Skip to main content

Model of Left Ventricular Contraction: Validation Criteria and Boundary Conditions

  • Conference paper
  • First Online:
Functional Imaging and Modeling of the Heart (FIMH 2019)

Abstract

Computational models of cardiac contraction can provide critical insight into cardiac function and dysfunction. A necessary step before employing these computational models is their validation. Here we propose a series of validation criteria based on left ventricular (LV) global (ejection fraction and twist) and local (strains in a cylindrical coordinate system, aggregate cardiomyocyte shortening, and low myocardial compressibility) MRI measures to characterize LV motion and deformation during contraction. These validation criteria are used to evaluate an LV finite element model built from subject-specific anatomy and aggregate cardiomyocyte orientations reconstructed from diffusion tensor MRI. We emphasize the key role of the simulation boundary conditions in approaching the physiologically correct motion and strains during contraction. We conclude by comparing the global and local validation criteria measures obtained using two different boundary conditions: the first constraining the LV base and the second taking into account the presence of the pericardium, which leads to greatly improved motion and deformation.

The research reported in this publication was supported by NIH/NHLBI K25-HL135408 and R01-HL131823 grants, and UCLA URSP. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chabiniok, R., et al.: Multiphysics and multiscale modelling, data-model fusion and integration of organ physiology in the clinic: ventricular cardiac mechanics. Interface focus 6(2), 20150083 (2016)

    Article  Google Scholar 

  2. Fritz, T., Wieners, C., Seemann, G., Steen, H., Dössel, O.: Simulation of the contraction of the ventricles in a human heart model including atria and pericardium. Biomech. Model. Mechanobiol. 13(3), 627–641 (2014)

    Article  Google Scholar 

  3. Gahm, J.K., Ennis, D.B.: Dyadic tensor-based interpolation of tensor orientation: application to cardiac DT-MRI. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2013. LNCS, vol. 8330, pp. 135–142. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54268-8_16

    Chapter  Google Scholar 

  4. Genet, M., et al.: Distribution of normal human left ventricular myofiber stress at end diastole and end systole: a target for in silico design of heart failure treatments. J. Appl. Physiol. 117(2), 142–152 (2014)

    Article  Google Scholar 

  5. Judd, R.M., Levy, B.I.: Effects of barium-induced cardiac contraction on large-and small-vessel intramyocardial blood volume. Circ. Res. 68(1), 217–225 (1991)

    Article  Google Scholar 

  6. Krishnamoorthi, S., et al.: Simulation methods and validation criteria for modeling cardiac ventricular electrophysiology. PloS One 9(12), e114494 (2014)

    Article  Google Scholar 

  7. Lidmar, J., Mirny, L., Nelson, D.R.: Virus shapes and buckling transitions in spherical shells. Phys. Rev. E 68(5), 051910 (2003)

    Article  Google Scholar 

  8. Mahadevan, G., et al.: Left ventricular ejection fraction: are the revised cut-off points for defining systolic dysfunction sufficiently evidence based? Heart 94(4), 426–428 (2008)

    Article  Google Scholar 

  9. Moore, C.C., Lugo-Olivieri, C.H., McVeigh, E.R., Zerhouni, E.A.: Three-dimensional systolic strain patterns in the normal human left ventricle: characterization with tagged MR imaging. Radiology 214(2), 453–466 (2000)

    Article  Google Scholar 

  10. Perotti, L.E., Magrath, P., Verzhbinsky, I.A., Aliotta, E., Moulin, K., Ennis, D.B.: Microstructurally anchored cardiac kinematics by combining in vivo DENSE MRI and cDTI. In: Pop, M., Wright, G.A. (eds.) FIMH 2017. LNCS, vol. 10263, pp. 381–391. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59448-4_36

    Chapter  Google Scholar 

  11. Pfaller, M.R., et al.: The importance of the pericardium for cardiac biomechanics: from physiology to computational modeling. Biomech. Model. Mechanobiol. 18, 503–529 (2018)

    Article  Google Scholar 

  12. Ponnaluri, A.V.S.: Cardiac Electromechanics Modeling and Validation. Ph.D. thesis, UCLA (2018)

    Google Scholar 

  13. Ponnaluri, A., Perotti, L., Ennis, D., Klug, W.: A viscoactive constitutive modeling framework with variational updates for the myocardium. Comput. Methods Appl. Mech. Eng. 314, 85–101 (2017)

    Article  MathSciNet  Google Scholar 

  14. Reyhan, M., et al.: Left ventricular twist and shear in patients with primary mitral regurgitation. J. Magn. Reson. Imaging 42(2), 400–406 (2015)

    Article  Google Scholar 

  15. Rodriguez, I., Ennis, D.B., Wen, H.: Noninvasive measurement of myocardial tissue volume change during systolic contraction and diastolic relaxation in the canine left ventricle. Magn. Reson. Med. 55(3), 484–490 (2006)

    Article  Google Scholar 

  16. Szeliski, R., Tonnesen, D.: Surface modeling with oriented particle systems, vol. 26. ACM (1992)

    Google Scholar 

  17. Tseng, W.Y.I., Reese, T.G., Weisskoff, R.M., Brady, T.J., Wedeen, V.J.: Myocardial fiber shortening in humans: initial results of MR imaging. Radiology 216(1), 128–139 (2000)

    Article  Google Scholar 

  18. Wang, V.Y., et al.: Image-based investigation of human in vivo myofibre strain. IEEE Trans. Med. imaging 35(11), 2486–2496 (2016)

    Article  Google Scholar 

  19. Yin, F., Chan, C., Judd, R.M.: Compressibility of perfused passive myocardium. Am. J. Physi.-Heart Circulatory Physiol. 271(5), H1864–H1870 (1996)

    Article  Google Scholar 

  20. Zhong, X., Spottiswoode, B.S., Meyer, C.H., Kramer, C.M., Epstein, F.H.: Imaging three-dimensional myocardial mechanics using navigator-gated volumetric spiral cine DENSE MRI. Magn. Reson. Med. 64(4), 1089–1097 (2010)

    Article  Google Scholar 

  21. Zijdenbos, A.P., Dawant, B.M., Margolin, R.A., Palmer, A.C.: Morphometric analysis of white matter lesions in MR images: method and validation. IEEE Trans. Med. Imaging 13(4), 716–724 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi E. Perotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ponnaluri, A.V.S., Verzhbinsky, I.A., Eldredge, J.D., Garfinkel, A., Ennis, D.B., Perotti, L.E. (2019). Model of Left Ventricular Contraction: Validation Criteria and Boundary Conditions. In: Coudière, Y., Ozenne, V., Vigmond, E., Zemzemi, N. (eds) Functional Imaging and Modeling of the Heart. FIMH 2019. Lecture Notes in Computer Science(), vol 11504. Springer, Cham. https://doi.org/10.1007/978-3-030-21949-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21949-9_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21948-2

  • Online ISBN: 978-3-030-21949-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics