transport and uniform microtubule orientation in axons. Nat Cell Biol 10:1172–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Burakov A, Rodionov V, Mogilner A (2010) Finding the cell center by a balance of dynein and myosin pulling and microtubule pushing: a computational study. Mol Biol Cell 21:4418–4427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zinski J, Tajer B, Mullins MC (2018) TGF-beta family signaling in early vertebrate development. Cold Spring Harb Perspect Biol 10(6):a033274. https://doi.org/10.1101/cshperspect.a033274

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amos Orlofsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Orlofsky, A. (2019). Positioning of the Centrosome and Golgi Complex. In: Kloc, M. (eds) The Golgi Apparatus and Centriole. Results and Problems in Cell Differentiation, vol 67. Springer, Cham. https://doi.org/10.1007/978-3-030-23173-6_7

Download citation

Publish with us

Policies and ethics