Skip to main content

SMOD - Data Augmentation Based on Statistical Models of Deformation to Enhance Segmentation in 2D Cine Cardiac MRI

  • Conference paper
  • First Online:
Functional Imaging and Modeling of the Heart (FIMH 2019)

Abstract

Deep learning has revolutionized medical image analysis in recent years. Nevertheless, technical, ethical and financial constraints along with confidentiality issues still limit data availability, and therefore the performance of these approaches. To overcome such limitations, data augmentation has proven crucial. Here we propose SMOD, a novel augmentation methodology based on Statistical Models of Deformations, to segment 2D cine scans in cardiac MRI. In brief, the shape variability of the training set space is modelled so new images with the appearance of the original ones but unseen shapes within the space of plausible realistic shapes are generated. SMOD is compared to standard augmentation providing quantitative improvement, especially when the training data available is very limited or the structures to segment are complex and highly variable. We finally propose a state-of-art, deep learning 2D cardiac MRI segmenter for normal and hypertrophic cardiomyopathy hearts with an epicardium and endocardium mean Dice score of 0.968 in short and long axis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rumsfeld, J.S., Joynt, K.E., Maddox, T.M.: Big data analytics to improve cardiovascular care: promise and challenges. Nat. Rev. Cardiol. 13(6), 350–359 (2016)

    Article  Google Scholar 

  2. Shameer, K., Johnson, K.W., Glicksberg, B.S., Dudley, J.T., Sengupta, P.P.: Machine learning in cardiovascular medicine: are we there yet? Heart 104(14), 1156–1164 (2018)

    Article  Google Scholar 

  3. Litjens, G., Kooi, T., Bejnordi, B.E., Setio, A.A.A., Ciompi, F., Ghafoorian, M., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  4. Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L.H., Aerts, H.J.W.L.: Artificial intelligence in radiology. Nat. Rev. Cancer 18(8), 500–510 (2018)

    Article  Google Scholar 

  5. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  6. Oktay, O., Ferrante, E., Kamnitsas, K., Heinrich, M., Wai, B., Caballero, J., et al.: Anatomically Constrained Neural Networks (ACNNs): application to cardiac image enhancement and segmentation. IEEE Trans. Med. Imaging 37(2), 384–395 (2018)

    Article  Google Scholar 

  7. Poudel, R.P.K., Lamata, P., Montana, G.: Recurrent fully convolutional neural networks for multi-slice MRI cardiac segmentation. In: Zuluaga, M.A., Bhatia, K., Kainz, B., Moghari, M.H., Pace, D.F. (eds.) RAMBO/HVSMR -2016. LNCS, vol. 10129, pp. 83–94. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52280-7_8

    Chapter  Google Scholar 

  8. Vigneault, D.M., Xie, W., Ho, C.Y., Bluemke, D.A., Noble, J.A.: Ω-Net (omega-net): fully automatic, multi-view cardiac mr detection, orientation, and segmentation with deep neural networks. Med. Image Anal. 48, 95–106 (2018)

    Article  Google Scholar 

  9. Hussain, Z., Gimenez, F., Yi, D., Rubin, D.: Differential data augmentation techniques for medical imaging classification tasks. In: Proceedings American Medical Informatics Association Annual Symposium, vol. 2017, pp. 979–984 (2017)

    Google Scholar 

  10. Lemley, J., Bazrafkan, S., Corcoran, P.: Smart augmentation learning an optimal data augmentation strategy. IEEE Access 5, 5858–5869 (2017)

    Article  Google Scholar 

  11. Asperti, A., Mastronardo, C.: The effectiveness of data augmentation for detection of gastrointestinal diseases from endoscopical images. In: Proceedings 11th International Joint Conference on Biomedical Engineering Systems and Technologies, pp. 199–205 (2018)

    Google Scholar 

  12. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning, vol. 13, no. 1. MIT Press, Cambridge (2017)

    Google Scholar 

  13. Perez, L., Wang, J.: The effectiveness of data augmentation in image classification using deep learning. CoRR, vol. abs/1712.0 (2017)

    Google Scholar 

  14. Dong, H., Yang, G., Liu, F., Mo, Y., Guo, Y.: Automatic brain tumor detection and segmentation using U-Net based fully convolutional networks. In: Valdés Hernández, M., González-Castro, V. (eds.) MIUA 2017. CCIS, vol. 723, pp. 506–517. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60964-5_44

    Chapter  Google Scholar 

  15. Castro, E., Cardoso, J.S., Pereira, J.C.: Elastic deformations for data augmentation in breast cancer mass detection. In: IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), pp. 230–234 (2018)

    Google Scholar 

  16. Arteaga, M.O., Sørensen, L., Cardoso, J., Modat, M., et al.: PADDIT: probabilistic augmentation of data using diffeomorphic image transformation, October 2018. arXiv:1810.01928

  17. Alba, X., et al.: An algorithm for the segmentation of highly abnormal hearts using a generic stat. shape model. IEEE Trans. Med. Imaging 35(3), 845–859 (2016)

    Article  MathSciNet  Google Scholar 

  18. Raman, B., Ariga, R., Spartera, M., Sivalokanathan, S., Chan, K., Dass, S., et al.: Progression of myocardial fibrosis in hypertrophic cardiomyopathy: mechanisms and clinical implications. Eur. Heart J. Cardiovasc. Imaging 20(2), 157–167 (2019)

    Article  Google Scholar 

  19. Lorenzi, M., Ayache, N., Frisoni, G.B., Pennec, X., Alzheimer’s Disease Neuroimaging Initiative (ADNI): LCC-Demons: a robust and accurate symmetric diffeomorphic registration algorithm. Neuroimage 81, 470–483 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie (g.a. 764738) and by the British Heart Foundation (PG/16/75/32383). Authors are financially supported by a Wellcome Trust Senior Research Fellowship (to PL, 209450/Z/17/Z) and a BHF Intermediate Basic Science Research Fellowship (to ABO, FS/17/22/32644).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Corral Acero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Corral Acero, J. et al. (2019). SMOD - Data Augmentation Based on Statistical Models of Deformation to Enhance Segmentation in 2D Cine Cardiac MRI. In: Coudière, Y., Ozenne, V., Vigmond, E., Zemzemi, N. (eds) Functional Imaging and Modeling of the Heart. FIMH 2019. Lecture Notes in Computer Science(), vol 11504. Springer, Cham. https://doi.org/10.1007/978-3-030-21949-9_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21949-9_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21948-2

  • Online ISBN: 978-3-030-21949-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics