Skip to main content

Structural Instability of Gold and Bimetallic Nanowires Using Monte Carlo Simulation

  • Chapter
  • First Online:
Recent Advances in Computational Optimization

Abstract

In this paper, we present a method for optimizing of metal nanostructures. The core of the method is a lattice Monte Carlo method with different lattices combined with an approach from molecular dynamics. Interaction between atoms is calculated using multi-body tight-binding model. The method allows solving of problems with periodic boundary conditions. It can be used for modeling of one-dimensional and two-dimensional atomic structures. If periodic boundary conditions are not given, we assume finite dimensions of the model lattice. In addition, automatic relaxation of the crystal lattice can be performed in order to minimize further the potential energy of the system. A computer implementation of the method is developed. It uses the commonly accepted XYZ format for describing atomic structures and passing input parameters. We perform two series of simulations to study the size, composition and temperature dependent surface segregation behaviors and structural atomic instability of Au–Ag nanowires. We found that the most stable mixing configuration of bimetallic nanowires has Ag-rich surface and Au-rich subsurface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baibuz, E., Vigonski, S., Lahtinena, J., Zhao, J., Jansson, V., Zadin, V., Djurabekova, F.: Migration barriers for surface diffusion on a rigid lattice: challenges and solutions. Comput. Mater. Sci. 146, 287–302 (2018)

    Article  Google Scholar 

  2. Bilalbegović, G.: Structures and melting in infinite gold nanowires. Solid State Commun. 115, 73–76 (2000)

    Article  Google Scholar 

  3. Calvo, F.: Solid-solution precursor to melting in onion-ring Pd-Pt nanoclusters: A case of second-order-like phase change? Faraday Discuss. 138, 75–88 (2008)

    Article  Google Scholar 

  4. Cleri, F., Rosato, V.: Tight-binding potentials for transition metals and alloys. Phys. Rev. B 48, 22–33 (1993)

    Article  Google Scholar 

  5. Davis, J., Johnston, R., Rubinovich, L., Polak, M.: Comparative modelling of chemical ordering in palladium-iridium nanoalloys. J. Chem. Phys. 141, 224307 (2014)

    Article  Google Scholar 

  6. Deng, L., Hu, W., Deng, H., Xiao, S., Tang, J.: Au-Ag bimetallic nanoparticles: surface segregation and atomic-scale structure. J. Phys. Chem. C 115(23), 11355–11363 (2011)

    Article  Google Scholar 

  7. Diao, J., Gall, K., Dunn, M.L., Zimmerman, J.A.: Atomistic simulations of the yielding of gold nanowires. Acta Mater. 54(3), 643–653 (2006)

    Article  Google Scholar 

  8. Ferrando, R., Fortunelli, A., Johnston, R.: Searching for the optimum structures of alloy nanoclusters. Phys. Chem. Chem. Phys. 10, 640–649 (2008)

    Article  Google Scholar 

  9. Gilroy, K.D., Ruditskiy, A., Peng, H-Ch., Qin, D., Xia, Y.: Bimetallic nanocrystals: syntheses, properties, and applications. Chem. Rev. 116(18), 10414–10472 (2016)

    Article  Google Scholar 

  10. Gorshkov, V., Privman, V.: Kinetic Monte Carlo model of breakup of nanowires into chains of nanoparticles. J. Appl. Phys. 122(20), 204301 (2017)

    Article  Google Scholar 

  11. Granberg, F., Parviainen, S., Djurabekova, F., Nordlund, K.: Investigation of the thermal stability of Cu nanowires using atomistic simulations. J. Appl. Phys. 115(21), 213518 (2014)

    Article  Google Scholar 

  12. Hausera, A.W., Schnedlitz, M., Ernst, W.E.: A coarse-grained Monte Carlo approach to diffusion processes in metallic nanoparticles. Eur. Phys. J. D 71, 150 (2017)

    Article  Google Scholar 

  13. He, X., Cheng, F., Chen, Z.-X.: The lattice kinetic Monte Carlo simulation of atomic diffusion and structural transformation for gold. Sci. Rep. 6(1), 33128 (2016)

    Article  Google Scholar 

  14. Karim, S., Toimil-Molares, M.E., Balogh, A.G., et al.: Morphological evolution of Au nanowires controlled by Rayleigh instability. Nanotechnology 17(24), 5954–5959 (2006)

    Article  Google Scholar 

  15. Knez, D., Schnedlitz, M., Lasserus, M., Schiffmann, A., Ernst, W.E., Hofer, F.: Modelling electron beam induced dynamics in metallic nanoclusters. Ultramicroscopy 192, 69–79 (2018)

    Article  Google Scholar 

  16. Langley, D.P., Lagrange, M., Giusti, G., Jiménez, C., et al.: Metallic nanowire networks: effects of thermal annealing on electrical resistance. Nanoscale 6(22), 13535–13543 (2014)

    Article  Google Scholar 

  17. Li, H., Biser, J.M., Perkins, J.T., Dutta, S., et al.: Thermal stability of Cu nanowires on a sapphire substrate. J. Appl. Phys. 103(2), 024315 (2008)

    Article  Google Scholar 

  18. Liu, W., Chen, P., Qiu, R., Khan, M., et al.: A molecular dynamics simulation study of irradiation induced defects in gold nanowire. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 405, 22–30 (2017)

    Article  Google Scholar 

  19. Luo, M., Liu, Y., Huang, W., Qiao, W.: Towards flexible transparent electrodes based on carbon and metallic materials. Micromachines 8(1), 12 (2017)

    Article  Google Scholar 

  20. Myshlavtsev, A.V., Stishenko, P.V.: Modification of the Metropolis algorithm for modeling metallic nanoparticles. Omsk Sci. Newsp. 1(107), 21–25 (2012). (in Russian)

    Google Scholar 

  21. Naik, J., Cheneler, D., Bowen, J., Prewett, P.D.: Liquid-like behaviour of gold nanowire bridges. Appl. Phys. Lett. 111, 073104 (2017)

    Article  Google Scholar 

  22. Oh, H., Lee, J., Lee, M.: Transformation of silver nanowires into nanoparticles by Rayleigh instability: Comparison between laser irradiation and heat treatment. Appl. Surf. Sci. 427, 65–73 (2018)

    Article  Google Scholar 

  23. Oh, Y., Lee, M.: Single-pulse transformation of Ag thin film into nanoparticles via laser-induced dewetting. Appl. Surf. Sci. 399(31), 555–564 (2017)

    Article  Google Scholar 

  24. Olsson, P.A.T., Park, H.S.: Atomistic study of the buckling of gold nanowires. Acta Mater. 59(10), 3883–3894 (2011)

    Article  Google Scholar 

  25. Panizon, E., Olmos-Asar, J., Peressi, M., Ferrando, R.: The study of the structure and thermodynamics of CuNi nanoalloys using a new DFT-fitted atomistic potential. Phys. Chem. Chem. Phys. 17, 28068–28075 (2015)

    Article  Google Scholar 

  26. Parsina, I., DiPaola, C., Baletto, F.: A novel structural motif for free CoPt nanoalloys. Nanoscale 4, 1160–1166 (2012)

    Article  Google Scholar 

  27. Paz-Borbon, L., Mortimer-Jones, T., Johnston, R., Posada-Amarillas, A., et al.: Structures and energetics of 98 atom Pd–Pt nanoalloys: potential stability of the Leary tetrahedron for bimetallic nanoparticles. Phys. Chem. Chem. Phys. 9, 5202–5208 (2007)

    Article  Google Scholar 

  28. Rauber, M., Muench, F., Toimil-Molares, M.E., Ensinger, W.: Thermal stability of electrodeposited platinum nanowires and morphological transformations at elevated temperatures. Nanotechnology 23(47), 475710 (2012)

    Article  Google Scholar 

  29. Sannicolo, T., Lagrange, M., Cabos, A., et al.: Metallic nanowire-based transparent electrodes for next generation flexible devices: a review. Small 12(44), 6052–6075 (2016)

    Article  Google Scholar 

  30. Schebarchov, D., Wales, D.: A new paradigm for structure prediction in multicomponent systems. J Chem Phys. 139(22), 221101 (2013)

    Article  Google Scholar 

  31. Schebarchov, D., Wales, D.: Quasi-combinatorial energy landscapes for nanoalloy structure optimization. Phys. Chem. Chem. Phys. 17, 28331–28338 (2015)

    Article  Google Scholar 

  32. Schnedlitz, M., Lasserus, M., Meyer, R., Knez, D., et al.: Stability of core−shell nanoparticles for catalysis at elevated temperatures: structural inversion in the Ni−Au system observed at atomic resolution. Chem. Mater. 30, 1113–1120 (2018)

    Article  Google Scholar 

  33. Shayeghi, A., Götz, D., Davis, J.B.A., Schäfer, R., Johnston, R.L.: Pool-BCGA: a parallelised generation-free genetic algorithm for the ab initio global optimisation of nanoalloy clusters. Phys. Chem. Chem. Phys. 17, 2104 (2015)

    Article  Google Scholar 

  34. Toai, T.J., Rossi, G., Ferrando, R.: Global optimisation and growth simulation of AuCu clusters. Faraday Discuss. 138, 49–58 (2008)

    Article  Google Scholar 

  35. Vigonski, S., Jansson, V., Vlassov, S., Polyakov, B., et al.: Au nanowire junction breakup through surface atom diffusion. Nanotechnology 29, 015704 (2018)

    Article  Google Scholar 

  36. Wang, B., Han, Y., Xu, Sh, Qiu, L., Ding, F., Lou, J., Lu, Y.: Mechanically assisted self-healing of ultrathin gold nanowires. Small 14(20), 1704085 (2018)

    Article  Google Scholar 

  37. Xu, Sh, Li, P., Lu, Y.: In situ atomic-scale analysis of Rayleigh instability in ultrathin gold nanowires. Nano Res. 11(2), 625–632 (2018)

    Article  Google Scholar 

  38. Zepeda-Ruiz, L.A., Sadigh, B., Biener, J., Hodge, A.M., et al.: Mechanical response of freestanding Au nanopillars under compression. Appl. Phys. Lett. 91(10), 101907 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the Russian Foundation for Basic Research project No. 18-38-00571 mol_a and National Scientific Program “Information and Communication Technologies for a Single Digital Market in Science, Education and Security (ICTinSES)”, Ministry of Education and Science—Bulgaria and the Bulgarian NSF under the grant DFNI-DN 12/5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leoneed Kirilov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Myasnichenko, V., Sdobnyakov, N., Kirilov, L., Mikhov, R., Fidanova, S. (2020). Structural Instability of Gold and Bimetallic Nanowires Using Monte Carlo Simulation. In: Fidanova, S. (eds) Recent Advances in Computational Optimization. Studies in Computational Intelligence, vol 838. Springer, Cham. https://doi.org/10.1007/978-3-030-22723-4_9

Download citation

Publish with us

Policies and ethics