Skip to main content

GM Maize for Abiotic Stresses: Potentials and Opportunities

  • Chapter
  • First Online:
Recent Approaches in Omics for Plant Resilience to Climate Change

Abstract

Maize is one of the major staple foods in the world, along with other cereals such as wheat, rice, and sorghum. Apart from this, maize is also a plant for science and technology. Many basic and applied phenomena are discovered and applied by using this plant to prove their worth before generalization. Hybrid seed production, which is a well accepted breeding technique now, was identified and practically applied on maize to significantly enhance per unit area production. Genetically modified (GM) crops were introduced for the first time in the world in 1995, and now approximately 200 million hectares of GM crops are grown in 26 countries of the world. Bt maize, herbicide-tolerant soybean, and Bt cotton were among the pioneering crops harboring this technology. Since the introduction of GM technology, continuous efforts are going on to develop GM maize to improve various agronomic, quality, and value addition traits. Imparting stress tolerance is of utmost importance in maize and other cereals. Under the climate change scenario, abiotic stress tolerance has gained major importance. There may be emergencies for eradicating weeds because of sudden rains, drought may be established by the unavailability of water for a week, and temperature fluctuations may establish stress from heat or frost. Maize, being a C4 plant, needs a continuous supply of nutrients and water for its extensive photosynthesis. When there is any interruption to such supply of water and nutrients, plants experience stress, which may result in complete crop failures within a short span of time. In this chapter we have tried to impart the importance of maize in food security and energy production and how abiotic stresses can affect crop performance. We also analyzed techniques being used for maize transformation, and how resolution of various stresses is being tried using this technology, to see potential opportunities for improving the quality and production of maize.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhishek A, Kumari R, Karjagi CG, Kumar P, Kuma B, Dass S et al (2014) Tissue culture independent Agrobacterium tumefaciens mediated in planta transformation method for tropical maize (Zea mays.L). Proc Natl Acad Sci India Sect B Biol Sci 86:375–384. https://doi.org/10.1007/s40011-014-0454-0

    Article  CAS  Google Scholar 

  • Afzal M, Nazir Z, Bashir MH, Khan BS (2009) Analysis of host plant resistance in some genotypes of maize against Chilo partellus (Swinhoe) (Pyralidae: Lepidoptera). Pak J Bot 41(1):421–428

    Google Scholar 

  • Agapito-Tenfen S, Lopez FR, Mallah N, Abou‐Slemayne G, Trtikova M, Nodari RO, Wickson F (2017) Transgene flow in Mexican maize revisited: socio‐biological analysis across two contrasting farmer communities and seed management systems. Ecol Evol 7(22):9461–9472

    Article  PubMed  PubMed Central  Google Scholar 

  • Amara I, Capellades M, Ludevid MD, Pagès M, Goday A (2013) Enhanced water stress tolerance of transgenic maize plants over-expressing LEA Rab28 gene. J Plant Physiol 170(9):864–873

    Article  CAS  PubMed  Google Scholar 

  • Amoah BK, Wu H, Sparks C, Jones HD (2001) Factors influencing Agrobacterium‐mediated transient expression of uid A in wheat inflorescence tissue. J Exp Bot 52(358):1135–1142

    Article  CAS  PubMed  Google Scholar 

  • Bänziger M, Setimela PS, Hodson D, Vivek B (2006) Breeding for improved abiotic stress tolerance in maize adapted to southern Africa. Agric Water Manag 80(1-3):212–224

    Article  Google Scholar 

  • Barampuram S, Zhang ZJ (2011) Recent advances in plant transformation. Plant chromosome engineering. Springer, New York, NY, pp 1–35

    Book  Google Scholar 

  • Basra A (2000) Crop responses and adaptations to temperature stress: new insights and approaches. CRC Press, Boca Raton, FL

    Google Scholar 

  • Benevenuto RF, Agapito-Tenfen SZ, Vilperte V, Wikmark O-G, van Rensburg PJ, Nodari RO (2017) Molecular responses of genetically modified maize to abiotic stresses as determined through proteomic and metabolomic analyses. PLoS One 12(2):e0173069

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218(4571):443–448

    Article  CAS  PubMed  Google Scholar 

  • Boyer J, Westgate M (2004) Grain yields with limited water. J Exp Bot 55:2385–2394

    Article  CAS  PubMed  Google Scholar 

  • Brettschneider R, Becker D, Lörz H (1997) Efficient transformation of scutellar tissue of immature maize embryos. Theor Appl Genet 94(6-7):737–748

    Article  CAS  Google Scholar 

  • Byerlee DR, Kelly VA, Kopicki RJ, Morris M (2007) Fertilizer use in African agriculture: lessons learned and good practice guidelines (English). World Bank, Washington, DC

    Google Scholar 

  • Campos H, Cooper M, Habben JE, Edmeades GO, Schussler JR (2004) Improving drought tolerance in maize: a view from industry. Field Crop Res 90(1):19–34

    Article  Google Scholar 

  • Cao G, Liu Y, Zhang S, Yang X, Chen R, Zhang Y, Wei L, Liu Y, Wang J, Lin M (2012) A novel 5-enolpyruvylshikimate-3-phosphate synthase shows high glyphosate tolerance in Escherichia coli and tobacco plants. PLoS One 7(6):e38718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaparro-Giraldo A, Blanco M, Teresa J, López-Pazos SA (2015) Evidence of gene flow between transgenic and non-transgenic maize in Colombia. Agron Colomb 33(3):297–304

    Article  Google Scholar 

  • Chaves MM (1991) Effects of water deficits on carbon assimilation. J Exp Bot 42(1):1–16

    Article  CAS  Google Scholar 

  • Chumakov MI, Rozhok NA, Velikov VA, Tyrnov VS, Volokhina IV (2006) Agrobacterium-mediated in planta transformation of maize via pistil filaments. Russ J Genet 42(8):893–897

    Article  CAS  Google Scholar 

  • Coe EH, Sarkar KR (1966) Preparation of nucleic acids and a genetic transformation attempt in maize 1. Crop Sci 6(5):432–435

    Article  CAS  Google Scholar 

  • Dai S, Zheng P, Marmey P, Zhang S, Tian W, Chen S, Beachy RN, Fauquet C (2001) Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment. Mol Breed 7(1):25–33

    Article  CAS  Google Scholar 

  • De Groote H (2002) Maize yield losses from stemborers in Kenya. Int J Trop Insect Sci 22(2):89–96

    Article  Google Scholar 

  • Dively GP, Rose R, Sears MK, Hellmich RL, Stanley-Horn DE, Calvin DD, Russo JM, Anderson PL (2004) Effects on monarch butterfly larvae (Lepidoptera: Danaidae) after continuous exposure to Cry1Ab-expressing corn during anthesis. Environ Entomol 33(4):1116–1125

    Article  CAS  Google Scholar 

  • Edmeades GO, Tollenaar M (1990) Genetic and cultural improvements in maize production. Paper read at Proceedings of the international congress of plant physiology, New Delhi, India, 15–20 February 1988, vol 1

    Google Scholar 

  • Evenson RE, Gollin D (2003) Assessing the impact of the green revolution, 1960 to 2000. Science 300:758–762

    Article  CAS  PubMed  Google Scholar 

  • FAO (2017–2018) GIEWS - global information and early warning system Food and Agriculture Organization. Washington, DC. http://www.fao.org/GIEWS/English/fo/index.htm

  • FAOSTAT (2013) FAO statistical yearbook. Rome, Italy. isbn: 978-92-5-107396-4

    Google Scholar 

  • Farooq M, Hussain M, Wakeel A, Siddique KHM (2015) Salt stress in maize: effects, resistance mechanisms, and management. A review. Agron Sustain Dev 35(2):461–481

    Article  CAS  Google Scholar 

  • Frame BR, Zhang H, Cocciolone SM, Sidorenko LV, Dietrich CR, Pegg SE, Zhen S, Schnable PS, Wang K (2000) Production of transgenic maize from bombarded type II callus: effect of gold particle size and callus morphology on transformation efficiency. In Vitro Cell Dev Biol Plant 36(1):21–29

    Article  Google Scholar 

  • Fromm ME, Morrish F, Armstrong C, Williams R, Thomas J, Klein TM (1990) Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Bio/technology 8(9):833

    CAS  PubMed  Google Scholar 

  • Funke T, Han H, Healy-Fried ML, Fischer M, Schönbrunn E (2006) Molecular basis for the herbicide resistance of Roundup Ready crops. Proc Natl Acad Sci 103(35):13010–13015

    Article  CAS  PubMed  Google Scholar 

  • Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol Rev 67(1):16–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gewin V (2003) Genetically modified corn—environmental benefits and risks. PLoS Biol 1(1):e8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gordon-Kamm WJ et al (1990) Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2:603–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guosheng L, Qingwei Z, Juran Z, Yuping BI, Lei S (2002) Establishment of multiple shoot clumps from maize (Zea mays L.) and regeneration of herbicideresistant transgenic plantlets. Scie China 45(1):40–49

    Article  Google Scholar 

  • Haughn GW, Somerville C (1986) Sulfonylurea-resistant mutants of Arabidopsis thaliana. Mol Gen Genet 204(3):430–434

    Article  CAS  Google Scholar 

  • He M, Yang Z-Y, Nie Y-F, Wang J, Xu P (2001) A new type of class I bacterial 5-enopyruvylshikimate-3-phosphate synthase mutants with enhanced tolerance to glyphosate. Biochim Biophys Acta Gen Subj 1568(1):1–6

    Article  CAS  Google Scholar 

  • Hooykaas PJJ, Schilperoort RA (1992) Agrobacterium and plant genetic engineering. 10 Years plant molecular biology. Springer, New York, NY, pp 15–38

    Google Scholar 

  • Hu T, Metz S, Chay C, Zhou HP, Biest N, Chen G, Cheng M, Feng X, Radionenko M, Lu F (2003) Agrobacterium-mediated large-scale transformation of wheat (Triticum aestivum L.) using glyphosate selection. Plant Cell Rep 21(10):1010–1019

    Article  CAS  PubMed  Google Scholar 

  • Husaini AM, Abdin MZ, Parray GA, Sanghera GS, Murtaza I, Alam T, Srivastava DK, Farooqi H, Khan HN (2010) Vehicles and ways for efficient nuclear transformation in plants. GM Crops 1(5):276–287

    Article  PubMed  Google Scholar 

  • Iqbal MA, Bodner G, Heng LK, Eitzinger J, Hassan A (2010) Assessing yield optimization and water reduction potential for summer-sown and spring-sown maize in Pakistan. Agric Water Manag 97(5):731–737

    Article  Google Scholar 

  • Jones TJ (2009) Maize tissue culture and transformation: the first 20 years. Molecular genetic approaches to maize improvement. Springer, New York, NY, pp 7–27

    Book  Google Scholar 

  • Kellős T et al (2008) Effect of abiotic stress on antioxidants in maize. Acta Biol Szeged 52(1):173–174

    Google Scholar 

  • Khan MA, Shahid Shaukat S, Altaf Khan M (2008) Economic benefits from irrigation of maize with treated effluent of waste stabilization ponds. Pak J Bot 40(3):1091–1098

    Google Scholar 

  • Kim HA, Utomo SD, Kwon SY, Min SR, Kim JS, Yoo HS, Choi PS (2009) The development of herbicide-resistant maize: stable Agrobacterium-mediated transformation of maize using explants of type II embryogenic calli. Plant Biotechnol Rep 3(4):277–283

    Article  Google Scholar 

  • Laillou A, Van Pham T, Tran NT, Le HT, Wieringa F, Rohner F, Fortin S, Le MB, Do TT, Moench-Pfanner R (2012) Micronutrient deficits are still public health issues among women and young children in Vietnam. PLoS One 7(4):e34906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leprince O, Buitink J (2010) Desiccation tolerance: from genomics to the field. Plant Sci 179(6):554–564

    Article  CAS  Google Scholar 

  • Li S, Dai RL, Qin Z, Shen ZH, Wang YF (2001) The effects of Ag+ on the absorption of trace metal ion during the somatic embryogenesis of Lycium barbarum. L Shi yan sheng wu xue bao 34(2):127–130

    CAS  PubMed  Google Scholar 

  • Lowe K, Bowen B, Hoerster G, Ross M, Bond D, Pierce D, Gordon-Kamm B (1995) Germline transformation of maize following manipulation of chimeric shoot meristems. Biotechnology 13(7):677

    CAS  Google Scholar 

  • Maiti RK, Maiti LE, Maiti S, Maiti AM, Maiti M, Maiti H (1996) Genotypic variability in maize cultivars (Zea mays L.) for resistance to drought and salinity at the seedling stage. J Plant Physiol 148(6):741–744

    Article  CAS  Google Scholar 

  • Mamontova EM, Velikov VA, Volokhina IV, Chumakov MI (2010) Agrobacterium-mediated in planta transformation of maize germ cells. Russ J Genet 46(4):501–504. https://doi.org/10.1134/S1022795410040186

