Skip to main content

Advertisement

Log in

The primary cilium in different tissues—lessons from patients and animal models

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Primary cilia are specialized organelles consisting of an axoneme anchored to the plasma membrane through the basal body consisting of two centrioles. They protrude from the cell surface of almost all mammalian cells. Mutations in genes encoding for ciliary proteins cause ciliopathies, which are characterized by a wide spectrum of phenotypes, including polycystic kidney, hepatic disease, malformations in the central nervous system, skeletal defects, retinal degeneration, and obesity. Both clinical studies and animal models have revealed that during embryogenesis, primary cilium play an essential role in defining the correct patterning of the body. In this study, we focused our attention on the tissues mainly affected in ciliopathies, such as the kidney, liver, and central nervous system. Emerging studies reveal that the primary cilium may play similar roles, leading to distinct functions according to the different cell type and developmental stages. The state of the art in primary cilia studies reveals a very complex role. The aim of this review is to evaluate the recent advances in the function of primary cilia in different tissues, underlining similarities and differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Satir P, Christensen ST (2007) Overview of structure and function of mammalian cilia. Annu Rev Physiol 69:377–400

    Article  PubMed  CAS  Google Scholar 

  2. Satir P, Pedersen LB, Christensen ST (2010) The primary cilium at a glance. J Cell Sci 123:499–503

    Article  PubMed  CAS  Google Scholar 

  3. Seeley ES, Nachury MV (2010) The perennial organelle: assembly and disassembly of the primary cilium. J Cell Sci 123:511–518

    Article  PubMed  CAS  Google Scholar 

  4. Molla-Herman A, Ghossoub R, Blisnick T, Meunier A, Serres C, Silbermann F, Emmerson C, Romeo K, Bourdoncle P, Schmitt A, Saunier S, Spassky N, Bastin P, Benmerah A (2010) The ciliary pocket: an endocytic membrane domain at the base of primary and motile cilia. J Cell Sci 123:1785–1795

    Article  PubMed  CAS  Google Scholar 

  5. Nonaka S, Tanaka Y, Okada Y, Takeda S, Harada A, Kanai Y, Kido M, Hirokawa N (1998) Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95:829–837

    Article  PubMed  CAS  Google Scholar 

  6. Hirokawa N, Tanaka Y, Okada Y (2009) Left-right determination: involvement of molecular motor KIF3, cilia, and nodal flow. Cold Spring Harb Perspect Biol 1:a000802

    Article  PubMed  Google Scholar 

  7. Basu B, Brueckner M (2008) Cilia multifunctional organelles at the center of vertebrate left-right asymmetry. Curr Top Dev Biol 85:151–174

    Article  PubMed  CAS  Google Scholar 

  8. Quarmby LM, Parker JD (2005) Cilia and the cell cycle? J Cell Biol 169:707–710

    Article  PubMed  CAS  Google Scholar 

  9. Kim J, Lee JE, Heynen-Genel S, Suyama E, Ono K, Lee K, Ideker T, Aza-Blanc P, Gleeson JG (2010) Functional genomic screen for modulators of ciliogenesis and cilium length. Nature 464:1048–1051

    Article  PubMed  CAS  Google Scholar 

  10. Kozminski KG, Johnson KA, Forscher P, Rosenbaum JL (1993) A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc Natl Acad Sci USA 90:5519–5523

    Article  PubMed  CAS  Google Scholar 

  11. Cole DG, Chinn SW, Wedaman KP, Hall K, Vuong T, Scholey JM (1993) Novel heterotrimeric kinesin-related protein purified from sea urchin eggs. Nature 366:268–270

    Article  PubMed  CAS  Google Scholar 

  12. Pazour GJ, Wilkerson CG, Witman GB (1998) A dynein light chain is essential for the retrograde particle movement of intraflagellar transport (IFT). J Cell Biol 141:979–992

    Article  PubMed  CAS  Google Scholar 

  13. Signor D, Wedaman KP, Orozco JT, Dwyer ND, Bargmann CI, Rose LS, Scholey JM (1999) Role of a class DHC1b dynein in retrograde transport of IFT motors and IFT raft particles along cilia, but not dendrites, in chemosensory neurons of living Caenorhabditis elegans. J Cell Biol 147:519–530

    Article  PubMed  CAS  Google Scholar 

  14. Inglis PN, Boroevich KA, Leroux MR (2006) Piecing together a ciliome. Trends Genet 22:491–500

    Article  PubMed  CAS  Google Scholar 

  15. Gherman A, Davis EE, Katsanis N (2006) The ciliary proteome database: an integrated community resource for the genetic and functional dissection of cilia. Nat Genet 38:961–962

    Article  PubMed  CAS  Google Scholar 

  16. Ostrowski LE, Blackburn K, Radde KM, Moyer MB, Schlatzer DM, Moseley A, Boucher RC (2002) A proteomic analysis of human cilia: identification of novel components. Mol Cell Proteomics 1:451–465

    Article  PubMed  CAS  Google Scholar 

  17. Lancaster MA, Gleeson JG (2009) The primary cilium as a cellular signaling center: lessons from disease. Curr Opin Genet Dev 19:220–229

    Article  PubMed  CAS  Google Scholar 

  18. Badano JL, Mitsuma N, Beales PL, Katsanis N (2006) The ciliopathies: an emerging class of human genetic disorders. Annu Rev Genomics Hum Genet 7:125–148

    Article  PubMed  CAS  Google Scholar 

  19. D'Angelo A, Franco B (2009) The dynamic cilium in human diseases. Pathogenetics 2:3

    Article  PubMed  Google Scholar 

  20. Wilson PD (2004) Polycystic kidney disease: new understanding in the pathogenesis. Int J Biochem Cell Biol 36:1868–1873

    Article  PubMed  CAS  Google Scholar 

  21. Deltas C, Papagregoriou G (2010) Cystic diseases of the kidney: molecular biology and genetics. Arch Pathol Lab Med 134:569–582

    PubMed  CAS  Google Scholar 

  22. Yoder BK (2007) Role of primary cilia in the pathogenesis of polycystic kidney disease. J Am Soc Nephrol 18:1381–1388

    Article  PubMed  CAS  Google Scholar 

  23. Wilson PD (2008) Mouse models of polycystic kidney disease. Curr Top Dev Biol 84:311–350

    Article  PubMed  CAS  Google Scholar 

  24. Ferrante MI, Zullo A, Barra A, Bimonte S, Messaddeq N, Studer M, Dolle P, Franco B (2006) Oral-facial-digital type I protein is required for primary cilia formation and left-right axis specification. Nat Genet 38:112–117

    Article  PubMed  CAS  Google Scholar 

  25. Zullo A, Iaconis D, Barra A, Cantone A, Messaddeq N, Capasso G, Dolle P, Igarashi P, Franco B (2010) Kidney-specific inactivation of Ofd1 leads to renal cystic disease associated with upregulation of the mTOR pathway. Hum Mol Genet 19:2792–2803

    Article  PubMed  CAS  Google Scholar 

  26. Jonassen JA, San Agustin J, Follit JA, Pazour GJ (2008) Deletion of IFT20 in the mouse kidney causes misorientation of the mitotic spindle and cystic kidney disease. J Cell Biol 183:377–384

    Article  PubMed  CAS  Google Scholar 

  27. Bonnet CS, Aldred M, von Ruhland C, Harris R, Sandford R, Cheadle JP (2009) Defects in cell polarity underlie TSC and ADPKD-associated cystogenesis. Hum Mol Genet 18:2166–2176

    Article  PubMed  CAS  Google Scholar 

  28. Fischer E, Legue E, Doyen A, Nato F, Nicolas JF, Torres V, Yaniv M, Pontoglio M (2006) Defective planar cell polarity in polycystic kidney disease. Nat Genet 38:21–23

    Article  PubMed  CAS  Google Scholar 

  29. Praetorius HA, Spring KR (2005) A physiological view of the primary cilium. Annu Rev Physiol 67:515–529

    Article  PubMed  CAS  Google Scholar 

  30. Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AE, Lu W, Brown EM, Quinn SJ, Ingber DE, Zhou J (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33:129–137

    Article  PubMed  CAS  Google Scholar 

  31. Chauvet V, Tian X, Husson H, Grimm DH, Wang T, Hiesberger T, Igarashi P, Bennett AM, Ibraghimov-Beskrovnaya O, Somlo S, Caplan MJ (2004) Mechanical stimuli induce cleavage and nuclear translocation of the polycystin-1 C terminus. J Clin Invest 114:1433–1443

    PubMed  CAS  Google Scholar 

  32. Simons M, Gloy J, Ganner A, Bullerkotte A, Bashkurov M, Kronig C, Schermer B, Benzing T, Cabello OA, Jenny A, Mlodzik M, Polok B, Driever W, Obara T, Walz G (2005) Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nat Genet 37:537–543

    Article  PubMed  CAS  Google Scholar 

  33. Bergmann C, Fliegauf M, Bruchle NO, Frank V, Olbrich H, Kirschner J, Schermer B, Schmedding I, Kispert A, Kranzlin B, Nurnberg G, Becker C, Grimm T, Girschick G, Lynch SA, Kelehan P, Senderek J, Neuhaus TJ, Stallmach T, Zentgraf H, Nurnberg P, Gretz N, Lo C, Lienkamp S, Schafer T, Walz G, Benzing T, Zerres K, Omran H (2008) Loss of nephrocystin-3 function can cause embryonic lethality, Meckel-Gruber-like syndrome, situs inversus, and renal-hepatic-pancreatic dysplasia. Am J Hum Genet 82:959–970

    Article  PubMed  CAS  Google Scholar 

  34. Piontek K, Menezes LF, Garcia-Gonzalez MA, Huso DL, Germino GG (2007) A critical developmental switch defines the kinetics of kidney cyst formation after loss of Pkd1. Nat Med 13:1490–1495

    Article  PubMed  CAS  Google Scholar 

  35. Lantinga-van Leeuwen IS, Leonhard WN, van der Wal A, Breuning MH, de Heer E, Peters DJ (2007) Kidney-specific inactivation of the Pkd1 gene induces rapid cyst formation in developing kidneys and a slow onset of disease in adult mice. Hum Mol Genet 16:3188–3196

    Article  PubMed  CAS  Google Scholar 

  36. Huang BQ, Masyuk TV, Muff MA, Tietz PS, Masyuk AI, Larusso NF (2006) Isolation and characterization of cholangiocyte primary cilia. Am J Physiol Gastrointest Liver Physiol 291:G500–G509

    Article  PubMed  CAS  Google Scholar 

  37. Masyuk AI, Masyuk TV, LaRusso NF (2008) Cholangiocyte primary cilia in liver health and disease. Dev Dyn 237:2007–2012

    Article  PubMed  CAS  Google Scholar 

  38. Onori P, Franchitto A, Mancinelli R, Carpino G, Alvaro D, Francis H, Alpini G, Gaudio E (2010) Polycystic liver diseases. Dig Liver Dis 42:261–271

    Article  PubMed  CAS  Google Scholar 

  39. Gunay-Aygun M (2009) Liver and kidney disease in ciliopathies. Am J Med Genet C Semin Med Genet 151C:296–306

    Article  PubMed  CAS  Google Scholar 

  40. Masyuk TV, Huang BQ, Ward CJ, Masyuk AI, Yuan D, Splinter PL, Punyashthiti R, Ritman EL, Torres VE, Harris PC, LaRusso NF (2003) Defects in cholangiocyte fibrocystin expression and ciliary structure in the PCK rat. Gastroenterology 125:1303–1310

    Article  PubMed  CAS  Google Scholar 

  41. Clotman F, Libbrecht L, Killingsworth MC, Loo CC, Roskams T, Lemaigre FP (2008) Lack of cilia and differentiation defects in the liver of human foetuses with the Meckel syndrome. Liver Int 28:377–384

    Article  PubMed  Google Scholar 

  42. Masyuk TV, Masyuk AI, Torres VE, Harris PC, Larusso NF (2007) Octreotide inhibits hepatic cystogenesis in a rodent model of polycystic liver disease by reducing cholangiocyte adenosine 3', 5'-cyclic monophosphate. Gastroenterology 132:1104–1116

    Article  PubMed  CAS  Google Scholar 

  43. Stroope A, Radtke B, Huang B, Masyuk T, Torres V, Ritman E, LaRusso N (2010) Hepato-renal pathology in pkd2ws25/- mice, an animal model of autosomal dominant polycystic kidney disease. Am J Pathol 176:1282–1291

    Article  PubMed  Google Scholar 

  44. Banales JM, Masyuk TV, Bogert PS, Huang BQ, Gradilone SA, Lee SO, Stroope AJ, Masyuk AI, Medina JF, LaRusso NF (2008) Hepatic cystogenesis is associated with abnormal expression and location of ion transporters and water channels in an animal model of autosomal recessive polycystic kidney disease. Am J Pathol 173:1637–1646

    Article  PubMed  CAS  Google Scholar 

  45. Banales JM, Masyuk TV, Gradilone SA, Masyuk AI, Medina JF, LaRusso NF (2009) The cAMP effectors Epac and protein kinase a (PKA) are involved in the hepatic cystogenesis of an animal model of autosomal recessive polycystic kidney disease (ARPKD). Hepatology 49:160–174

    Article  PubMed  CAS  Google Scholar 

  46. Masyuk AI, Masyuk TV, Splinter PL, Huang BQ, Stroope AJ, LaRusso NF (2006) Cholangiocyte cilia detect changes in luminal fluid flow and transmit them into intracellular Ca2+ and cAMP signaling. Gastroenterology 131:911–920

    Article  PubMed  CAS  Google Scholar 

  47. Torrice A, Cardinale V, Gatto M, Semeraro R, Napoli C, Onori P, Alpini G, Gaudio E, Alvaro D (2010) Polycystins play a key role in the modulation of cholangiocyte proliferation. Dig Liver Dis 42:377–385

    Article  PubMed  CAS  Google Scholar 

  48. Masyuk AI, Gradilone SA, Banales JM, Huang BQ, Masyuk TV, Lee SO, Splinter PL, Stroope AJ, Larusso NF (2008) Cholangiocyte primary cilia are chemosensory organelles that detect biliary nucleotides via P2Y12 purinergic receptors. Am J Physiol Gastrointest Liver Physiol 295:G725–G734

    Article  PubMed  CAS  Google Scholar 

  49. Gradilone SA, Masyuk AI, Splinter PL, Banales JM, Huang BQ, Tietz PS, Masyuk TV, Larusso NF (2007) Cholangiocyte cilia express TRPV4 and detect changes in luminal tonicity inducing bicarbonate secretion. Proc Natl Acad Sci USA 104:19138–19143

    Article  PubMed  CAS  Google Scholar 

  50. Berbari NF, O'Connor AK, Haycraft CJ, Yoder BK (2009) The primary cilium as a complex signaling center. Curr Biol 19:R526–R535

    Article  PubMed  CAS  Google Scholar 

  51. Fuchs JL, Schwark HD (2004) Neuronal primary cilia: a review. Cell Biol Int 28:111–118

    Article  PubMed  CAS  Google Scholar 

  52. Bishop GA, Berbari NF, Lewis J, Mykytyn K (2007) Type III adenylyl cyclase localizes to primary cilia throughout the adult mouse brain. J Comp Neurol 505:562–571

    Article  PubMed  Google Scholar 

  53. Ahdab-Barmada M, Claassen D (1990) A distinctive triad of malformations of the central nervous system in the Meckel-Gruber syndrome. J Neuropathol Exp Neurol 49:610–620

    Article  PubMed  CAS  Google Scholar 

  54. Gitten J, Dede D, Fennell E, Quisling R, Maria BL (1998) Neurobehavioral development in Joubert syndrome. J Child Neurol 13:391–397

    Article  PubMed  CAS  Google Scholar 

  55. Rooryck C, Pelras S, Chateil JF, Cances C, Arveiler B, Verloes A, Lacombe D, Goizet C (2007) Bardet-biedl syndrome and brain abnormalities. Neuropediatrics 38:5–9

    Article  PubMed  CAS  Google Scholar 

  56. Lee JH, Gleeson JG (2010) The role of primary cilia in neuronal function. Neurobiol Dis 38:167–172

    Article  PubMed  CAS  Google Scholar 

  57. Macca M, Franco B (2009) The molecular basis of oral-facial-digital syndrome, type 1. Am J Med Genet C Semin Med Genet 151C:318–325

    Article  PubMed  CAS  Google Scholar 

  58. Chizhikov VV, Davenport J, Zhang Q, Shih EK, Cabello OA, Fuchs JL, Yoder BK, Millen KJ (2007) Cilia proteins control cerebellar morphogenesis by promoting expansion of the granule progenitor pool. J Neurosci 27:9780–9789

    Article  PubMed  CAS  Google Scholar 

  59. Spassky N, Han YG, Aguilar A, Strehl L, Besse L, Laclef C, Ros MR, Garcia-Verdugo JM, Alvarez-Buylla A (2008) Primary cilia are required for cerebellar development and Shh-dependent expansion of progenitor pool. Dev Biol 317:246–259

    Article  PubMed  CAS  Google Scholar 

  60. Han YG, Spassky N, Romaguera-Ros M, Garcia-Verdugo JM, Aguilar A, Schneider-Maunoury S, Alvarez-Buylla A (2008) Hedgehog signaling and primary cilia are required for the formation of adult neural stem cells. Nat Neurosci 11:277–284

    Article  PubMed  CAS  Google Scholar 

  61. Breunig JJ, Sarkisian MR, Arellano JI, Morozov YM, Ayoub AE, Sojitra S, Wang B, Flavell RA, Rakic P, Town T (2008) Primary cilia regulate hippocampal neurogenesis by mediating sonic hedgehog signaling. Proc Natl Acad Sci USA 105:13127–13132

    Article  PubMed  CAS  Google Scholar 

  62. Caspary T, Larkins CE, Anderson KV (2007) The graded response to Sonic Hedgehog depends on cilia architecture. Dev Cell 12:767–778

    Article  PubMed  CAS  Google Scholar 

  63. Willaredt MA, Hasenpusch-Theil K, Gardner HA, Kitanovic I, Hirschfeld-Warneken VC, Gojak CP, Gorgas K, Bradford CL, Spatz J, Wolfl S, Theil T, Tucker KL (2008) A crucial role for primary cilia in cortical morphogenesis. J Neurosci 28:12887–12900

    Article  PubMed  CAS  Google Scholar 

  64. Gorivodsky M, Mukhopadhyay M, Wilsch-Braeuninger M, Phillips M, Teufel A, Kim C, Malik N, Huttner W, Westphal H (2009) Intraflagellar transport protein 172 is essential for primary cilia formation and plays a vital role in patterning the mammalian brain. Dev Biol 325:24–32

    Article  PubMed  CAS  Google Scholar 

  65. Stottmann RW, Tran PV, Turbe-Doan A, Beier DR (2009) Ttc21b is required to restrict sonic hedgehog activity in the developing mouse forebrain. Dev Biol 335:166–178

    Article  PubMed  CAS  Google Scholar 

  66. Corbit KC, Aanstad P, Singla V, Norman AR, Stainier DY, Reiter JF (2005) Vertebrate Smoothened functions at the primary cilium. Nature 437:1018–1021

    Article  PubMed  CAS  Google Scholar 

  67. May SR, Ashique AM, Karlen M, Wang B, Shen Y, Zarbalis K, Reiter J, Ericson J, Peterson AS (2005) Loss of the retrograde motor for IFT disrupts localization of Smo to cilia and prevents the expression of both activator and repressor functions of Gli. Dev Biol 287:378–389

    Article  PubMed  CAS  Google Scholar 

  68. Kovacs JJ, Whalen EJ, Liu R, Xiao K, Kim J, Chen M, Wang J, Chen W, Lefkowitz RJ (2008) Beta-arrestin-mediated localization of smoothened to the primary cilium. Science 320:1777–1781

    Article  PubMed  CAS  Google Scholar 

  69. Han YG, Alvarez-Buylla A (2010) Role of primary cilia in brain development and cancer. Curr Opin Neurobiol 20:58–67

    Article  PubMed  CAS  Google Scholar 

  70. Whitfield JF, Chakravarthy BR (2009) The neuronal primary cilium: driver of neurogenesis and memory formation in the hippocampal dentate gyrus? Cell Signal 21:1351–1355

    Article  PubMed  Google Scholar 

  71. Davenport JR, Watts AJ, Roper VC, Croyle MJ, van Groen T, Wyss JM, Nagy TR, Kesterson RA, Yoder BK (2007) Disruption of intraflagellar transport in adult mice leads to obesity and slow-onset cystic kidney disease. Curr Biol 17:1586–1594

    Article  PubMed  CAS  Google Scholar 

  72. Seo S, Guo DF, Bugge K, Morgan DA, Rahmouni K, Sheffield VC (2009) Requirement of Bardet-Biedl syndrome proteins for leptin receptor signaling. Hum Mol Genet 18:1323–1331

    Article  PubMed  CAS  Google Scholar 

  73. Wong SY, Seol AD, So PL, Ermilov AN, Bichakjian CK, Epstein EH Jr, Dlugosz AA, Reiter JF (2009) Primary cilia can both mediate and suppress Hedgehog pathway-dependent tumorigenesis. Nat Med 15:1055–1061

    Article  PubMed  CAS  Google Scholar 

  74. Lehman JM, Laag E, Michaud EJ, Yoder BK (2009) An essential role for dermal primary cilia in hair follicle morphogenesis. J Invest Dermatol 129:438–448

    Article  PubMed  CAS  Google Scholar 

  75. Haycraft CJ, Serra R (2008) Cilia involvement in patterning and maintenance of the skeleton. Curr Top Dev Biol 85:303–332

    Article  PubMed  CAS  Google Scholar 

  76. Temiyasathit S, Jacobs CR (2010) Osteocyte primary cilium and its role in bone mechanotransduction. Ann NY Acad Sci 1192:422–428

    Article  PubMed  CAS  Google Scholar 

  77. Kwon RY, Temiyasathit S, Tummala P, Quah CC, Jacobs CR (2010) Primary cilium-dependent mechanosensing is mediated by adenylyl cyclase 6 and cyclic AMP in bone cells. FASEB J 24:2859–2868

    Article  PubMed  CAS  Google Scholar 

  78. Walczak-Sztulpa J, Eggenschwiler J, Osborn D, Brown DA, Emma F, Klingenberg C, Hennekam RC, Torre G, Garshasbi M, Tzschach A, Szczepanska M, Krawczynski M, Zachwieja J, Zwolinska D, Beales PL, Ropers HH, Latos-Bielenska A, Kuss AW (2010) Cranioectodermal Dysplasia, Sensenbrenner Syndrome, Is a Ciliopathy Caused by Mutations in the IFT122 Gene. Am J Hum Genet 86:949–956

    Article  PubMed  CAS  Google Scholar 

  79. Thivichon-Prince B, Couble ML, Giamarchi A, Delmas P, Franco B, Romio L, Struys T, Lambrichts I, Ressnikoff D, Magloire H, Bleicher F (2009) Primary cilia of odontoblasts: possible role in molar morphogenesis. J Dent Res 88:910–915

    Article  PubMed  CAS  Google Scholar 

  80. McDermott KM, Liu BY, Tlsty TD, Pazour GJ (2010) Primary cilia regulate branching morphogenesis during mammary gland development. Curr Biol. doi:10.1016/j.cub.2010.02.048

    Google Scholar 

  81. Cervantes S, Lau J, Cano DA, Borromeo-Austin C, Hebrok M (2010) Primary cilia regulate Gli/Hedgehog activation in pancreas. Proc Natl Acad Sci USA 107:10109–10114

    Article  PubMed  CAS  Google Scholar 

  82. Nielsen SK, Mollgard K, Clement CA, Veland IR, Awan A, Yoder BK, Novak I, Christensen ST (2008) Characterization of primary cilia and Hedgehog signaling during development of the human pancreas and in human pancreatic duct cancer cell lines. Dev Dyn 237:2039–2052

    Article  PubMed  CAS  Google Scholar 

  83. Ramamurthy V, Cayouette M (2009) Development and disease of the photoreceptor cilium. Clin Genet 76:137–145

    Article  PubMed  CAS  Google Scholar 

  84. Adams NA, Awadein A, Toma HS (2007) The retinal ciliopathies. Ophthalmic Genet 28:113–125

    Article  PubMed  CAS  Google Scholar 

  85. Clement CA, Kristensen SG, Mollgard K, Pazour GJ, Yoder BK, Larsen LA, Christensen ST (2009) The primary cilium coordinates early cardiogenesis and hedgehog signaling in cardiomyocyte differentiation. J Cell Sci 122:3070–3082

    Article  PubMed  CAS  Google Scholar 

  86. Slough J, Cooney L, Brueckner M (2008) Monocilia in the embryonic mouse heart suggest a direct role for cilia in cardiac morphogenesis. Dev Dyn 237:2304–2314

    Article  PubMed  Google Scholar 

  87. Poelmann RE, Van der Heiden K, Gittenberger-de Groot A, Hierck BP (2008) Deciphering the endothelial shear stress sensor. Circulation 117:1124–1126

    Article  PubMed  Google Scholar 

  88. Van der Heiden K, Hierck BP, Krams R, de Crom R, Cheng C, Baiker M, Pourquie MJ, Alkemade FE, DeRuiter MC, Gittenberger-de Groot AC, Poelmann RE (2008) Endothelial primary cilia in areas of disturbed flow are at the base of atherosclerosis. Atherosclerosis 196:542–550

    Article  PubMed  Google Scholar 

  89. Hierck BP, Van der Heiden K, Alkemade FE, Van de Pas S, Van Thienen JV, Groenendijk BC, Bax WH, Van der Laarse A, Deruiter MC, Horrevoets AJ, Poelmann RE (2008) Primary cilia sensitize endothelial cells for fluid shear stress. Dev Dyn 237:725–735

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We apologize to our colleagues whose insightful work was not included due to size constraints. This work was supported by a grant from the Italian Telethon Foundation and grant EUCILIA-HEALTH-F2-2007-201804.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brunella Franco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Angelo, A., Franco, B. The primary cilium in different tissues—lessons from patients and animal models. Pediatr Nephrol 26, 655–662 (2011). https://doi.org/10.1007/s00467-010-1650-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-010-1650-7

Keywords

Navigation