Skip to main content

Endurance Anemia, Relevance to Triathlon

  • Chapter
  • First Online:
Triathlon Medicine
  • 1311 Accesses

Abstract

Since anemia limits the delivery of oxygen to exercising muscle, avoiding anemia is essential for triathletes to maintain or improve athletic performance. However, exercise-associated conditions, such as iron deficiency, hypoxia, and inflammation, can often be pathogenetically linked to sports anemia. This chapter summarizes recent advances showing the relevance of anemia for physical exercise and athletic performance. In particular, the alterations in the control of iron homeostasis and the relevance of iron-deficient anemia to sports physiology are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388:1545–602.

    Article  Google Scholar 

  2. Kassebaum NJ, Jasrasaria R, Naghavi M, Wulf SK, Johns N, Lozano R, et al. A systematic analysis of global anemia burden from 1990 to 2010. Blood. 2014;123:615–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jacobs RA, Rasmussen P, Siebenmann C, et al. Determinants of time trial performance and maximal incremental exercise in highly trained endurance athletes. J Appl Physiol. 2011;111:1422–30.

    Article  CAS  PubMed  Google Scholar 

  4. Kargotich S, Goodman C, Keast D, Morton AR. The influence of exercise-induced plasma volume changes on the interpretation of biochemical parameters used for monitoring exercise, training and sport. Sports Med. 1998;26:101–17.

    Article  CAS  PubMed  Google Scholar 

  5. Siebenmann C, Robach P, Lundby C. Regulation of blood volume in lowlanders exposed to high altitude. J Appl Physiol. 2017;123:957–66.

    Article  CAS  PubMed  Google Scholar 

  6. Eichner ER. Fatigue of anemia. Nutr Rev. 2001;59:517–9.

    Google Scholar 

  7. Woodson RD, Wills RE, Lenfant C. Effect of acute and established anemia on O2 transport at rest, submaximal and maximal work. J Appl Physiol Respir Environ Exerc Physiol. 1978;44:36–43.

    CAS  PubMed  Google Scholar 

  8. Lundby C, Robach P. Performance enhancement: what are the physiological limits? Physiology (Bethesda). 2015;30:282–92.

    CAS  Google Scholar 

  9. Kanstrup IL, Ekblom B. Blood volume and hemoglobin concentration as determinants of maximal aerobic power. Med Sci Sports Exerc. 1984;16:256–62.

    Article  CAS  PubMed  Google Scholar 

  10. Heinicke K, Wolfarth B, Winchenbach P, Biermann B, Schmid A, Huber G, et al. Blood volume and hemoglobin mass in elite athletes of different disciplines. Int J Sports Med. 2001;22:504–12.

    Article  CAS  PubMed  Google Scholar 

  11. Schuler B, Arras M, Keller S, et al. Optimal hematocrit for maximal exercise performance in acute and chronic erythropoietin-treated mice. Proc Natl Acad Sci U S A. 2010;107:419–23.

    Article  PubMed  Google Scholar 

  12. Parks RB, Hetzel SJ, Brooks MA. Iron deficiency and anemia among collegiate athletes: a retrospective chart review. Med Sci Sports Exerc. 2017;49:1711–5.

    Article  PubMed  Google Scholar 

  13. Petkus DL, Murray-Kolb LE, De Souza MJ. The unexplored crossroads of the female athlete triad and iron deficiency: a narrative review. Sports Med. 2017;47:1721–37.

    Article  PubMed  Google Scholar 

  14. Telford RD, Sly GJ, Hahn AG, Cunningham RB, Bryant C, Smith JA. Footstrike is the major cause of hemolysis during running. J Appl Physiol. 2003;94:38–42.

    Article  CAS  PubMed  Google Scholar 

  15. Xu W, Barrientos T, Andrews NC. Iron and copper in mitochondrial diseases. Cell Metab. 2013;17:319–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cairo G, Bernuzzi F, Recalcati S. A precious metal: iron, an essential nutrient for all cells. Genes Nutr. 2006;1:25–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Buratti P, Gammella E, Rybinska I, Cairo G, Recalcati S. Recent advances in iron metabolism: relevance for health, exercise and performance. Med Sci Sports Exerc. 2015;47:1596–604.

    Article  CAS  PubMed  Google Scholar 

  18. Hentze MW, Muckenthaler MU, Galy B, Camaschella C. Two to tango: regulation of Mammalian iron metabolism. Cell. 2010;142:24–38.

    Article  CAS  PubMed  Google Scholar 

  19. Pantopoulos K, Porwal SK, Tartakoff A, Devireddy L. Mechanisms of mammalian iron homeostasis. Biochemistry. 2012;51:5705–24.

    Article  CAS  PubMed  Google Scholar 

  20. Recalcati S, Minotti G, Cairo G. Iron regulatory proteins: from molecular mechanisms to drug development. Antioxid Redox Signal. 2010;13:1593–616.

    Article  CAS  PubMed  Google Scholar 

  21. Ganz T. Hepcidin and iron regulation, 10 years later. Blood. 2011;117:4425–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhao N, Zhang AS, Enns CA. Iron regulation by hepcidin. J Clin Invest. 2013;123:2337–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kautz L, Nemeth E. Molecular liaisons between erythropoiesis and iron metabolism. Blood. 2014;124:479–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kautz L, Jung G, Valore EV, Rivella S, Nemeth E, Ganz T. Identification of erythroferrone as an erythroid regulator of iron metabolism. Nat Genet. 2014;46:678–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mochel F, Knight MA, Tong WH, et al. Splice mutation in the iron-sulfur cluster scaffold protein ISCU causes myopathy with exercise intolerance. Am J Hum Genet. 2008;82:652–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 2013;17:162–84.

    Article  CAS  PubMed  Google Scholar 

  27. Radak Z, Zhao Z, Koltai E, Ohno H, Atalay M. Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid Redox Signal. 2013;18:1208–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rodriguez NR, Di Marco NM, Langley S, American Dietetic Association; Dietitians of Canada; American College of Sports Medicine. American College of Sports Medicine position stand. Nutrition and athletic performance. Med Sci Sports Exerc. 2009;41:709–31.

    Article  CAS  PubMed  Google Scholar 

  29. Reinke S, Taylor WR, Duda GN, et al. Absolute and functional iron deficiency in professional athletes during training and recovery. Int J Cardiol. 2012;156:186–91.

    Article  PubMed  Google Scholar 

  30. Hinton PS. Iron and the endurance athlete. Appl Physiol Nutr Metab. 2014;39:1012–8.

    Article  CAS  PubMed  Google Scholar 

  31. Crouter SE, DellaValle DM, Haas JD. Relationship between physical activity, physical performance, and iron status in adult women. Appl Physiol Nutr Metab. 2012;37:697–705.

    Article  CAS  PubMed  Google Scholar 

  32. Haas JD, Brownlie T. Iron deficiency and reduced work capacity: a critical review of the research to determine a causal relationship. J Nutr. 2001;131:676S–88S.

    Article  CAS  PubMed  Google Scholar 

  33. DellaValle DM. Iron supplementation for female athletes: effects on iron status and performance outcomes. Curr Sports Med Rep. 2013;12:234–9.

    Article  PubMed  Google Scholar 

  34. Pasricha SR, Low M, Thompson J, Farrell A, De-Regil LM. Iron supplementation benefits physical performance in women of reproductive age: a systematic review and meta-analysis. J Nutr. 2014;144:906–14.

    Article  CAS  PubMed  Google Scholar 

  35. Beard JL. Iron biology in immune function, muscle metabolism and neuronal functioning. J Nutr. 2001;131:568S–79S.

    Article  CAS  PubMed  Google Scholar 

  36. Krayenbuehl PA, Battegay E, Breymann C, Furrer J, Schulthess G. Intravenous iron for the treatment of fatigue in nonanemic, premenopausal women with low serum ferritin concentration. Blood. 2011;118:3222–7.

    Article  CAS  PubMed  Google Scholar 

  37. Beutler E, Larsh SE, Gurney CW. Iron therapy in chronically fatigued, nonanemic women: a double-blind study. Ann Intern Med. 1960;52:378–94.