    Article  CAS  Google Scholar 

  • Mazur BJ, Chui CF, Smith JK (1987) Isolation and characterization of plant genes coding for acetolactate synthase, the target enzyme for two classes of herbicides. Plant Physiol 85(4):1110–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moiseeva YM, Velikov VA, Volokhina IV, Gusev YS, Yakovleva OS, Chumakov MI (2014) Agrobacterium-mediated transformation of maize with antisense suppression of the proline dehydrogenase gene by an in planta method. Br Biotechnol J 4(2):116

    Article  Google Scholar 

  • Motto M, Hartings H, Fracassetti M, Consonni G (2012) Grain quality-related traits in maize: gene identification and exploitation. Maydica 56(3)

    Google Scholar 

  • Mumm RH, Goldsmith PD, Rausch KD, Stein HH (2014) Land usage attributed to corn ethanol production in the United States: sensitivity to technological advances in corn grain yield, ethanol conversion, and co-product utilization. Biotechnol Biofuels 7(1):61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muoma O, Vincent J, Ombori O (2014) Agrobacterium-mediated transformation of selected Kenyan maize (Zea mays L.) genotypes by introgression of nicotiana protein kinase (npk1) to enhance drought tolerance. Am J Plant Sci 05(06):863–883. https://doi.org/10.4236/ajps.2014.56100

    Article  CAS  Google Scholar 

  • Nijmeijer, A. 2013. Environmental risks of Bt-maize and transgenic drought tolerant maize.

    Google Scholar 

  • Niogret MF, Culiáñez‐Macià FA, Goday A, Alba MM, Pagès M (1996) Expression and cellular localization of rab28 mRNA and Rab28 protein during maize embryogenesis. Plant J 9(4):549–557

    Article  CAS  PubMed  Google Scholar 

  • Oerke E-C (2006) Crop losses to pests. J Agric Sci 144(1):31–43

    Article  Google Scholar 

  • Omer RA, Matheka JM, Ali AM, Machuka J (2013) Transformation of tropical maize with the NPK1 gene for drought tolerance. Int J Genet Eng 3(2):7–14

    Google Scholar 

  • Passioura JB (1996) Drought and drought tolerance. Plant Growth Regul 20(2):79–83

    Article  CAS  Google Scholar 

  • Pellegrino E, Bedini S, Nuti M, Ercoli L (2018) Impact of genetically engineered maize on agronomic, environmental and toxicological traits: a meta-analysis of 21 years of field data. Sci Rep 8(1):3113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prasad PVV, Staggenborg SA (2009) Growth and production of sorghum and millets. In: Soils, plant growth and crop production, vol 2

    Google Scholar 

  • Quan R, Shang M, Zhang H, Zhao Y, Zhang J (2004) Improved chilling tolerance by transformation with betA gene for the enhancement of glycinebetaine synthesis in maize. Plant Sci 166(1):141–149

    Article  CAS  Google Scholar 

  • Ren Z-j, Cao G-y, Zhang Y-w, Liu Y, Liu Y-j (2015) Overexpression of a modified AM79 aroA gene in transgenic maize confers high tolerance to glyphosate. J Integr Agric 14(3):414–422

    Article  CAS  Google Scholar 

  • Rosegrant MR, Ringler C, Sulser TB, Ewing M, Palazzo A, Zhu T, Nelson GC, Koo J, Robertson R, Msangi S (2009) Agriculture and food security under global change: prospects for 2025/2050. International Food Policy Research Institute, Washington, DC, pp 145–178

    Google Scholar 

  • Sakamoto A, Murata N (2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ 25(2):163–171

    Article  CAS  PubMed  Google Scholar 

  • Sanford JC (1990) Biolistic plant transformation. Physiol Plant 79(1):206–209

    Article  CAS  Google Scholar 

  • Shiferaw B, Prasanna BM, Hellin J, Bänziger M (2011) Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Secur 3(3):307

    Article  Google Scholar 

  • Shou H, Bordallo P, Wang K (2004) Expression of the Nicotiana protein kinase (NPK1) enhanced drought tolerance in transgenic maize. J Exp Bot 55(399):1013–1019

    Article  CAS  PubMed  Google Scholar 

  • Singletary GW, Banisadr R, Keeling PL (1994) Heat stress during grain filling in maize: effects on carbohydrate storage and metabolism. Funct Plant Biol 21(6):829–841

    Article  CAS  Google Scholar 

  • Steinrücken HC, Amrhein N (1980) The herbicide glyphosate is a potent inhibitor of 5-enolpyruvylshikimic acid-3-phosphate synthase. Biochem Biophys Res Commun 94(4):1207–1212

    Article  PubMed  Google Scholar 

  • Sun H, Lang Z, Wei L, Zhang J, He K, Li Z, Min L, Huang D (2015a) Developing transgenic maize (Zea mays L.) with insect resistance and glyphosate tolerance by fusion gene transformation. J Integr Agric 14:305–313

    Article  CAS  Google Scholar 

  • Sun Y, Liu X, Li L, Guan Y, Zhang J (2015b) Production of transgenic maize germplasm with multi-traits of insect-resistance, glyphosate-resistance and droughttolerance. Sci Agric Sin 48:215–228

    Google Scholar 

  • Taylor NJ, Fauquet CM (2002) Microparticle bombardment as a tool in plant science and agricultural biotechnology. DNA Cell Biol 21(12):963–977

    Article  CAS  PubMed  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418(6898):671

    Article  CAS  PubMed  Google Scholar 

  • Travella S, Ross SM, Harden J, Everett C, Snape JW, Harwood WA (2005) A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques. Plant Cell Rep 23(12):780–789

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Qin F (2017) Genome-wide association study reveals natural variations contributing to drought resistance in crops. Front Plant Sci 8:1110

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang H-Y, Li Y-F, Xie L-X, Xu P (2003) Expression of a bacterial aroA mutant, aroA-M1, encoding 5-enolpyruvylshikimate-3-phosphate synthase for the production of glyphosate-resistant tobacco plants. J Plant Res 116(6):455–460

    Article  CAS  PubMed  Google Scholar 

  • Wang C-R, Yang A-F, Yue G-D, Gao Q, Yin H-Y, Zhang J-R (2008) Enhanced expression of phospholipase C 1 (ZmPLC1) improves drought tolerance in transgenic maize. Planta 227(5):1127–1140

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Picard JC, Tian X, Darmency H (2010) A herbicide-resistant ACCase 1781 Setaria mutant shows higher fitness than wild type. Heredity 105(4):394

    Article  CAS  PubMed  Google Scholar 

  • White JW, Reynolds MP (2003) A physiological perspective on modeling temperature response in wheat and maize crops. Modeling temperature response in wheat and maize, vol 8. CIMMYT, México

    Google Scholar 

  • Xiao B, Huang Y, Tang N, Xiong L (2007) Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theor Appl Genet 115(1):35–46

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Vanderbeld B, Wan J, Huang Y (2010) Narrowing down the targets: towards successful genetic engineering of drought-tolerant crops. Mol Plant 3(3):469–490

    Article  CAS  PubMed  Google Scholar 

  • Yu G-R, Yan L, Wen-Ping D, Jun S, Min L, Li-Yuan X, Xiao F-M, Liu Y-S (2013) Optimization of Agrobacterium tumefaciens-mediated immature embryo transformation system and transformation of glyphosate-resistant gene 2mG2-EPSPS in maize (Zea mays L.). J Integr Agric 12(12):2134–2142

    Article  Google Scholar 

  • Zhai S, Sui Z, Yang A, Zhang J (2005) Characterization of a novel phosphoinositide-specific phospholipase C from Zea mays and its expression in Escherichia coli. Biotechnol Lett 27(11):799–804

    Article  CAS  PubMed  Google Scholar 

  • Zhou M, Xu H, Wei X, Ye Z, Wei L, Gong W, Wang Y, Zhu Z (2006) Identification of a glyphosate-resistant mutant of rice 5-enolpyruvylshikimate 3-phosphate synthase using a directed evolution strategy. Plant Physiol 140(1):184–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Pakistan Science Foundation Pakistan for funding this research under NSLP/AU-(168) and Natural Science Foundation of China (No. 31671720) and Distinguished Scholars Research Foundation of Jiangsu University (No. 10JDG134), who funded the first author for Ph.D. studies and kept her in touch with science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iqrar Ahmad Rana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zafar, S. et al. (2019). GM Maize for Abiotic Stresses: Potentials and Opportunities. In: Wani, S. (eds) Recent Approaches in Omics for Plant Resilience to Climate Change. Springer, Cham. https://doi.org/10.1007/978-3-030-21687-0_10

Download citation

Publish with us

Policies and ethics