Skip to main content

Targeting DNA Hypomethylation in Malignancy by Epigenetic Therapies

  • Chapter
  • First Online:
Human Cell Transformation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1164))

Abstract

DNA methylation is a chemically reversible epigenetic modification that regulates the chromatin structure and gene expression, and thereby takes part in various cellular processes like embryogenesis, genomic imprinting, X-chromosome inactivation, and genome stability. Alterations in the normal methylation levels of DNA may contribute to the development of pathological conditions like cancer. Even though both hypo- and hypermethylation-mediated abnormalities are prevalent in the cancer genome, the field of cancer epigenetics has been more focused on targeting hypermethylation. As a result, DNA hypomethylation-mediated abnormalities remained relatively less explored, and currently, there are no approved drugs that can be clinically used to target hypomethylation. Understanding the precise role of DNA hypomethylation is not only crucial from a mechanistic point of view but also for the development of pharmacological agents that can reverse the hypomethylated state of the DNA. This chapter focuses on the causes and impact of DNA hypomethylation in the development of cancer and describes the possible ways to pharmacologically target it, especially by using a naturally occurring physiologic agent S-adenosylmethionine (SAM).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mahmood, N., & Rabbani, S. A. (2017). DNA methylation and breast cancer: Mechanistic and therapeutic applications. Trends Cancer Research, 12, 1–18.

    Google Scholar 

  2. Compere, S. J., & Palmiter, R. D. (1981). DNA methylation controls the inducibility of the mouse metallothionein-I gene in lymphoid cells. Cell, 25(1), 233–240.

    Article  CAS  PubMed  Google Scholar 

  3. Holliday, R., & Pugh, J. E. (1975). DNA modification mechanisms and gene activity during development. Science, 187(4173), 226–232.

    Article  CAS  PubMed  Google Scholar 

  4. Jeltsch, A. (2002). Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA methyltransferases. Chembiochem, 3(4), 274–293.

    Article  CAS  PubMed  Google Scholar 

  5. Moore, L. D., Le, T., & Fan, G. (2013). DNA methylation and its basic function. Neuropsychopharmacology, 38(1), 23.

    Article  CAS  PubMed  Google Scholar 

  6. Sánchez-Romero, M. A., Cota, I., & Casadesús, J. (2015). DNA methylation in bacteria: From the methyl group to the methylome. Current Opinion in Microbiology, 25, 9–16.

    Article  CAS  PubMed  Google Scholar 

  7. Soojin, V. Y. (2012). Birds do it, bees do it, worms and ciliates do it too: DNA methylation from unexpected corners of the tree of life. Genome Biology, 13(10), 174.

    Article  Google Scholar 

  8. Suzuki, M. M., & Bird, A. (2008). DNA methylation landscapes: Provocative insights from epigenomics. Nature Reviews Genetics, 9(6), 465.

    Article  CAS  PubMed  Google Scholar 

  9. Molloy, P. L. (2008). DNA hypomethylation in cancer. In Cancer epigenetics (pp. 17–47). Boca Raton, FL: CRC Press.

    Google Scholar 

  10. Rollins, R. A., Haghighi, F., Edwards, J. R., Das, R., Zhang, M. Q., Ju, J., et al. (2006). Large-scale structure of genomic methylation patterns. Genome Research, 16(2), 157–163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Peinado, M. A. (2011). Hypomethylation of DNA. In M. Schwab (Ed.), Encyclopedia of cancer (pp. 1791–1792). Berlin: Springer.

    Chapter  Google Scholar 

  12. Gore, S. D., Jones, C., & Kirkpatrick, P. (2006). Decitabine. London: Nature Publishing Group.

    Book  Google Scholar 

  13. Issa, J.-P. J., Kantarjian, H. M., & Kirkpatrick, P. (2005). Azacitidine. London: Nature Publishing Group.

    Google Scholar 

  14. Feinberg, A. P., & Vogelstein, B. (1983). Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature, 301(5895), 89.

    Article  CAS  PubMed  Google Scholar 

  15. Feinberg, A. P., & Vogelstein, B. (1983). Hypomethylation of ras oncogenes in primary human cancers. Biochemical and Biophysical Research Communications, 111(1), 47–54.

    Article  CAS  PubMed  Google Scholar 

  16. Gama-Sosa, M. A., Slagel, V. A., Trewyn, R. W., Oxenhandler, R., Kuo, K. C., Gehrke, C. W., et al. (1983). The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Research, 11(19), 6883–6894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Feinberg, A. P., & Tycko, B. (2004). The history of cancer epigenetics. Nature Reviews Cancer, 4(2), 143.

    Article  CAS  PubMed  Google Scholar 

  18. Adorján, P., Distler, J., Lipscher, E., Model, F., Müller, J., Pelet, C., et al. (2002). Tumour class prediction and discovery by microarray-based DNA methylation analysis. Nucleic Acids Research, 30(5), e21.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Iacobuzio-Donahue, C. A., Maitra, A., Olsen, M., Lowe, A. W., Van Heek, N. T., Rosty, C., et al. (2003). Exploration of global gene expression patterns in pancreatic adenocarcinoma using cDNA microarrays. The American Journal of Pathology, 162(4), 1151–1162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stefanska, B., Huang, J., Bhattacharyya, B., Suderman, M., Hallett, M., Han, Z.-G., et al. (2011). Definition of the landscape of promoter DNA hypomethylation in liver cancer. Cancer Research, 71(17), 5891–5903.

    Article  CAS  PubMed  Google Scholar 

  21. Hoffmann, M. J., & Schulz, W. A. (2005). Causes and consequences of DNA hypomethylation in human cancer. Biochemistry and Cell Biology, 83(3), 296–321.

    Article  CAS  PubMed  Google Scholar 

  22. Giovannucci, E. (2004). Alcohol, one-carbon metabolism, and colorectal cancer: Recent insights from molecular studies. The Journal of Nutrition, 134(9), 2475S–2481S.

    Article  CAS  PubMed  Google Scholar 

  23. Pogribny, I. P., Ross, S. A., Wise, C., Pogribna, M., Jones, E. A., Tryndyak, V. P., et al. (2006). Irreversible global DNA hypomethylation as a key step in hepatocarcinogenesis induced by dietary methyl deficiency. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 593(1), 80–87.

    Article  CAS  PubMed  Google Scholar 

  24. James, S. J., Pogribny, I. P., Pogribna, M., Miller, B. J., Jernigan, S., & Melnyk, S. (2003). Mechanisms of DNA damage, DNA hypomethylation, and tumor progression in the folate/methyl-deficient rat model of hepatocarcinogenesis. The Journal of Nutrition, 133(11), 3740S–3747S.

    Article  CAS  PubMed  Google Scholar 

  25. Kim, Y. I. (2000). Methylenetetrahydrofolate reductase polymorphisms, folate, and cancer risk: A paradigm of gene-nutrient interactions in carcinogenesis. Nutrition Reviews, 58(7), 205–209.

    Article  CAS  PubMed  Google Scholar 

  26. Hoffman, R. M. (1984). Altered methionine metabolism, DNA methylation and oncogene expression in carcinogenesis: A review and synthesis. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 738(1–2), 49–87.

    Article  CAS  Google Scholar 

  27. Smith, Z. D., & Meissner, A. (2013). DNA methylation: Roles in mammalian development. Nature Reviews Genetics, 14(3), 204.

    Article  CAS  PubMed  Google Scholar 

  28. Cheishvili, D., Boureau, L., & Szyf, M. (2015). DNA demethylation and invasive cancer: Implications for therapeutics. British Journal of Pharmacology, 172(11), 2705–2715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cortázar, D., Kunz, C., Selfridge, J., Lettieri, T., Saito, Y., MacDougall, E., et al. (2011). Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability. Nature, 470(7334), 419–423.

    Article  CAS  PubMed  Google Scholar 

  30. Cortellino, S., Xu, J., Sannai, M., Moore, R., Caretti, E., Cigliano, A., et al. (2011). Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell, 146(1), 67–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kohli, R. M., & Zhang, Y. (2013). TET enzymes, TDG and the dynamics of DNA demethylation. Nature, 502(7472), 472–479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tahiliani, M., Koh, K. P., Shen, Y., Pastor, W. A., Bandukwala, H., Brudno, Y., et al. (2009). Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science, 324(5929), 930–935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Karpf, A. R., & Matsui, S.-I. (2005). Genetic disruption of cytosine DNA methyltransferase enzymes induces chromosomal instability in human cancer cells. Cancer Research, 65(19), 8635–8639.

    Article  CAS  PubMed  Google Scholar 

  34. Gaudet, F., Hodgson, J. G., Eden, A., Jackson-Grusby, L., Dausman, J., Gray, J. W., et al. (2003). Induction of tumors in mice by genomic hypomethylation. Science, 300(5618), 489–492.

    Article  CAS  PubMed  Google Scholar 

  35. Yamada, Y., Jackson-Grusby, L., Linhart, H., Meissner, A., Eden, A., Lin, H., et al. (2005). Opposing effects of DNA hypomethylation on intestinal and liver carcinogenesis. Proceedings of the National Academy of Sciences, 102(38), 13580–13585.

    Article  CAS  Google Scholar 

  36. Eden, A., Gaudet, F., Waghmare, A., & Jaenisch, R. (2003). Chromosomal instability and tumors promoted by DNA hypomethylation. Science, 300(5618), 455.

    Article  CAS  PubMed  Google Scholar 

  37. Li, E. (2002). Chromatin modification and epigenetic reprogramming in mammalian development. Nature Reviews Genetics, 3(9), 662.

    Article  CAS  PubMed  Google Scholar 

  38. Ehrlich, M. (2003). The ICF syndrome, a DNA methyltransferase 3B deficiency and immunodeficiency disease. Clinical Immunology, 109(1), 17–28.

    Article  CAS  PubMed  Google Scholar 

  39. Xie, Z.-H., Huang, Y.-N., Chen, Z.-X., Riggs, A. D., Ding, J.-P., Gowher, H., et al. (2006). Mutations in DNA methyltransferase DNMT3B in ICF syndrome affect its regulation by DNMT3L. Human Molecular Genetics, 15(9), 1375–1385.

    Article  CAS  PubMed  Google Scholar 

  40. Bhattacharya, S. K., Ramchandani, S., Cervoni, N., & Szyf, M. (1999). A mammalian protein with specific demethylase activity for mCpG DNA. Nature, 397(6720), 579.

    Article  CAS  PubMed  Google Scholar 

  41. Liu, C., Ou, T., Wu, C., Li, R., Lin, Y., Lin, C., et al. (2011). Global DNA methylation, DNMT1, and MBD2 in patients with systemic lupus erythematosus. Lupus, 20(2), 131–136.

    Article  CAS  PubMed  Google Scholar 

  42. Sheng, W., Qian, Y., Wang, H., Ma, X., Zhang, P., Chen, L., et al. (2013). Association between mRNA levels of DNMT1, DNMT3A, DNMT3B, MBD2 and LINE-1 methylation status in infants with tetralogy of Fallot. International Journal of Molecular Medicine, 32(3), 694–702.

    Article  CAS  PubMed  Google Scholar 

  43. Fraga, M. F., Ballestar, E., Villar-Garea, A., Boix-Chornet, M., Espada, J., Schotta, G., et al. (2005). Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nature Genetics, 37(4), 391.

    Article  CAS  PubMed  Google Scholar 

  44. Wilson, A. S., Power, B. E., & Molloy, P. L. (2007). DNA hypomethylation and human diseases. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1775(1), 138–162.

    Article  CAS  Google Scholar 

  45. Bannister, A. J., & Kouzarides, T. (2005). Reversing histone methylation. Nature, 436(7054), 1103.

    Article  CAS  PubMed  Google Scholar 

  46. Peters, A. H., O’Carroll, D., Scherthan, H., Mechtler, K., Sauer, S., Schöfer, C., et al. (2001). Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell, 107(3), 323–337.

    Article  CAS  PubMed  Google Scholar 

  47. Koturbash, I., Pogribny, I., & Kovalchuk, O. (2005). Stable loss of global DNA methylation in the radiation-target tissue—A possible mechanism contributing to radiation carcinogenesis? Biochemical and Biophysical Research Communications, 337(2), 526–533.

    Article  CAS  PubMed  Google Scholar 

  48. Chen, H., Li, S., Liu, J., Diwan, B. A., Barrett, J. C., & Waalkes, M. P. (2004). Chronic inorganic arsenic exposure induces hepatic global and individual gene hypomethylation: Implications for arsenic hepatocarcinogenesis. Carcinogenesis, 25(9), 1779–1786.

    Article  CAS  PubMed  Google Scholar 

  49. Sadikovic, B., & Rodenhiser, D. I. (2006). Benzopyrene exposure disrupts DNA methylation and growth dynamics in breast cancer cells. Toxicology and Applied Pharmacology, 216(3), 458–468.

    Article  CAS  PubMed  Google Scholar 

  50. Goldberg, B., Urnovitz, H. B., & Stricker, R. B. (2000). Beyond danger: Unmethylated CpG dinucleotides and the immunopathogenesis of disease. Immunology Letters, 73(1), 13–18.

    Article  CAS  PubMed  Google Scholar 

  51. Macnab, J., Adams, R., Rinaldi, A., Orr, A., & Clark, L. (1988). Hypomethylation of host cell DNA synthesized after infection or transformation of cells by herpes simplex virus. Molecular and Cellular Biology, 8(4), 1443–1448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jackson-Grusby, L., Beard, C., Possemato, R., Tudor, M., Fambrough, D., Csankovszki, G., et al. (2001). Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation. Nature Genetics, 27(1), 31.

    Article  CAS  PubMed  Google Scholar 

  53. Tubio, J. M., Li, Y., Ju, Y. S., Martincorena, I., Cooke, S. L., Tojo, M., et al. (2014). Extensive transduction of nonrepetitive DNA mediated by L1 retrotransposition in cancer genomes. Science, 345(6196), 1251343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Scott, E. C., Gardner, E. J., Masood, A., Chuang, N. T., Vertino, P. M., & Devine, S. E. (2016). A hot L1 retrotransposon evades somatic repression and initiates human colorectal cancer. Genome Research, 26(6), 745–755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Roman-Gomez, J., Jimenez-Velasco, A., Agirre, X., Cervantes, F., Sanchez, J., Garate, L., et al. (2005). Promoter hypomethylation of the LINE-1 retrotransposable elements activates sense/antisense transcription and marks the progression of chronic myeloid leukemia. Oncogene, 24(48), 7213.

    Article  CAS  PubMed  Google Scholar 

  56. Pakneshan, P., Têtu, B., & Rabbani, S. A. (2004). Demethylation of urokinase promoter as a prognostic marker in patients with breast carcinoma. Clinical Cancer Research, 10(9), 3035–3041.

    Article  CAS  PubMed  Google Scholar 

  57. Ehrlich, M. (2009). DNA hypomethylation in cancer cells. Epigenomics, 1(2), 239–259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lee, Y. M., Lee, J. Y., Kim, M. J., Bae, H. I., Park, J. Y., Kim, S. G., et al. (2006). Hypomethylation of the protein gene product 9.5 promoter region in gallbladder cancer and its relationship with clinicopathological features. Cancer Science, 97(11), 1205–1210.

    Article  CAS  PubMed  Google Scholar 

  59. Liu, H., Liu, W., Wu, Y., Zhou, Y., Xue, R., Luo, C., et al. (2005). Loss of epigenetic control of synuclein-γ gene as a molecular indicator of metastasis in a wide range of human cancers. Cancer Research, 65(17), 7635–7643.

    Article  CAS  PubMed  Google Scholar 

  60. Nishigaki, M., Aoyagi, K., Danjoh, I., Fukaya, M., Yanagihara, K., Sakamoto, H., et al. (2005). Discovery of aberrant expression of R-RAS by cancer-linked DNA hypomethylation in gastric cancer using microarrays. Cancer Research, 65(6), 2115–2124.

    Article  CAS  PubMed  Google Scholar 

  61. Ogishima, T., Shiina, H., Breault, J. E., Tabatabai, L., Bassett, W. W., Enokida, H., et al. (2005). Increased heparanase expression is caused by promoter hypomethylation and up-regulation of transcriptional factor early growth response-1 in human prostate cancer. Clinical Cancer Research, 11(3), 1028–1036.

    CAS  PubMed  Google Scholar 

  62. Paredes, J., Albergaria, A., Oliveira, J. T., Jerónimo, C., Milanezi, F., & Schmitt, F. C. (2005). P-cadherin overexpression is an indicator of clinical outcome in invasive breast carcinomas and is associated with CDH3 promoter hypomethylation. Clinical Cancer Research, 11(16), 5869–5877.

    Article  CAS  PubMed  Google Scholar 

  63. Sato, N., Fukushima, N., Matsubayashi, H., & Goggins, M. (2004). Identification of maspin and S100P as novel hypomethylation targets in pancreatic cancer using global gene expression profiling. Oncogene, 23(8), 1531.

    Article  CAS  PubMed  Google Scholar 

  64. Ye, L., Li, X., Kong, X., Wang, W., Bi, Y., Hu, L., et al. (2005). Hypomethylation in the promoter region of POMC gene correlates with ectopic overexpression in thymic carcinoids. Journal of Endocrinology, 185(2), 337–343.

    Article  CAS  PubMed  Google Scholar 

  65. Parashar, S., Cheishvili, D., Arakelian, A., Hussain, Z., Tanvir, I., Khan, H. A., et al. (2015). S-adenosylmethionine blocks osteosarcoma cells proliferation and invasion in vitro and tumor metastasis in vivo: Therapeutic and diagnostic clinical applications. Cancer Medicine, 4(5), 732–744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shukeir, N., Stefanska, B., Parashar, S., Chik, F., Arakelian, A., Szyf, M., et al. (2015). Pharmacological methyl group donors block skeletal metastasis in vitro and in vivo. British Journal of Pharmacology, 172(11), 2769–2781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ateeq, B., Unterberger, A., Szyf, M., & Rabbani, S. A. (2008). Pharmacological inhibition of DNA methylation induces proinvasive and prometastatic genes in vitro and in vivo. Neoplasia, 10(3), 266–278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yao, Y., & Dai, W. (2014). Genomic instability and cancer. Journal of Carcinogenesis & Mutagenesis, 5, 1000165.

    Google Scholar 

  69. Chen, R. Z., Pettersson, U., Beard, C., Jackson-Grusby, L., & Jaenisch, R. (1998). DNA hypomethylation leads to elevated mutation rates. Nature, 395(6697), 89.

    Article  CAS  PubMed  Google Scholar 

  70. Almeida, A., Kokalj-Vokac, N., Lefrancois, D., Viegas-Pequignot, E., Jeanpierre, M., Dutrillaux, B., et al. (1993). Hypomethylation of classical satellite DNA and chromosome instability in lymphoblastoid cell lines. Human Genetics, 91(6), 538–546.

    Article  CAS  PubMed  Google Scholar 

  71. Vilain, A., Bernardino, J., Gerbault-Seureau, M., Vogt, N., Niveleau, A., Lefrancois, D., et al. (2000). DNA methylation and chromosome instability in lymphoblastoid cell lines. Cytogenetic and Genome Research, 90(1–2), 93–101.

    Article  CAS  Google Scholar 

  72. Wong, N., Lam, W.-C., Bo-San Lai, P., Pang, E., Lau, W.-Y., & Johnson, P. J. (2001). Hypomethylation of chromosome 1 heterochromatin DNA correlates with q-arm copy gain in human hepatocellular carcinoma. The American Journal of Pathology, 159(2), 465–471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nakagawa, T., Kanai, Y., Ushijima, S., Kitamura, T., Kakizoe, T., & Hirohashi, S. (2005). DNA hypomethylation on pericentromeric satellite regions significantly correlates with loss of heterozygosity on chromosome 9 in urothelial carcinomas. The Journal of Urology, 173(1), 243–246.

    Article  CAS  PubMed  Google Scholar 

  74. Cadieux, B., Ching, T.-T., VandenBerg, S. R., & Costello, J. F. (2006). Genome-wide hypomethylation in human glioblastomas associated with specific copy number alteration, methylenetetrahydrofolate reductase allele status, and increased proliferation. Cancer Research, 66(17), 8469–8476.

    Article  CAS  PubMed  Google Scholar 

  75. Schulz, W. A., Elo, J. P., Florl, A. R., Pennanen, S., Santourlidis, S., Engers, R., et al. (2002). Genomewide DNA hypomethylation is associated with alterations on chromosome 8 in prostate carcinoma. Genes, Chromosomes and Cancer, 35(1), 58–65.

    Article  CAS  PubMed  Google Scholar 

  76. Batlle, E., & Clevers, H. (2017). Cancer stem cells revisited. Nature Medicine, 23(10), 1124.

    Article  CAS  PubMed  Google Scholar 

  77. Yu, Z., Pestell, T. G., Lisanti, M. P., & Pestell, R. G. (2012). Cancer stem cells. The International Journal of Biochemistry & Cell Biology, 44(12), 2144–2151.

    Article  CAS  Google Scholar 

  78. Lapidot, T., Sirard, C., Vormoor, J., Murdoch, B., Hoang, T., Caceres-Cortes, J., et al. (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 367(6464), 645.

    Article  CAS  PubMed  Google Scholar 

  79. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences, 100(7), 3983–3988.

    Article  CAS  Google Scholar 

  80. Singh, S. K., Clarke, I. D., Terasaki, M., Bonn, V. E., Hawkins, C., Squire, J., et al. (2003). Identification of a cancer stem cell in human brain tumors. Cancer Research, 63(18), 5821–5828.

    CAS  PubMed  Google Scholar 

  81. Bertolini, G., Roz, L., Perego, P., Tortoreto, M., Fontanella, E., Gatti, L., et al. (2009). Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment. Proceedings of the National Academy of Sciences, 106(38), 16281–16286.

    Article  CAS  Google Scholar 

  82. Chan, K. S., Espinosa, I., Chao, M., Wong, D., Ailles, L., Diehn, M., et al. (2009). Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells. Proceedings of the National Academy of Sciences, 106(33), 14016–14021.

    Article  CAS  Google Scholar 

  83. Li, C., Heidt, D. G., Dalerba, P., Burant, C. F., Zhang, L., Adsay, V., et al. (2007). Identification of pancreatic cancer stem cells. Cancer Research, 67(3), 1030–1037.

    Article  CAS  PubMed  Google Scholar 

  84. O’Brien, C. A., Pollett, A., Gallinger, S., & Dick, J. E. (2007). A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 445(7123), 106.

    Article  CAS  PubMed  Google Scholar 

  85. Prince, M., Sivanandan, R., Kaczorowski, A., Wolf, G., Kaplan, M., Dalerba, P., et al. (2007). Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proceedings of the National Academy of Sciences, 104(3), 973–978.

    Article  CAS  Google Scholar 

  86. Schatton, T., Murphy, G. F., Frank, N. Y., Yamaura, K., Waaga-Gasser, A. M., Gasser, M., et al. (2008). Identification of cells initiating human melanomas. Nature, 451(7176), 345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Suvà, M.-L., Riggi, N., Stehle, J.-C., Baumer, K., Tercier, S., Joseph, J.-M., et al. (2009). Identification of cancer stem cells in Ewing’s sarcoma. Cancer Research, 69(5), 1776–1781.

    Article  CAS  PubMed  Google Scholar 

  88. Wang, X., Kruithof-de Julio, M., Economides, K. D., Walker, D., Yu, H., Halili, M. V., et al. (2009). A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature, 461(7263), 495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yamashita, T., Ji, J., Budhu, A., Forgues, M., Yang, W., Wang, H. Y., et al. (2009). EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gastroenterology, 136(3), 1012–24. e4.

    Article  CAS  PubMed  Google Scholar 

  90. Yang, Z. F., Ho, D. W., Ng, M. N., Lau, C. K., Yu, W. C., Ngai, P., et al. (2008). Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell, 13(2), 153–166.

    Article  CAS  PubMed  Google Scholar 

  91. Zhang, S., Balch, C., Chan, M. W., Lai, H.-C., Matei, D., Schilder, J. M., et al. (2008). Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Research, 68(11), 4311–4320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bao, S., Wu, Q., McLendon, R. E., Hao, Y., Shi, Q., Hjelmeland, A. B., et al. (2006). Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature, 444(7120), 756.

    Article  CAS  PubMed  Google Scholar 

  93. Todaro, M., Alea, M. P., Di Stefano, A. B., Cammareri, P., Vermeulen, L., Iovino, F., et al. (2007). Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell, 1(4), 389–402.

    Article  CAS  PubMed  Google Scholar 

  94. Woodward, W. A., Chen, M. S., Behbod, F., Alfaro, M. P., Buchholz, T. A., & Rosen, J. M. (2007). WNT/β-catenin mediates radiation resistance of mouse mammary progenitor cells. Proceedings of the National Academy of Sciences, 104(2), 618–623.

    Article  CAS  Google Scholar 

  95. Wulf, G. G., Wang, R.-Y., Kuehnle, I., Weidner, D., Marini, F., Brenner, M. K., et al. (2001). A leukemic stem cell with intrinsic drug efflux capacity in acute myeloid leukemia. Blood, 98(4), 1166–1173.

    Article  CAS  PubMed  Google Scholar 

  96. Hermann, P. C., Huber, S. L., Herrler, T., Aicher, A., Ellwart, J. W., Guba, M., et al. (2007). Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell, 1(3), 313–323.

    Article  CAS  PubMed  Google Scholar 

  97. Takebe, N., Harris, P. J., Warren, R. Q., & Ivy, S. P. (2011). Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nature Reviews Clinical Oncology, 8(2), 97.

    Article  CAS  PubMed  Google Scholar 

  98. Cui, W., Wang, L. H., Wen, Y. Y., Song, M., Li, B. L., Chen, X. L., et al. (2010). Expression and regulation mechanisms of Sonic Hedgehog in breast cancer. Cancer Science, 101(4), 927–933.

    Article  CAS  PubMed  Google Scholar 

  99. Wang, L.-H., Choi, Y.-L., Hua, X.-Y., Shin, Y.-K., Song, Y.-J., Youn, S.-J., et al. (2006). Increased expression of sonic hedgehog and altered methylation of its promoter region in gastric cancer and its related lesions. Modern Pathology, 19(5), 675.

    Article  CAS  PubMed  Google Scholar 

  100. Fu, X., Deng, H., Zhao, L., Li, J., Zhou, Y., & Zhang, Y. (2010). Distinct expression patterns of hedgehog ligands between cultured and primary colorectal cancers are associated with aberrant methylation of their promoters. Molecular and Cellular Biochemistry, 337(1–2), 185–192.

    Article  CAS  PubMed  Google Scholar 

  101. Duan, Z. H., Wang, H. C., Zhao, D. M., Ji, X. X., Song, M., Yang, X. J., et al. (2015). Cooperatively transcriptional and epigenetic regulation of sonic hedgehog overexpression drives malignant potential of breast cancer. Cancer Science, 106(8), 1084–1091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wang, T.-P., Hsu, S.-H., Feng, H.-C., & Huang, R.-F. S. (2012). Folate deprivation enhances invasiveness of human colon cancer cells mediated by activation of sonic hedgehog signaling through promoter hypomethylation and cross action with transcription nuclear factor-kappa B pathway. Carcinogenesis, 33(6), 1158–1168.

    Article  CAS  PubMed  Google Scholar 

  103. Hovestadt, V., Jones, D. T., Picelli, S., Wang, W., Kool, M., Northcott, P. A., et al. (2014). Decoding the regulatory landscape of medulloblastoma using DNA methylation sequencing. Nature, 510(7506), 537.

    Article  CAS  PubMed  Google Scholar 

  104. Mille, F., Tamayo-Orrego, L., Lévesque, M., Remke, M., Korshunov, A., Cardin, J., et al. (2014). The Shh receptor Boc promotes progression of early medulloblastoma to advanced tumors. Developmental Cell, 31(1), 34–47.

    Article  CAS  PubMed  Google Scholar 

  105. Li, C., Cai, S., Wang, X., & Jiang, Z. (2014). Hypomethylation-associated up-regulation of TCF3 expression and recurrence in stage II and III colorectal cancer. PLoS One, 9(11), e112005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mahmood, N., Mihalcioiu, C., & Rabbani, S. A. (2018). Multifaceted role of the Urokinase-type plasminogen activator (uPA) and its receptor (uPAR): Diagnostic, prognostic, and therapeutic applications. Frontiers in Oncology, 8, 24. https://doi.org/10.3389/fonc.2018.00024.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Pulukuri, S. M. K., Estes, N., Patel, J., & Rao, J. S. (2007). Demethylation-linked activation of urokinase plasminogen activator is involved in progression of prostate cancer. Cancer Research, 67(3), 930–939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Roman-Gomez, J., Jimenez-Velasco, A., Agirre, X., Castillejo, J. A., Navarro, G., San Jose-Eneriz, E., et al. (2007). Epigenetic regulation of human cancer/testis antigen gene, HAGE, in chronic myeloid leukemia. Haematologica, 92(2), 153–162.

    Article  CAS  PubMed  Google Scholar 

  109. Widschwendter, M., Jiang, G., Woods, C., Müller, H. M., Fiegl, H., Goebel, G., et al. (2004). DNA hypomethylation and ovarian cancer biology. Cancer Research, 64(13), 4472–4480.

    Article  CAS  PubMed  Google Scholar 

  110. Neuhausen, A., Florl, A. R., Grimm, M.-O., & Schulz, W. A. (2006). DNA methylation alterations in urothelial carcinoma. Cancer Biology & Therapy, 5(8), 993–1001.

    Article  CAS  Google Scholar 

  111. Tangkijvanich, P., Hourpai, N., Rattanatanyong, P., Wisedopas, N., Mahachai, V., & Mutirangura, A. (2007). Serum LINE-1 hypomethylation as a potential prognostic marker for hepatocellular carcinoma. Clinica Chimica Acta, 379(1–2), 127–133.

    Article  CAS  Google Scholar 

  112. Parashar, S., Cheishvili, D., Mahmood, N., Arakelian, A., Tanvir, I., Khan, H. A., et al. (2018). DNA methylation signatures of breast cancer in peripheral T-cells. BMC Cancer, 18(1), 574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhang, Y., Petropoulos, S., Liu, J., Cheishvili, D., Zhou, R., Dymov, S., et al. (2018). The signature of liver cancer in immune cells DNA methylation. Clinical Epigenetics, 10(1), 8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Teschendorff, A. E., Menon, U., Gentry-Maharaj, A., Ramus, S. J., Gayther, S. A., Apostolidou, S., et al. (2009). An epigenetic signature in peripheral blood predicts active ovarian cancer. PLoS One, 4(12), e8274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ramchandani, S., Bhattacharya, S. K., Cervoni, N., & Szyf, M. (1999). DNA methylation is a reversible biological signal. Proceedings of the National Academy of Sciences, 96(11), 6107–6112.

    Article  CAS  Google Scholar 

  116. Bottiglieri, T. (2002). S-Adenosyl-L-methionine (SAMe): From the bench to the bedside—Molecular basis of a pleiotrophic molecule. The American Journal of Clinical Nutrition, 76(5), 1151S–1157S.

    Article  CAS  PubMed  Google Scholar 

  117. Cantoni, G. (1951). Methylation of nicotinamide with a soluble enzyme system from rat liver. The Journal of Biological Chemistry, 189(1), 203–216.

    CAS  PubMed  Google Scholar 

  118. Lu, S. C. (2000). S-adenosylmethionine. The International Journal of Biochemistry & Cell Biology, 32(4), 391–395.

    Article  CAS  Google Scholar 

  119. Lu, S. C., & Mato, J. M. (2005). Role of methionine adenosyltransferase and S-adenosylmethionine in alcohol-associated liver cancer. Alcohol, 35(3), 227–234.

    Article  CAS  PubMed  Google Scholar 

  120. Roje, S. (2006). S-adenosyl-L-methionine: Beyond the universal methyl group donor. Phytochemistry, 67(15), 1686–1698.

    Article  CAS  PubMed  Google Scholar 

  121. Finkelstein, J. D. (1990). Methionine metabolism in mammals. The Journal of Nutritional Biochemistry, 1(5), 228–237.

    Article  CAS  PubMed  Google Scholar 

  122. Delle Cave, D., Ilisso, C., Mosca, L., Pagano, M., Martino, E., Porcelli, M., et al. (2017). The anticancer effects of S-adenosylmethionine on breast cancer cells. JSM Chemistry, 5(3), 1049–1056.

    Google Scholar 

  123. Pakneshan, P., Szyf, M., Farias-Eisner, R., & Rabbani, S. A. (2004). Reversal of the hypomethylation status of urokinase (uPA) promoter blocks breast cancer growth and metastasis. Journal of Biological Chemistry, 279(30), 31735–31744.

    Article  CAS  PubMed  Google Scholar 

  124. Mahmood, N., Cheishvili, D., Arakelian, A., Tanvir, I., Khan, H. A., Pépin, A.-S., et al. (2018). Methyl donor S-adenosylmethionine (SAM) supplementation attenuates breast cancer growth, invasion, and metastasis in vivo; therapeutic and chemopreventive applications. Oncotarget, 9(4), 5169.

    Article  PubMed  Google Scholar 

  125. Chik, F., Machnes, Z., & Szyf, M. (2013). Synergistic anti-breast cancer effect of a combined treatment with the methyl donor S-adenosyl methionine and the DNA methylation inhibitor 5-aza-2′-deoxycytidine. Carcinogenesis, 35(1), 138–144.

    Article  CAS  PubMed  Google Scholar 

  126. Ilisso, C. P., Castellano, M., Zappavigna, S., Lombardi, A., Vitale, G., Dicitore, A., et al. (2015). The methyl donor S-adenosylmethionine potentiates doxorubicin effects on apoptosis of hormone-dependent breast cancer cell lines. Endocrine, 50(1), 212–222.

    Article  CAS  PubMed  Google Scholar 

  127. Shukeir, N., Pakneshan, P., Chen, G., Szyf, M., & Rabbani, S. A. (2006). Alteration of the methylation status of tumor-promoting genes decreases prostate cancer cell invasiveness and tumorigenesis in vitro and in vivo. Cancer Research, 66(18), 9202–9210.

    Article  CAS  PubMed  Google Scholar 

  128. Schmidt, T., Leha, A., & Salinas-Riester, G. (2016). Treatment of prostate cancer cells with S-adenosylmethionine leads to genome-wide alterations in transcription profiles. Gene, 595(2), 161–167.

    Article  CAS  PubMed  Google Scholar 

  129. Wang, Y., Sun, Z., & Szyf, M. (2017). S-adenosyl-methionine (SAM) alters the transcriptome and methylome and specifically blocks growth and invasiveness of liver cancer cells. Oncotarget, 8(67), 111866.

    PubMed  PubMed Central  Google Scholar 

  130. Ham, M.-S., Lee, J.-K., & Kim, K.-C. (2013). S-adenosyl methionine specifically protects the anticancer effect of 5-FU via DNMTs expression in human A549 lung cancer cells. Molecular and Clinical Oncology, 1(2), 373–378.

    Article  PubMed  Google Scholar 

  131. Zhao, Y., Li, J., Guo, M., Feng, B., & Zhang, J. (2010). Inhibitory effect of S-adenosylmethionine on the growth of human gastric cancer cells in vivo and in vitro. Chinese Journal of Cancer, 29(8), 752–760.

    Article  CAS  PubMed  Google Scholar 

  132. Luo, J., Li, Y.-N., Wang, F., Zhang, W.-M., & Geng, X. (2010). S-adenosylmethionine inhibits the growth of cancer cells by reversing the hypomethylation status of c-myc and H-ras in human gastric cancer and colon cancer. International Journal of Biological Sciences, 6(7), 784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Hussain, Z., Khan, M., Shahid, M., & Almajhdi, F. (2013). S-adenosylmethionine, a methyl donor, up regulates tissue inhibitor of metalloproteinase-2 in colorectal cancer. Genetics and Molecular Research, 12(2), 1106–1118.

    Article  CAS  PubMed  Google Scholar 

  134. Li, T. W., Yang, H., Peng, H., Xia, M., Mato, J. M., & Lu, S. C. (2011). Effects of S-adenosylmethionine and methylthioadenosine on inflammation-induced colon cancer in mice. Carcinogenesis, 33(2), 427–435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Tomasi, M. L., Cossu, C., Spissu, Y., Floris, A., Ryoo, M., Iglesias-Ara, A., et al. (2017). S-adenosylmethionine and methylthioadenosine inhibit cancer metastasis by targeting microRNA 34a/b-methionine adenosyltransferase 2A/2B axis. Oncotarget, 8(45), 78851.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Ilisso, C. P., Sapio, L., Delle Cave, D., Illiano, M., Spina, A., Cacciapuoti, G., et al. (2016). S-Adenosylmethionine affects ERK1/2 and Stat3 pathways and induces apoptosis in osteosarcoma cells. Journal of Cellular Physiology, 231(2), 428–435.

    Article  CAS  PubMed  Google Scholar 

  137. Tomasi, M. L., Ramani, K., Lopitz-Otsoa, F., Rodríguez, M. S., Li, T. W., Ko, K., et al. (2010). S-adenosylmethionine regulates dual-specificity mitogen-activated protein kinase phosphatase expression in mouse and human hepatocytes. Hepatology, 51(6), 2152–2161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Calvisi, D. F., Pinna, F., Meloni, F., Ladu, S., Pellegrino, R., Sini, M., et al. (2008). Dual-specificity phosphatase 1 ubiquitination in extracellular signal-regulated kinase–mediated control of growth in human hepatocellular carcinoma. Cancer Research, 68(11), 4192–4200.

    Article  CAS  PubMed  Google Scholar 

  139. Calvisi, D. F., Pinna, F., Pellegrino, R., Sanna, V., Sini, M., Daino, L., et al. (2008). Ras-driven proliferation and apoptosis signaling during rat liver carcinogenesis is under genetic control. International Journal of Cancer, 123(9), 2057–2064.

    Article  CAS  PubMed  Google Scholar 

  140. Cave, D. D., Desiderio, V., Mosca, L., Ilisso, C. P., Mele, L., Caraglia, M., et al. (2018). S-adenosylmethionine-mediated apoptosis is potentiated by autophagy inhibition induced by chloroquine in human breast cancer cells. Journal of Cellular Physiology, 233(2), 1370–1383.

    Article  CAS  PubMed  Google Scholar 

  141. Frau, M., Feo, F., & Pascale, R. M. (2013). Pleiotropic effects of methionine adenosyltransferases deregulation as determinants of liver cancer progression and prognosis. Journal of Hepatology, 59(4), 830–841.

    Article  CAS  PubMed  Google Scholar 

  142. Feo, F., Garcea, R., Pascale, R., Pirisi, L., Daino, L., & Donaera, A. (1987). The variations of S-adenosyl-L-methionine content modulate hepatocyte growth during phenobarbital promotion of diethylnitrosamine-induced rat liver carcinogenesis. Toxicologic Pathology, 15(1), 109–114.

    Article  CAS  PubMed  Google Scholar 

  143. Mehlen, P., & Puisieux, A. (2006). Metastasis: A question of life or death. Nature Reviews Cancer, 6(6), 449.

    Article  CAS  PubMed  Google Scholar 

  144. Barkan, D., Green, J. E., & Chambers, A. F. (2010). Extracellular matrix: A gatekeeper in the transition from dormancy to metastatic growth. European Journal of Cancer, 46(7), 1181–1188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Şahin, M., Şahin, E., Gümüşlü, S., Erdoğan, A., & Gültekin, M. (2011). Inhibition of angiogenesis by S-adenosylmethionine. Biochemical and Biophysical Research Communications, 408(1), 145–148.

    Article  CAS  PubMed  Google Scholar 

  146. Shapiro, C. L., & Recht, A. (2001). Side effects of adjuvant treatment of breast cancer. New England Journal of Medicine, 344(26), 1997–2008.

    Article  CAS  PubMed  Google Scholar 

  147. Sahin, E., & Sahin, M. (2018). Epigenetical targeting of the FOXP3 Gene by S-adenosylmethionine diminishes the suppressive capacity of regulatory T cells ex vivo and alters the expression profiles. Journal of Immunotherapy, 42(1), 11–22.

    Article  CAS  Google Scholar 

  148. Tanaka, A., & Sakaguchi, S. (2017). Regulatory T cells in cancer immunotherapy. Cell Research, 27(1), 109.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Canadian Institutes for Health Research (MOP 130410 and PJT-156225) to SAR. NM is the recipient of a Ruth and Alex Dworkin Fellowship from the Faculty of Medicine, McGill University.

Conflict of Interest

The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shafaat A. Rabbani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahmood, N., Rabbani, S.A. (2019). Targeting DNA Hypomethylation in Malignancy by Epigenetic Therapies. In: Rhim, J., Dritschilo, A., Kremer, R. (eds) Human Cell Transformation. Advances in Experimental Medicine and Biology, vol 1164. Springer, Cham. https://doi.org/10.1007/978-3-030-22254-3_14

Download citation

Publish with us

Policies and ethics