    Article  CAS  PubMed  Google Scholar 

  38. Willis WT, Gohil K, Brooks GA, Dallman PR. Iron deficiency: improved exercise performance within 15 hours of iron treatment in rats. J Nutr. 1990;120:909–16.

    Article  CAS  PubMed  Google Scholar 

  39. Robach P, Cairo G, Gelfi C, et al. Strong iron demand during hypoxia-induced erythropoiesis is associated with down-regulation of iron-related proteins and myoglobin in human skeletal muscle. Blood. 2007;109:4724–31.

    Article  CAS  PubMed  Google Scholar 

  40. Okonko DO, Mandal AK, Missouris CG, Poole-Wilson PA. Disordered iron homeostasis in chronic heart failure: prevalence, predictors, and relation to anemia, exercise capacity, and survival. J Am Coll Cardiol. 2011;58:1241–51.

    Article  CAS  PubMed  Google Scholar 

  41. Coates A, Mountjoy M, Burr J. Incidence of iron deficiency and iron deficient anemia in elite runners and triathletes. Clin J Sport Med. 2017;27:493–8.

    Article  PubMed  Google Scholar 

  42. Roecker L, Meier-Buttermilch R, Brechtel L, Nemeth E, Ganz T. Iron-regulatory protein hepcidin is increased in female athletes after a marathon. Eur J Appl Physiol. 2005;95:569–71.

    Article  CAS  PubMed  Google Scholar 

  43. Auersperger I, Knap B, Jerin A, et al. The effects of 8 weeks of endurance running on hepcidin concentrations, inflammatory parameters, and iron status in female runners. Int J Sport Nutr Exerc Metab. 2012;22:55–63.

    Article  CAS  PubMed  Google Scholar 

  44. Troadec MB, Lainé F, Daniel V, et al. Daily regulation of serum and urinary hepcidin is not influenced by submaximal cycling exercise in humans with normal iron metabolism. Eur J Appl Physiol. 2009;106:435–43.

    Article  CAS  PubMed  Google Scholar 

  45. Peeling P. Exercise as a mediator of hepcidin activity in athletes. Eur J Appl Physiol. 2010;110:877–83.

    Article  CAS  PubMed  Google Scholar 

  46. Kong WN, Gao G, Chang YZ. Hepcidin and sports anemia. Cell Biosci. 2014;4:19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Domínguez R, Sánchez-Oliver AJ, Mata-Ordoñez F, Feria-Madueño A, Grimaldi-Puyana M, López-Samanes Á, Pérez-López A. Effects of an acute exercise bout on serum hepcidin levels. Nutrients 2018;10(2). https://doi.org/10.3390/nu10020209.

  48. Zourdos MC, Sanchez-Gonzalez M, Mahoney SE. A brief review: the implications of iron supplementation for marathon runners on health and performance. J Strength Cond Res. 2015;29(2):559–65.

    Article  PubMed  Google Scholar 

  49. Pedlar CR, Brugnara C, Bruinvels G, Burden R. Iron balance and iron supplementation for the female athlete: a practical approach. Med Sci Sports Exerc. 2017;49:1711–5.

    Article  Google Scholar 

  50. De Matos LD, Azevedo LF, Vieira ML, et al. The use of exogenous iron by professional cyclists pervades abdominal organs but not the heart. Int J Cardiol. 2013;167:2341–3.

    Article  PubMed  Google Scholar 

  51. Reardon TF, Allen DG. Iron injections in mice increase skeletal muscle iron content, induce oxidative stress and reduce exercise performance. Exp Physiol. 2009;94:720–30.

    Article  CAS  PubMed  Google Scholar 

  52. Woods A, Garvican-Lewis LA, Saunders PU, et al. Four weeks of IV iron supplementation reduces perceived fatigue and mood disturbance in distance runners. PLoS One. 2014;9(9):e108042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Conflict of Interest Statement

No conflicts of interest are declared by the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaetano Cairo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cairo, G. (2020). Endurance Anemia, Relevance to Triathlon. In: Migliorini, S. (eds) Triathlon Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-22357-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22357-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22356-4

  • Online ISBN: 978-3-030-22357-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics