Skip to main content

Targeting the COX/mPGES-1/PGE2 Pathway in Neuroblastoma

  • Chapter
  • First Online:
The Role of Bioactive Lipids in Cancer, Inflammation and Related Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1161))

Abstract

The importance of prostaglandin E2 in cancer progression is well established, but research on its role in cancer has so far mostly been focused on epithelial cancer in adults while the knowledge about the contribution of prostaglandin E2 to childhood malignancies is limited. Neuroblastoma, an extracranial solid tumor of the sympathetic nervous system, mainly affects young children. Patients with tumors classified as high-risk have poor survival despite receiving intensive treatment, illustrating a need for new treatments complimenting existing ones. The basis of neuroblastoma treatment e.g. chemotherapy and radiation therapy, target the proliferating genetically unstable tumor cells leading to treatment resistance and relapses. The tumor microenvironment is an avenue, still to a great extent, unexplored and lacking effective targeted therapies. Cancer-associated fibroblasts is the main source of prostaglandin E2 in neuroblastoma contributing to angiogenesis, immunosuppression and tumor growth. Prostaglandin E2 is formed from its precursor arachidonic acid in a two-step enzymatic reaction. Arachidonic acid is first converted by cyclooxygenases into prostaglandin H2 and then further converted by microsomal prostaglandin E synthase-1 into prostaglandin E2. We believe targeting of microsomal prostaglandin E synthase-1 in cancer-associated fibroblasts will be an effective future therapeutic strategy in fighting neuroblastoma.

Per Kogner and Per-Johan Jakobsson contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cohen EG, Almahmeed T, Du BH et al (2003) Microsomal prostaglandin E synthase-1 is overexpressed in head and neck squamous cell carcinoma. Clin Cancer Res 9(9):3425–3430

    CAS  PubMed  Google Scholar 

  2. Larsson K, Kock A, Idborg H et al (2015) COX/mPGES-1/PGE2 pathway depicts an inflammatory-dependent high-risk neuroblastoma subset. Proc Natl Acad Sci U S A 112(26):8070–8075. https://doi.org/10.1073/pnas.1424355112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. van Rees BP, Sivula A, Thorén S et al (2003) Expression of microsomal prostaglandin E synthase-1 in intestinal type gastric adenocarcinoma and in gastric cancer cell lines. Int J Cancer 107(4):551–556. https://doi.org/10.1002/ijc.11422

    Article  CAS  PubMed  Google Scholar 

  4. Yoshimatsu K, Golijanin D, Paty PB et al (2001) Inducible microsomal prostaglandin E synthase is overexpressed in colorectal adenomas and cancer. Clin Cancer Res 7(12):3971–3976

    CAS  PubMed  Google Scholar 

  5. Yoshimatsu K, Altorki NK, Golijanin D et al (2001) Inducible prostaglandin E synthase is overexpressed in non-small cell lung cancer. Clin Cancer Res 7(9):2669–2674

    CAS  PubMed  Google Scholar 

  6. Pai R, Soreghan BA, Szabo IL et al (2002) Prostaglandin E-2 directly promotes human colon cancer growth by triggering activation of ERK2, c-fos gene and cell proliferation. Gastroenterology 122(4):A240–A240

    Article  Google Scholar 

  7. Sheng H, Shao J, Washington MK, DuBois RN (2001) Prostaglandin E2 increases growth and motility of colorectal carcinoma cells. J Biol Chem 276(21):18075–18081. https://doi.org/10.1074/jbc.M009689200

    Article  CAS  PubMed  Google Scholar 

  8. Sheng H, Shao J, Morrow JD, Beauchamp RD, DuBois RN (1998) Modulation of apoptosis and Bcl-2 expression by prostaglandin E2 in human colon cancer cells. Cancer Res 58(2):362–366

    CAS  PubMed  Google Scholar 

  9. Pai R, Szabo IL, Soreghan BA et al (2001) PGE(2) stimulates VEGF expression in endothelial cells via ERK2/JNK1 signaling pathways. Biochem Biophys Res Commun 286(5):923–928. https://doi.org/10.1006/bbrc.2001.5494

    Article  CAS  PubMed  Google Scholar 

  10. Buchanan FG, Wang D, Bargiacchi F, DuBois RN (2003) Prostaglandin E2 regulates cell migration via the intracellular activation of the epidermal growth factor receptor. J Biol Chem 278(37):35451–35457. https://doi.org/10.1074/jbc.M302474200

    Article  CAS  PubMed  Google Scholar 

  11. Kalinski P (2012) Regulation of immune responses by prostaglandin E2. J Immunol 188(1):21–28. https://doi.org/10.4049/jimmunol.1101029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Obermajer N, Wong JL, Edwards RP et al (2012) PGE(2)-driven induction and maintenance of cancer-associated myeloid-derived suppressor cells. Immunol Investig 41(6–7):635–657. https://doi.org/10.3109/08820139.2012.695417

    Article  CAS  Google Scholar 

  13. Brodeur GM (2003) Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer 3(3):203–216. https://doi.org/10.1038/nrc1014

    Article  CAS  PubMed  Google Scholar 

  14. Johnsen JI, Kogner P, Albihn A, Henriksson MA (2009) Embryonal neural tumours and cell death. Apoptosis 14(4):424–438. https://doi.org/10.1007/s10495-009-0325-y

    Article  PubMed  Google Scholar 

  15. Cohn SL, Pearson AD, London WB et al (2009) The International Neuroblastoma Risk Group (INRG) classification system: an INRG task force report. J Clin Oncol 27(2):289–297. https://doi.org/10.1200/JCO.2008.16.6785

    Article  PubMed  PubMed Central  Google Scholar 

  16. Carén H, Kryh H, Nethander M et al (2010) High-risk neuroblastoma tumors with 11q-deletion display a poor prognostic, chromosome instability phenotype with later onset. Proc Natl Acad Sci U S A 107(9):4323–4328. https://doi.org/10.1073/pnas.0910684107

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ladenstein R, Potschger U, Pearson ADJ et al (2017) Busulfan and melphalan versus carboplatin, etoposide, and melphalan as high-dose chemotherapy for high-risk neuroblastoma (HR-NBL1/SIOPEN): an international, randomised, multi-arm, open-label, phase 3 trial. Lancet Oncol 18(4):500–514. https://doi.org/10.1016/S1470-2045(17)30070-0

    Article  CAS  PubMed  Google Scholar 

  18. Moreno L, Vaidya SJ, Pinkerton CR et al (2013) Long-term follow-up of children with high-risk neuroblastoma: the ENSG5 trial experience. Pediatr Blood Cancer 60(7):1135–1140. https://doi.org/10.1002/pbc.24452

    Article  PubMed  Google Scholar 

  19. Friedman R (2016) Drug resistance in cancer: molecular evolution and compensatory proliferation. Oncotarget 7(11):11746–11755. https://doi.org/10.18632/oncotarget.7459

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kurtova AV, Xiao J, Mo Q et al (2015) Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nature 517(7533):209–213. https://doi.org/10.1038/nature14034

    Article  CAS  PubMed  Google Scholar 

  21. Borriello L, Seeger RC, Asgharzadeh S, DeClerck YA (2015) More than the genes, the tumor microenvironment in neuroblastoma. Cancer Lett 380(1):304–314. https://doi.org/10.1016/j.canlet.2015.11.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Matthay KK, Maris JM, Schleiermacher G et al (2016) Neuroblastoma. Nat Rev Dis Primers 2:Article:16078. https://doi.org/10.1038/nrdp.2016.78

  23. Jakobsson PJ, Thorén S, Morgenstern R, Samuelsson B (1999) Identification of human prostaglandin E synthase: a microsomal, glutathione-dependent, inducible enzyme, constituting a potential novel drug target. Proc Natl Acad Sci U S A 96(13):7220–7225

    Article  CAS  Google Scholar 

  24. Subbaramaiah K, Yoshimatsu K, Scherl E et al (2004) Microsomal prostaglandin E synthase-1 is overexpressed in inflammatory bowel disease. Evidence for involvement of the transcription factor Egr-1. J Biol Chem 279(13):12647–12658. https://doi.org/10.1074/jbc.M312972200

    Article  CAS  PubMed  Google Scholar 

  25. Uracz W, Uracz D, Olszanecki R, Gryglewski RJ (2002) Interleukin 1beta induces functional prostaglandin E synthase in cultured human umbilical vein endothelial cells. J Physiol Pharmacol 53(4 Pt 1):643–654

    CAS  PubMed  Google Scholar 

  26. Xiao L, Ornatowska M, Zhao G et al (2012) Lipopolysaccharide-induced expression of microsomal prostaglandin E synthase-1 mediates late-phase PGE2 production in bone marrow derived macrophages. PLoS One 7(11):e50244. https://doi.org/10.1371/journal.pone.0050244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Donnini S, Finetti F, Terzuoli E et al (2012) EGFR signaling upregulates expression of microsomal prostaglandin E synthase-1 in cancer cells leading to enhanced tumorigenicity. Oncogene 31(29):3457–3466. https://doi.org/10.1038/onc.2011.503

    Article  CAS  PubMed  Google Scholar 

  28. Xue X, Shah YM (2013) Hypoxia-inducible factor-2alpha is essential in activating the COX2/mPGES-1/PGE2 signaling axis in colon cancer. Carcinogenesis 34(1):163–169. https://doi.org/10.1093/carcin/bgs313

    Article  CAS  PubMed  Google Scholar 

  29. Murakami M, Nakashima K, Kamei D et al (2003) Cellular prostaglandin E2 production by membrane-bound prostaglandin E synthase-2 via both cyclooxygenases-1 and -2. J Biol Chem 278(39):37937–37947. https://doi.org/10.1074/jbc.M305108200

    Article  CAS  PubMed  Google Scholar 

  30. Tanioka T, Nakatani Y, Semmyo N, Murakami M, Kudo I (2000) Molecular identification of cytosolic prostaglandin E2 synthase that is functionally coupled with cyclooxygenase-1 in immediate prostaglandin E2 biosynthesis. J Biol Chem 275(42):32775–32782. https://doi.org/10.1074/jbc.M003504200

    Article  CAS  PubMed  Google Scholar 

  31. Tanikawa N, Ohmiya Y, Ohkubo H et al (2002) Identification and characterization of a novel type of membrane-associated prostaglandin E synthase. Biochem Biophys Res Commun 291(4):884–889. https://doi.org/10.1006/bbrc.2002.6531

    Article  CAS  PubMed  Google Scholar 

  32. Jania LA, Chandrasekharan S, Backlund MG et al (2009) Microsomal prostaglandin E synthase-2 is not essential for in vivo prostaglandin E-2 biosynthesis. Prostaglandins Other Lipid Mediat 88(3–4):73–81. https://doi.org/10.1016/j.prostaglandins.2008.10.003

    Article  CAS  PubMed  Google Scholar 

  33. Hara S (2017) Prostaglandin terminal synthases as novel therapeutic targets. Proc Jpn Acad Ser B Phys Biol Sci 93(9):703–723. https://doi.org/10.2183/pjab.93.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cano LQ, Lavery DN, Sin S et al (2015) The co-chaperone p23 promotes prostate cancer motility and metastasis. Mol Oncol 9(1):295–308. https://doi.org/10.1016/j.molonc.2014.08.014

    Article  CAS  PubMed  Google Scholar 

  35. Simpson NE, Gertz J, Imberg K, Myers RM, Garabedian MJ (2012) Research resource: enhanced genome-wide occupancy of estrogen receptor alpha by the cochaperone p23 in breast cancer cells. Mol Endocrinol 26(1):194–202. https://doi.org/10.1210/me.2011-1068

    Article  CAS  PubMed  Google Scholar 

  36. Yu R, Xiao L, Zhao GQ, Christman JW, van Breemen RB (2011) Competitive enzymatic interactions determine the relative amounts of prostaglandins E-2 and D-2. J Pharmacol Exp Ther 339(2):716–725. https://doi.org/10.1124/jpet.111.185405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sugimoto Y, Narumiya S (2007) Prostaglandin E receptors. J Biol Chem 282(16):11613–11617. https://doi.org/10.1074/jbc.R600038200

    Article  CAS  PubMed  Google Scholar 

  38. Nakanishi M, Rosenberg DW (2013) Multifaceted roles of PGE2 in inflammation and cancer. Semin Immunopathol 35(2):123–137. https://doi.org/10.1007/s00281-012-0342-8

    Article  CAS  PubMed  Google Scholar 

  39. Harris SG, Padilla J, Koumas L, Ray D, Phipps RP (2002) Prostaglandins as modulators of immunity. Trends Immunol 23(3):144–150. https://doi.org/10.1016/S1471-4906(01)02154-8

    Article  CAS  PubMed  Google Scholar 

  40. Snijdewint FGM, Kalinski P, Wierenga EA, Bos JD, Kapsenberg ML (1993) Prostaglandin-E(2) differentially modulates cytokine secretion profiles of human T-helper lymphocytes. J Immunol 150(12):5321–5329

    CAS  PubMed  Google Scholar 

  41. Wang D, Dubois RN (2010) Eicosanoids and cancer. Nat Rev Cancer 10(3):181–193. https://doi.org/10.1038/nrc2809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Obermajer N, Kalinski P (2012) Key role of the positive feedback between PGE(2) and COX2 in the biology of myeloid-derived suppressor cells. Oncoimmunology 1(5):762–764. https://doi.org/10.4161/onci.19681

    Article  PubMed  PubMed Central  Google Scholar 

  43. Baratelli F, Lin Y, Zhu L et al (2005) Prostaglandin E-2 induces FOXP3 gene expression and T regulatory cell function in human CD4(+) T cells. J Immunol 175(3):1483–1490. https://doi.org/10.4049/jimmunol.175.3.1483

    Article  CAS  PubMed  Google Scholar 

  44. Miao J, Lu X, Hu YF et al (2017) Prostaglandin E-2 and PD-1 mediated inhibition of antitumor CTL responses in the human tumor microenvironment. Oncotarget 8(52):89802–89810. https://doi.org/10.18632/oncotarget.21155

    Article  PubMed  PubMed Central  Google Scholar 

  45. Goto T, Herberman RB, Maluish A, Strong DM (1983) Cyclic-Amp as a mediator of prostaglandin-E-induced suppression of human natural-killer cell-activity. J Immunol 130(3):1350–1355

    CAS  PubMed  Google Scholar 

  46. Kalinski P, Hilkens CMU, Snijders A, Snijdewint FGM, Kapsenberg ML (1997) IL-12-deficient dendritic cells, generated in the presence of prostaglandin E-2, promote type 2 cytokine production in maturing human naive T helper cells. J Immunol 159(1):28–35

    CAS  PubMed  Google Scholar 

  47. Liu LX, Ge DX, Ma L et al (2012) Interleukin-17 and prostaglandin E2 are involved in formation of an M2 macrophage-dominant microenvironment in lung cancer. J Thorac Oncol 7(7):1091–1100. https://doi.org/10.1097/JTO.0b013e3182542752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wan SS, Zhao ED, Kryczek I et al (2014) Tumor-associated macrophages produce interleukin 6 and signal via STAT3 to promote expansion of human hepatocellular carcinoma stem cells. Gastroenterology 147(6):1393–1404. https://doi.org/10.1053/j.gastro.2014.08.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Öhlund D, Elyada E, Tuveson D (2014) Fibroblast heterogeneity in the cancer wound. J Exp Med 211(8):1503–1523. https://doi.org/10.1084/jem.20140692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Guo XY, Oshima H, Kitmura T, Taketo MM, Oshima M (2008) Stromal fibroblasts activated by tumor cells promote angiogenesis in mouse gastric cancer. J Biol Chem 283(28):19864–19871. https://doi.org/10.1074/jbc.M800798200

    Article  CAS  PubMed  Google Scholar 

  51. Wang XY, Klein RD (2007) Prostaglandin E-2 induces vascular endothelial growth factor secretion in prostate cancer cells through EP2 receptor-mediated cAMP pathway. Mol Carcinog 46(11):912–923. https://doi.org/10.1002/mc.20320

    Article  CAS  PubMed  Google Scholar 

  52. Carlson LM, Rasmuson A, Idborg H et al (2013) Low-dose aspirin delays an inflammatory tumor progression in vivo in a transgenic mouse model of neuroblastoma. Carcinogenesis 34(5):1081–1088. https://doi.org/10.1093/carcin/bgt009

    Article  CAS  PubMed  Google Scholar 

  53. Asgharzadeh S, Salo JA, Ji L et al (2012) Clinical significance of tumor-associated inflammatory cells in metastatic neuroblastoma. J Clin Oncol 30(28):3525–3532. https://doi.org/10.1200/JCO.2011.40.9169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hashimoto O, Yoshida M, Koma Y et al (2016) Collaboration of cancer-associated fibroblasts and tumour-associated macrophages for neuroblastoma development. J Pathol 240(2):211–223. https://doi.org/10.1002/path.4769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Borriello L, Nakata R, Sheard MA et al (2017) Cancer-associated fibroblasts share characteristics and protumorigenic activity with mesenchymal stromal cells. Cancer Res 77(18):5142–5157. https://doi.org/10.1158/0008-5472.CAN-16-2586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pietras K, Östman A (2010) Hallmarks of cancer: interactions with the tumor stroma. Exp Cell Res 316(8):1324–1331. https://doi.org/10.1016/j.yexcr.2010.02.045

    Article  CAS  PubMed  Google Scholar 

  57. Zeine R, Salwen HR, Peddinti R et al (2009) Presence of cancer-associated fibroblasts inversely correlates with Schwannian stroma in neuroblastoma tumors. Mod Pathol 22(7):950–958. https://doi.org/10.1038/modpathol.2009.52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kock A, Larsson K, Bergqvist F et al (2018) Inhibition of microsomal prostaglandin E synthase-1 in cancer-associated fibroblasts suppresses neuroblastoma tumor growth. EBioMedicine 32:84–92. https://doi.org/10.1016/j.ebiom.2018.05.008

    Article  PubMed  PubMed Central  Google Scholar 

  59. Olajide OA, Velagapudi R, Okorji UP, Sarker SD, Fiebich BL (2014) Picralima nitida seeds suppress PGE(2) production by interfering with multiple signalling pathways in IL-1 beta-stimulated SK-N-SH neuronal cells. J Ethnopharmacol 152(2):377–383. https://doi.org/10.1016/j.jep.2014.01.027

    Article  CAS  PubMed  Google Scholar 

  60. Wendeburg L, de Oliveira ACP, Bhatia HS, Candelario-Jalil E, Fiebich BL (2009) Resveratrol inhibits prostaglandin formation in IL-1 beta-stimulated SK-N-SH neuronal cells. J Neuroinflammation 6:Artn 26. https://doi.org/10.1186/1742-2094-6-26

    Article  Google Scholar 

  61. Rasmuson A, Kock A, Fuskevåg OM et al (2012) Autocrine prostaglandin E2 signaling promotes tumor cell survival and proliferation in childhood neuroblastoma. PLoS One 7(1):e29331. https://doi.org/10.1371/journal.pone.0029331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Johnsen JI, Lindskog M, Ponthan F et al (2004) Cyclooxygenase-2 is expressed in neuroblastoma, and nonsteroidal anti-inflammatory drugs induce apoptosis and inhibit tumor growth in vivo. Cancer Res 64(20):7210–7215. https://doi.org/10.1158/0008-5472.CAN-04-1795

    Article  CAS  PubMed  Google Scholar 

  63. Tsutsumimoto T, Williams P, Yoneda T (2014) The SK-N-AS human neuroblastoma cell line develops osteolytic bone metastases with increased angiogenesis and COX-2 expression. J Bone Oncol 3(3–4):67–76. https://doi.org/10.1016/j.jbo.2014.10.002

    Article  PubMed  PubMed Central  Google Scholar 

  64. Weiss WA, Aldape K, Mohapatra G, Feuerstein BG, Bishop JM (1997) Targeted expression of MYCN causes neuroblastoma in transgenic mice. EMBO J 16(11):2985–2995. https://doi.org/10.1093/emboj/16.11.2985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Allen CP, Tinganelli W, Sharma N et al. (2015) DNA damage response proteins and oxygen modulate prostaglandin E-2 growth factor release in response to low and high LET ionizing radiation. Front Oncol 5:UNSP 260. https://doi.org/10.3389/fonc.2015.00260

  66. Huang Q, Li F, Liu XJ et al (2011) Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy. Nat Med 17(7):860–U231. https://doi.org/10.1038/nm.2385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Trifan OC, Durham WF, Salazar VS et al (2002) Cyclooxygenase-2 inhibition with celecoxib enhances antitumor efficacy and reduces diarrhea side effect of CPT-11. Cancer Res 62(20):5778–5784

    CAS  PubMed  Google Scholar 

  68. Greenhough A, Smartt HJM, Moore AE et al (2009) The COX-2/PGE(2) pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis 30(3):377–386. https://doi.org/10.1093/carcin/bgp014

    Article  CAS  PubMed  Google Scholar 

  69. Hangai S, Ao T, Kimura Y et al (2016) PGE2 induced in and released by dying cells functions as an inhibitory DAMP. Proc Natl Acad Sci U S A 113(14):3844–3849. https://doi.org/10.1073/pnas.1602023113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liu QL, Yuan WQ, Tong DL et al (2016) Metformin represses bladder cancer progression by inhibiting stem cell repopulation via COX2/PGE2/STAT3 axis. Oncotarget 7(19):28235–28246. https://doi.org/10.18632/oncotarget.8595

    Article  PubMed  PubMed Central  Google Scholar 

  71. Pang LY, Hurst EA, Argyle DJ (2016) Cyclooxygenase-2: a role in cancer stem cell survival and repopulation of cancer cells during therapy. Stem Cells Int 2016:1–11. Artn 2048731. https://doi.org/10.1155/2016/2048731

    Article  CAS  Google Scholar 

  72. Ponthan F, Wickström M, Gleissman H et al (2007) Celecoxib prevents neuroblastoma tumor development and potentiates the effect of chemotherapeutic drugs in vitro and in vivo. Clin Cancer Res 13(3):1036–1044. https://doi.org/10.1158/1078-0432.CCR-06-1908

    Article  CAS  PubMed  Google Scholar 

  73. Kaneko M, Kaneko S, Suzuki K (2009) Prolonged low-dose administration of the cyclooxygenase-2 inhibitor celecoxib enhances the antitumor activity of irinotecan against neuroblastoma xenografts. Cancer Sci 100(11):2193–2201. https://doi.org/10.1111/j.1349-7006.2009.01280.x

    Article  CAS  PubMed  Google Scholar 

  74. Davis TW, O’Neal JM, Pagel MD et al (2004) Synergy between celecoxib and radiotherapy results from inhibition of cyclooxygenase-2-derived prostaglandin E-2, a survival factor for tumor and associated vasculature. Cancer Res 64(1):279–285. https://doi.org/10.1158/0008-5472.Can-03-1168

    Article  CAS  PubMed  Google Scholar 

  75. Hennequart M, Pilotte L, Cane S et al (2017) Constitutive IDO1 expression in human tumors is driven by cyclooxygenase-2 and mediates intrinsic immune resistance. Cancer Immunol Res 5(8):695–709. https://doi.org/10.1158/2326-6066.CIR-16-0400

    Article  CAS  PubMed  Google Scholar 

  76. Hou W, Sampath P, Rojas JJ, Thorne SH (2016) Oncolytic virus-mediated targeting of PGE2 in the tumor alters the immune status and sensitizes established and resistant tumors to immunotherapy. Cancer Cell 30(1):108–119. https://doi.org/10.1016/j.ccell.2016.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zelenay S, van der Veen AG, Bottcher JP et al (2015) Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell 162(6):1257–1270. https://doi.org/10.1016/j.cell.2015.08.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Casteels-Van Daele M, Van Geet C, Wouters C, Eggermont E (2000) Reye syndrome revisited: a descriptive term covering a group of heterogeneous disorders. Eur J Pediatr 159(9):641–648

    Article  CAS  Google Scholar 

  79. Pugliese A, Beltramo T, Torre D (2008) Reye’s and Reye’s-like syndromes. Cell Biochem Funct 26(7):741–746. https://doi.org/10.1002/cbf.1465

    Article  CAS  PubMed  Google Scholar 

  80. Franco VI, Lipshultz SE (2015) Cardiac complications in childhood cancer survivors treated with anthracyclines. Cardiol Young 25:107–116. https://doi.org/10.1017/S1047951115000906

    Article  PubMed  Google Scholar 

  81. Pawelzik SC, Uda NR, Spahiu L et al (2010) Identification of key residues determining species differences in inhibitor binding of microsomal prostaglandin E synthase-1. J Biol Chem 285(38):29254–29261. https://doi.org/10.1074/jbc.M110.114454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Leclerc P, Idborg H, Spahiu L et al (2013) Characterization of a human and murine mPGES-1 inhibitor and comparison to mPGES-1 genetic deletion in mouse models of inflammation. Prostaglandins Other Lipid Mediat 107:26–34. https://doi.org/10.1016/j.prostaglandins.2013.09.001

    Article  CAS  PubMed  Google Scholar 

  83. Ozen G, Gomez I, Daci A et al (2017) Inhibition of microsomal PGE synthase-1 reduces human vascular tone by increasing PGI2: a safer alternative to COX-2 inhibition. Br J Pharmacol 174:4087–4098. https://doi.org/10.1111/bph.13939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Koeberle A, Werz O (2015) Perspective of microsomal prostaglandin E-2 synthase-1 as drug target in inflammation-related disorders. Biochem Pharmacol 98(1):1–15. https://doi.org/10.1016/j.bcp.2015.06.022

    Article  CAS  PubMed  Google Scholar 

  85. Psarra A, Nikolaou A, Kokotou MG, Limnios D, Kokotos G (2017) Microsomal prostaglandin E-2 synthase-1 inhibitors: a patent review. Expert Opin Ther Pat 27(9):1047–1059. https://doi.org/10.1080/13543776.2017.1344218

    Article  CAS  PubMed  Google Scholar 

  86. Bergqvist F, Ossipova E, Idborg H et al (2019) Inhibition of mPGES-1 or COX-2 results in different proteomic and lipidomic profiles in A549 lung cancer cells. Front Pharmacol. https://doi.org/10.3389/fphar.2019.00636

Download references

Acknowledgements

This work was supported by grants from the Swedish Childhood Cancer Foundation, the Cancer Society in Stockholm, the Swedish Cancer Society, the Swedish Foundation for Strategic Research (www.nnbcr.se), Märta and Gunnar V Philipson Foundation and Karolinska Institutet Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Larsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Larsson, K., Kock, A., Kogner, P., Jakobsson, PJ. (2019). Targeting the COX/mPGES-1/PGE2 Pathway in Neuroblastoma. In: Honn, K., Zeldin, D. (eds) The Role of Bioactive Lipids in Cancer, Inflammation and Related Diseases. Advances in Experimental Medicine and Biology, vol 1161. Springer, Cham. https://doi.org/10.1007/978-3-030-21735-8_9

Download citation

Publish with us

Policies and ethics