Skip to main content

Cysts and Resting Eggs from Marine Zooplankton: Dimension of the Phenomenon, Physiology of Rest, and Ecological and Biogeographic Implications

  • Chapter
  • First Online:
Dormancy in Aquatic Organisms. Theory, Human Use and Modeling

Part of the book series: Monographiae Biologicae ((MOBI,volume 92))

Abstract

Encystment is a common strategy adopted by coastal marine plankton species to avoid adverse conditions. Spiny cysts have been identified in marine sediments of more than 600 millions years ago, thus suggesting that this has been an original trait of metazoan life cycles. Protista, Chromista, and Metazoa share this trait which is not the result of a convergent evolution, but a plesiomorphy, probably dictated by low oxygen concentrations. During the evolution of life on the Earth, the morphology has been modified, and today some taxa show typical and recognizable patterns. The affirmation of parental cares (brood protection) is suspected to have provoked the disappearing of spiny covering of eggs and/or cysts. Cysts produced in the pelagos sink to the bottom sediments where their dormancy may extend for decades. In polar seas, cysts are suspected to be entrapped within sea ice and released with ice melting to refuel a new plankton community in the complex frame of the so-called resurrection ecology. Confined marine coastal areas accumulate cysts in sediments due to many drivers as (i) reduced water movement/hydrodynamics, (ii) concentration of cyst-producing species with high population densities, and (iii) absence and/or scarcity of possible cyst consumers in the benthos. The pelagic-benthic nexus, which affects both the sediments and the water column (and possibly sea ice), is still poorly understood. The presence of cysts in the life cycle is likely to have considerable consequences for the ecology of coastal plankton as well as the evolution and biogeography of species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albertsson J, Leonardsson K (2000) Impact of a burrowing-feeder, Monoporeia affinis, on viable zooplankton resting eggs in the northern Baltic Sea. Mar Biol 136:611–619

    Article  Google Scholar 

  • Alekseev VR (1990) Diapausa rakoobrazhik. Ekologo physiologicheskye aspekty. Nauka, Moscow. 143 pp. (in Russian)

    Google Scholar 

  • Alekseev VR (2007) Diapause in crustaceans: peculiarities of induction. In: Alekseev VR et al (eds) Diapause in aquatic invertebrates. Springer, Berlin, pp 29–63

    Chapter  Google Scholar 

  • Anderson DM (1998) Physiology & bloom dynamics of toxic Alexandrium species, with emphasis on life cycle transitions. In: Anderson DM et al (eds) Physiological ecology of harmful algal blooms, NATO ASI Series G41, pp 29–48

    Google Scholar 

  • Bailey SA, Duggan IC, van Overdijk CDA, Jenkins PT, MacIsaac HJ (2003) Viability of invertebrate diapausing eggs collected from residual ballast sediment. Limnol Oceanogr 48:1701–1710

    Article  Google Scholar 

  • Ban S (1992) Effects of temperature, photoperiod, and population density on induction of diapause egg production in Eurytemora affinis (Copepoda: Calanoida) in Lake Ohnuma, Okkaido, Japan. J Crustac Biol 12:361–367

    Article  Google Scholar 

  • Ban S (1994) Induction of diapause egg production in Eurytemora affinis by their own metabolites. Hydrobiologia 292(293):185–189

    Article  Google Scholar 

  • Barnes RSK, Hughes RN (1999) An introduction to marine ecology, 3rd edn. Blackwell Publ, Oxford

    Book  Google Scholar 

  • Baumgartner MF, Tarrant AM (2017) The physiology and ecology of diapause in marine copepods. Annu Rev Mar Sci 9:387–411

    Article  Google Scholar 

  • Belmonte G (1992) Diapause egg production in Acartia (Paracartia) latisetosa (Crustacea, Copepoda, Calanoida). Bollettino di Zoologia 59:363–366

    Article  Google Scholar 

  • Belmonte G (1997) Resting eggs in the life cycle of Acartia italica and A. adriatica (Copepoda, Calanoida, Acartiidae). Crustaceana 70:114–117

    Article  Google Scholar 

  • Belmonte G (1998a) The egg morphology of 7 Acartiidae species. A preliminary survey for the ootaxonomy of calanoids. J Mar Syst 15:35–39

    Article  Google Scholar 

  • Belmonte G (1998b) Pteracartia a new genus of Acartiidae (Calanoida, Diaptomoidea) for Acartia josephinae Crisafi, 1974. J Mar Syst 15:359–368

    Article  Google Scholar 

  • Belmonte G (2018) Calanoida (Crustacea: Copepoda) of the Italian fauna; a review. European Zoological Journal 85:274–290

    Article  Google Scholar 

  • Belmonte G, Pati AC (2007) Hatching rate and diapause duration in eggs of Paracartia latisetosa (Copepoda: Calanoida). J Plankton Res 29:139–147

    Article  Google Scholar 

  • Belmonte G, Potenza D (2001) Biogeography of the family Acartiidae (Calanoida) in the Ponto-Mediterranean province. Hydrobiologia 453(454):171–176

    Article  Google Scholar 

  • Belmonte G, Puce M (1994) Morphological aspects of subitaneous and resting eggs from Acartia josephinae (Calanoida). Hydrobiologia 292(293):131–135

    Article  Google Scholar 

  • Belmonte G, Rossi V (1998) Resurrection and time travelling: diapause in crustaceans (and others). Trends in Ecology and Evolution 13:4–5

    Article  CAS  PubMed  Google Scholar 

  • Belmonte G, Rubino F (2019) Resting cysts from coastal marine plankton. Oceanogr Mar Biol Annu Rev 57. (in press)

    Google Scholar 

  • Belmonte G, Mazzocchi MG, Prusova IY, Shadrin NV (1994) Acartia tonsa a species new for the Black Sea fauna. Hydrobiologia 292(293):9–15

    Article  Google Scholar 

  • Belmonte G, Castello P, Piccinni MR, Quarta S, Rubino F, Geraci S, Boero F (1995) Resting stages in marine sediments off the Italian coast. In: Elefteriou A et al (eds) Biology and ecology of shallow coastal waters. Olsen & Olsen Publ, Fredensborg, pp 53–58

    Google Scholar 

  • Belmonte G, Miglietta A, Rubino F, Boero F (1997) Morphological convergence of resting stages produced by planktonic organisms: a review. Hydrobiologia 335:159–165

    Article  Google Scholar 

  • Boero F (1994) Fluctuations and variations in coastal marine environments. Mar Biol 15:3–25

    Google Scholar 

  • Boero F, Belmonte G, Fanelli G, Piraino S, Rubino F (1996) The continuity of living matter and the discontinuities of its constituents: do plankton and benthos really exist? Trends in Ecology and Evolution 11:177–180

    Article  CAS  PubMed  Google Scholar 

  • Boero F, Belmonte G, Bussotti S, Fanelli G, Fraschetti S, Giangrande A, Gravili C, Guidetti P, Pati AC, Piraino S, Rubino F, Saracino OD, Schmich J, Terlizzi A, Geraci S (2004) From biodiversity and ecosystem functioning to the roots of ecological complexity. Ecol Complex 1:101–109

    Article  Google Scholar 

  • Bohonack AJ, Holland MD, Santer B, Zeller M, Kearns CM, Hairston NG Jr (2006) The population genetic consequences of diapause in Eudiaptomus copepods. Arch Hydrobiol 167:183–202

    Article  CAS  Google Scholar 

  • Braiko VD (1966) Biology of the winter eggs of Penilia avirostris. Doklady Biological Sciences (English traduction of Doklady Academic Nauk SSSR) 170:681–683

    Google Scholar 

  • Brierley AS, Thomas DN (2002) Ecology of southern ocean pack ice. Adv Mar Biol 43:173–276

    Google Scholar 

  • Brylinski JM (1981) Reports on the presence of Acartia tonsa Dana (Copepoda) in the area of Dunkirk and its geographical distribution in Europe. J Plankton Res 3:255–261

    Article  Google Scholar 

  • Buck KR, Bolt PA, Bentham W, Garrison DL (1992) A dinoflagellate cyst from the Antarctic Sea ice. J Phycol 28:15–18

    Article  Google Scholar 

  • Càceres CE, Tessier AJ (2003) How long to rest: the ecology of optimal dormancy and environmental constraint. Ecology 84:1189–1198

    Article  Google Scholar 

  • Carlton JT, Geller JB (1993) Ecological roulette: the global transport of non indigenous marine organisms. Science 261:78–82

    Article  Google Scholar 

  • Chesson PL, Warner RR (1981) Environmental variabilità promotes coexistence in lottery competitive systems. Am Nat 117:923–943

    Article  Google Scholar 

  • Clegg JS (1997) Embryos of Artemia franciscana survive for years of continuous anoxia: the case for complete metabolic rate depression. J Exp Biol 200:467–475

    CAS  PubMed  Google Scholar 

  • Cohen D (1966) Optimizing reproduction in a randomly varying environment. J Theor Biol 12:119–129

    Article  CAS  PubMed  Google Scholar 

  • Cohen PA, Knoll AH, Kodner RB (2009) Large spinose microfossils in Ediacaran rocks as resting stages of early animals. Proc Natl Acad Sci 106:6519–6524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahms H-U (1995) Dormancy in the Copepoda ? An overview. Hydrobiologia 306(3):199–211

    Article  Google Scholar 

  • Dahms H-U, Li X, Zhang G, Quian P-Y (2006) Resting stages of Tortanus forcipatus (Crustacea, Calanoida) in sediments of Victoria harbour, Hong Kong. Estuarine Coastal and Shelf Sciences 67:562–568

    Article  Google Scholar 

  • Drillet G, Jeppesen PM, Højgaard JK, Jørgensen NOG, Hansen BW (2008) Strain specific vital rates in four Acartia tonsa cultures II: life history traits and biochemical contents of eggs and adults. Aquaculture 279:47–54

    Article  CAS  Google Scholar 

  • Drillet G, Hay S, Hansen BW, O’Neill FG (2014) Effects of demersal otter trawls on the re-suspension of copepod resting eggs and its potential effects on recruitment. J Fisheries and Livestock Production 2. https://doi.org/10.4172/2332-2608.1000114

  • Dumont HJ, Nandini S, Sarma SSS (2002) Cyst ornamentation in aquatic invertebrates. A defense against predation Hydrobiologia 486:161–167

    Google Scholar 

  • Ellner SP, Hairston NG Jr, Kearns CM, Babai D (1999) The roles of fluctuating selection and long term diapause in microevolution of diapause timing in a fresh water copepod. Evolution 53:111–122

    Article  PubMed  Google Scholar 

  • Engel M (2005) Calanoid copepod resting eggs – a safeguard against adverse environmental conditions in the German bight and the Kara Sea? Berichte zur Polarforshung und Meeresforshung 508:1–108

    Google Scholar 

  • Farabegoli A, Ferrari I, Manzoni C, Pugnetti A (1989) Prima segnalazione nel Mare Adriatico del copepode calanoide Acartia tonsa. Nova Thalassia 10(suppl.1):207–208

    Google Scholar 

  • Figuerola J, Green AJ (2002) Dispersal of aquatic organisms by waterbirds; a review of past research and priorities for future studies. Freshw Biol 47:483–494

    Article  Google Scholar 

  • Foissner W (2006) Biogeography and dispersal of micro-organisms: a review emphasizing protists. Acta Protozool 45:111–136

    Google Scholar 

  • Foissner W, Müller H, Agatha S (2007) A comparative fine structural and phylogenetic analysis of resting cysts in oligotrich and hypotrich Spirotrichea (Ciliophora). Eur J Protistol 43:295–314

    Article  PubMed  PubMed Central  Google Scholar 

  • Friedrich C, De Smet WH (2000) The rotifer fauna of Arctic Sea ice from the Barents Sea, Laptev Sea, and Greenland Sea. Hydrobiologia 432:73–89

    Article  Google Scholar 

  • Gaines S, Roughgarden J (1985) Larval settlment rate: a leading determinant of structure in an ecological community of the marine intertidal zone. Proc Natl Acad Sci 83:3707–3711

    Article  Google Scholar 

  • Galil BS, Hulsemann N (1997) Protist transport via ballast water – biological classification of ballast tanks by food web interactions. Eur J Protistol 33:244–253

    Article  Google Scholar 

  • Garrison DL, Buck KR (1989) The biota of Antarctic pack ice in the Weddell Sea and Antarctic peninsula regions. Polar Biol 10:211–219

    Article  Google Scholar 

  • Gaudy R, Viñas MD (1985) Premiere signalization en Méditerranée du copépode pélagique Acartia tonsa. Rapports de la Commission Internationale pour l’Exploration Scientifique de la Mer Méditerranée 29:227–229

    Google Scholar 

  • Giangrande A, Geraci S, Belmonte G (1994) Life-cycle and life-history diversity in marine invertebrates and the implications in community dynamics. Oceanogr Mar Biol Annu Rev 32:305–333

    Google Scholar 

  • Giangrande A, Montresor M, Cavallo A, Licciano M (2002) Influence of Naineris laevigata (Polychaeta: Orbiniidae) on vertical grain size distribution, and dinoflagellate resting stages in the sediment. J Sea Res 47:97–108

    Article  Google Scholar 

  • Giannakourou A, Orlova TY, Assimakopoulou G, Pagou K (2005) Dinoflagellate cysts in recent marine sediments from Thermaikos gulf, Greece: effects of resuspending events on vertical cyst distribution. Cont Shelf Res 25:2585–2596

    Article  Google Scholar 

  • Gilbert JJ (1974) Dormancy in rotifers. Trans Am Microsc Soc 93:490–513

    Article  Google Scholar 

  • Gilbert JJ (1992) Rotifera. In: Adiyodi KG, Adiyodi RG (eds) Reproductive biology of invertebrates, Sexual differentiation and behaviour, vol V. Oxford/IBH Publishing Co, New Delhi, pp 115–136

    Google Scholar 

  • Gilbert JJ (2004) Population density, sexual reproduction, and diapause in monogonont rotifers: new data for Brachionus and a review. J Limnol 63:32–36

    Article  Google Scholar 

  • Gilbert JJ (2007) Timing of diapause in monogonont rotifers. In: Alekseev VR et al (eds) Diapause in aquatic invertebrates. Theory and human use. Springer, Berlin, pp 11–27

    Chapter  Google Scholar 

  • Glippa O, Denis L, Lesourd S, Souissi S (2014) Seasonal fluctuations of the copepod resting egg bank in the middle seine estuary, France: impact on the nauplii recruitment. Estuar Coast Shelf Sci 142:60–67

    Article  Google Scholar 

  • Gradinger R (1999) Vertical fine structure of the biomass and composition of algal communities in Arctic pack ice. Mar Biol 133:745–754

    Article  Google Scholar 

  • Grice GD, Marcus NH (1981) Dormant eggs of marine copepods. Occeanogr Mar Biol Annu Rev 19:125–140

    Google Scholar 

  • Guelorget O, Perthuisot JP (1992) Paralic ecosystems - biological organization and functionning. Vie Milieu 42:215–251

    Google Scholar 

  • Guerrero F, Rodrigues V (1998) Existence and significance of Acartia grani resting eggs (Copepoda: Calanoida) in sediments of a coastal station in the Alboran Sea (SE Spain). J Plankton Res 20:305–314

    Article  Google Scholar 

  • Gyllström M, Hansson L-A (2004) Dormancy in freshwater zooplankton: induction, termination and the importance of benthicpelagic coupling. Aquat Sci 66:274–295

    Article  Google Scholar 

  • Hairston NG Jr (1996) Zooplankton egg banks as biotic reservoirs in changing environments. Limnol Oceanogr 41:1087–1092

    Article  Google Scholar 

  • Hairston NG Jr, De Stasio BT Jr (1988) Rate of evolution slowed by a dormant propagule pool. Nature 336:239–242

    Article  Google Scholar 

  • Hairston NG Jr, Fox JA (2010) Egg banks. In: Likens GE (ed) Plankton of inland waters. Elsevier, San Diego, pp 247–254

    Google Scholar 

  • Hairston NG Jr, van Brunt RA, Kearns CN, Engstrom DR (1995) Age and survivorship of diapausing eggs in a sediment egg bank. Ecology 76:1706–1711

    Article  Google Scholar 

  • Hansen BW, Drillet G, Kristensen RM, Sørensen TF, Tøttrup MT (2010) Production, hatching success and surface ornamentation of eggs of calanoid copepods during a winter at 57°N. Mar Biol 157:59–68

    Article  Google Scholar 

  • Heikkila M, Pospelova V, Forest A, Stern GA, Fortier L, Macdonald RW (2016) Dinoflagellate cyst production over an annual cycle in seasonally ice-covered Hudson Bay. Mar Micropaleontol 125:1–24

    Article  Google Scholar 

  • Horner R (1985) Sea ice biota. CRC Press, Boca Raton

    Google Scholar 

  • Horner R, Ackley SF, Dieckmann GS, Guiliksen B, Hoshia T, Legendre L, Melnikov IA, Reeburgh WS, Spindler M, Sullivan CW (1992) Ecology of sea ice biota. 1. Habitat, terminology, and methodology. Polar Biol 12:417–427

    Article  Google Scholar 

  • Hutchinson GE (1961) The paradox of the plankton. Am Nat 95:137–145

    Article  Google Scholar 

  • Ianora A (1998) Copepod life history traits in subtemperate regions. J Mar Syst 15:337–349

    Article  Google Scholar 

  • Ianora A, Santella L (1991) Diapause embryos in the neustonic copepod Anomalocera patersoni. Mar Biol 108:387–394

    Article  Google Scholar 

  • Ikavalko J (2001) On the presence of some selected Heterokontophyta (Chrisophyceae, Dictyochophyceae, Bicocoecida) and cysts (“archaeomonads”) from sea ice – a synopsis. Nova Hedwigia 122:41–54

    Google Scholar 

  • Ikavalko J, Thomsen HA (1997) The Baltic Sea ice biota (march 1994): a study of the protistan community. Eur J Protistol 33:229–243

    Article  Google Scholar 

  • Ikavalko, J., Werner, I., Roine, T., Karell, K., Granskog, M. & Ehn, J. 2004. Sea ice biota in the northern Baltic Sea in February and April 2002. Proceedings of the 17th International IAHR Symposium on Ice. Saint Petersburg, Russia, 21–25 June 2004, pp 18–23

    Google Scholar 

  • Jiang X, Wang G, Li S (2004) Age, distribution and abundance of viable resting eggs of Acartia pacifica (Copepoda: Calanoida) in Xiamen Bay, China. J Exp Biol Ecol 312:89–100

    Article  Google Scholar 

  • Kaiser MJ, Attrill MJ, Jennings S, Thomas DN, Barnes DKA, Brierley AS, Hidding JG, Kaartokallio H, Polunin NVC, Raffaelli DG (2005) Marine ecology. In: Processes, systems, and impacts. Press, Oxford University

    Google Scholar 

  • Kamiyama T, Itakura S, Nagasaki K (1995) Effects of irradiance on excystment of tintinnids from marine sediments. J Oceanogr 51:615–618

    Article  Google Scholar 

  • Kasahara S, Uye S, Onbè T (1974) Calanoid copepods eggs in sea bottom-muds. Mar Biol 26:167–171

    Article  Google Scholar 

  • Kerfoot WC, Weider LJ (2004) Experimental paleoecology (resurrection ecology): chasig Van Valen’s red queen hypothesis. Limnol Oceanogr 49:1300–1316

    Article  Google Scholar 

  • Kim Y-O, Suzuki T, Taniguchi A (2002) A new species in the genus Cyrtostrombidium (Ciliophora, Oligotrichia, Oligotrichida): its morphology, seasonal cycle and resting stage. J Eukaryot Microbiol 49:338–343

    Article  PubMed  Google Scholar 

  • Kokinos JP, Anderson DM (1995) Morphological development of resting cysts in cultures of the marine dinoflagellate Lingulodinium polyedrum (= L. machaerophorum). Palynology 19:143–166

    Article  Google Scholar 

  • Komazawa H, Endo Y (2002) Experimental studies on hatching conditions of the resting eggs of marine cladocerans and their seasonal variation in Onagawa Bay. Tohoku J Agri Res 52:57–85

    Google Scholar 

  • Kremp A, Shull DH, Anderson DM (2003) Effects of deposit feeder gut passage and fecal pellet encapsulation on germination of dinoflagellate resting cysts. Mar Ecol Prog Ser 263:65–73

    Article  Google Scholar 

  • Kremp A, Rengefors K, Montresor M (2009) Species specific encystment patterns in three Baltic cold-water dinoflagellates: the role of multiple cues in resting cyst formation. Limnol Oceanogr 54:1125–1138

    Article  CAS  Google Scholar 

  • Kuwata A, Tsuda A (2005) Selection and viability after ingestion of vegetative cells, resting spores and resting cells of the marine diatom, Chaetoceros pseudocurvisetus, by two copepods. J Exp Mar Biol Ecol 322:143–151

    Article  Google Scholar 

  • Lakkis S, Zeidane R (1990) Associations congeneriques d’Acartia (Copepoda, Calanoida) dans les eaux cotieres Libanaises : Calcul des indices d’ « Overlap » et de « Niche hypervolume ». Rapport de la Commission Internationale pour l’Exploration Scientifique de la Mer Méditerranée 32:222–223

    Google Scholar 

  • Lennon JT, Jones SE (2011) Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat Rev Microbiol 9:119–130

    Article  CAS  PubMed  Google Scholar 

  • Leppäkoski E, Olenin S (2000) Non-native species and rates of spread: lessons from the brackish Baltic Sea. Biol Invasions 2:151–163

    Article  Google Scholar 

  • Levington JS (2001) Marine biology: function, biodiversity, ecology, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Lewin R (1986) Supply-side ecology. Science 234:25–27

    Article  CAS  PubMed  Google Scholar 

  • Lindley IA (1992) Resistant eggs of Centropagoidea (Copepoda: Calanoida): a possible preadaptation to colonization of inland waters. J Crustac Biol 12:368–371

    Article  Google Scholar 

  • Lutz RV, Marcus NH, Chanton JP (1992) Effects of low oxygen concentrations on the hatching and viability of eggs of marine calanoid copepods. Mar Biol 114:241–247

    Article  CAS  Google Scholar 

  • Madhupratap M, Nehring S, Lenz J (1996) Resting eggs of zooplankton (Copepoda and Cladocera) from the Kiel Bay and adjacent waters (southwestern Baltic). Mar Biol 125:77–87

    Article  Google Scholar 

  • Mansingh A (1971) Physiological classification of dormancies in insects. Can Entomol 103:983–1009

    Article  Google Scholar 

  • Marcus NH (1979) On the population biology and nature of diapause of Labidocera aestiva (Copepoda, Calanoida). Biol Bull 157:297–305

    Article  Google Scholar 

  • Marcus NH (1984) Recruitment of copepod nauplii into the plankton: importance of diapause eggs and benthic processes. Mar Ecol Prog Ser 15:47–54

    Article  Google Scholar 

  • Marcus NH (1987) Differences in the duration of egg diapause in Labidocera aestiva (Copepoda, Calanoida) from the woods hole, Massachussetts, region. Biol Bull 163:169–177

    Article  Google Scholar 

  • Marcus NH (1990) Calanoid copepod, cladoceran, and rotifer eggs in sea-bottom sediments of northern Californian coastal waters: identification, occurrence and hatching. Mar Biol 105:413–418

    Article  Google Scholar 

  • Marcus NH, Boero F (1998) Production and plankton community dynamics in coastal aquatic systems: the importance of benthic pelagic coupling in the forgotten role of life cycles. Limnol Oceanogr 43:763–768

    Article  Google Scholar 

  • Marcus NH, Lutz R, Burnett W, Cable P (1994) Age, viability and vertical distribution of zooplankton resting eggs from an anoxic basin: evidence of an egg bank. Limnol Oceanogr 39:154–158

    Article  Google Scholar 

  • Mauchline J (1998) The biology of calanoid copepods. Adv Mar Biol 33:1–710

    Article  Google Scholar 

  • McMinn A, Bolch CJS, Hallegraeff G (1992) Cobricopshaeridium Harland & Sarjeant : dinoflagellate cyst or copepod egg ? Mircopaleontology 38:315–316

    Article  Google Scholar 

  • Meiers K, Feeling J, Graskog M, Spindler M (2002) Abundance, biomass and composition of biota in Baltic Sea ice and underlying water (march 2000). Polar Biol 25:761–770

    Google Scholar 

  • Mertens KN, Dale B, Ellegaard M, Jansson I-M, Godhe A, Kremp A, Louwye S (2011) Process length variation in cysts of the dinoflagellate Protoceratium reticulatum, from surface sediments of the Baltic–Kattegat–Skagerrak estuarine system: a regional salinity proxy. Boreas 40:242–255

    Article  Google Scholar 

  • Meunier A (1910) Microplankton des Mers de Barents et de Kara. In: Duc D’Orleans: Campagne Arctique de 1907. C. Bulens, Bruxelles

    Google Scholar 

  • Meysman FJR, Middelburg JJ, Heip CHR (2006) Bioturbation: a fresh look at Darwin’s last idea. Trends Ecol Evol 21:688–695

    Article  PubMed  Google Scholar 

  • Miyashita LK, Gaeta SA, Lopez RM (2011) Life cycle and reproductive traits of marine podonids (Cladocera, Onychopoda) in a coastal subtropical area. J Plankton Res 33:779–792

    Article  Google Scholar 

  • Modig H, Òlafsson E (2001) Survival and bioturbation of the amphipod Monoporeia affinis in sulphide rich sediments. Mar Biol 138:87–92

    Article  CAS  Google Scholar 

  • Montresor M, Nuzzo L, Mazzocchi M (2003) Viability of dinoflagellate cysts after the passage through the copepod gut. J Exp Mar Biol Ecol 287:209–221

    Article  Google Scholar 

  • Mugrabe G, Barros S, Marazzo A, Valentin JL (2007) Hatching rates of resting eggs of Cladocera (Crustacea; Branchiopoda) at a tropical bay, Brazil. Braz J Biol 67:527–530

    Article  CAS  PubMed  Google Scholar 

  • Mura G (1986) SEM morphological survey on the egg shell in the Italian anostracans (Crustacea, Branchiopoda). Hydrobiologia 134:273–286

    Article  Google Scholar 

  • Odum EP (1971) Fundamentals of ecology. Saunders Co., Philadelphia

    Google Scholar 

  • Onbé T (1974) Studies on the ecology of marine cladocerans. J Faculty of Fishery and Animal Husbandry, Hiroshima University 13:83–179

    Google Scholar 

  • Onbé T (1985) Seasonal fluctuations in the abundance of populations of marine cladocerans and their resting eggs in the Inland Sea of Japan. Mar Biol 87:83–88

    Article  Google Scholar 

  • Onbé T (1991) Some aspects of the biology of resting eggs of marine cladocerans. In: Wenner A, Kuris A (eds) Crustacean egg production, Crustacean issues 7. A.A. Balkema, Rotterdam, pp 41–45

    Google Scholar 

  • Onoué Y, Toda T, Ban S (2004) Morphological features and hatching patterns of eggs in Acartia steueri (Crustacea, Copepoda) from Sagami Bay, Japan. Hydrobiologia 511:17–24

    Article  Google Scholar 

  • Pati AC, Belmonte G (2003) Disinfection efficacy on cysts viability of Artemia franciscana (Crustacea), Hexarthra fennica (Rotifera), and Fabrea Salina (Ciliophora). Mar Biol 142:895–904

    Article  Google Scholar 

  • Persson A (2000) Possible predation of cyst - a gap in the knowledge of dinoflagellate ecology? J Plankton Res 22:803–809

    Article  Google Scholar 

  • Persson A, Rosenberg R (2003) Grazing on marine dinoflagellate cysts by benthic deposit feeding animals. Harmful Algae 2:43–50

    Article  Google Scholar 

  • Philippi T, Sen J (1989) Hedging one’s evolutionary bets, revisited. Trends Ecol Evol 4:41–44

    Article  CAS  PubMed  Google Scholar 

  • Piscia R, Tabozzi S, Bettinetti R, Nevalainen L, Manca MM (2016) Unexpected increases in rotifer resting egg abundances during the period of contamination of Lake Orta. J Limnol 75. https://doi.org/10.4081/jlimnol.2016.1300

  • Posi ME, BelmoParnte G (2011) Ritmi di produzione di uova di diapausa in Paracartia latisetosa (Copepoda, Calanoida). Thalassia Salentina 33:83–94

    Google Scholar 

  • Rathaille AN, Raine R (2011) Seasonality in the excystment of Alexandrium minutum and Alexandrium tamarense in Irish coastal waters. Harmful Algae 10:629–635

    Article  Google Scholar 

  • Ratkova TN, Wassmann P (2005) Sea ice algae in the white and Barents seas: composition and origin. Polar Res 24:1–16

    Article  Google Scholar 

  • Redden AM, Daborn GR (1991) Viability of subitaneous copepod eggs following fish predation on egg-carrying calanoids. Mar Ecol Prog Ser 77:307–310

    Article  Google Scholar 

  • Reid PC, John AWG (1978) Tintinnid cysts. J Mar Biol Assoc U K 58:551–557

    Article  Google Scholar 

  • Reid PC, John AWG (1983) Resting cysts in the ciliate class Polyhymenophorea: phylogenetic implications. J Protozool 30:710–712

    Article  Google Scholar 

  • Remy P (1927) Note sur un copepode de l’eau saumatre du canal de Caen a la mer, Acartia tonsa Dana. Ann Biol Lacustre 15:169–186

    Google Scholar 

  • Reznick DN (2011) The “origin” then and now: an interpretive guide to the “origin of species”. University Press, Princeton

    Google Scholar 

  • Ribeiro S, Berge T, Lundholm N, Andersen TJ, Abrantes F, Ellegaard M (2011) Phytoplankton growth after a century of dormancy illuminates past resilience to catastrophic darkness. Nat Commun 2:311–317

    Article  PubMed  Google Scholar 

  • Ricci C (2001) Dormancy patterns in rotifers. Hydrobiologia 446(447):1–11

    Article  Google Scholar 

  • Ricci C, Fontaneto D (2009) The importance of being a bdelloid. Ecological and evolutionary consequences of dormancy. Ital J Zoo 76:240–249

    Article  CAS  Google Scholar 

  • Rodrigues V, Vives F (1984) Copepodes de las aguas portuarias de Malaga. Investig Pesq 48:235–254

    Google Scholar 

  • Rozanska M, Poulin M, Gosselin M (2008) Protist entrapment in newly formed sea ice in the coastal Arctic Ocean. J Mar Syst 74:887–901

    Article  Google Scholar 

  • Rubino, F. & Belmonte, G. 2019. A new cyst morphotype from recent sediments of the mar piccolo of Taranto (southern Italy, Ionian Sea).. Progress in Aqua Farming and Marine Biology. (in press)

    Google Scholar 

  • Rubino F, Moscatello S, Belmonte M, Ingrosso G, Belmonte G (2013) Plankton resting stages in the marine sediments of the bay of Vlore (Albania). Intern J Ecol, 2013, n.ID 101682

    Google Scholar 

  • Rubino F, Cibic T, Belmonte M, Rogelja M (2016) Microbenthic community structure and trophic status of sediments in the mar piccolo of Taranto (Mediterranean, Ionian Sea). Environ Sci Pollut Res 23:12624–12644

    Article  CAS  Google Scholar 

  • Ruiz GM, Carlton JT, Grosholtz ED, Hines AH (1997) Global invasions of marine and estuarine habitats by non-indigenous species: mechanisms, extent, and consequences. Am Zool 37:621–632

    Article  Google Scholar 

  • Ruiz GM, Rawlings TK, Dobbs FC, Drake LA, Mullady T, Huq A, Colwell RR (2000) Global spread of microorganisms by ships Ballast water discharged from vessels harbours. A cocktail of potential pathogens. Nature 408:49–50

    Article  CAS  PubMed  Google Scholar 

  • Sacchi CF (1985) Le sel de La Palice: réflexions sur le paralin méditerranéen. Memorie di Biologia Marina ed Oceanografia 15:71–89

    Google Scholar 

  • Santella L, Ianora A (1990) Subitaneous and diapause eggs in Mediterranean populations of Pontella mediterranea (Copepoda: Calanoida): a morphological study. Mar Biol 104:83–90

    Article  Google Scholar 

  • Santella L, Ianora A (1992) Fertilization envelope in diapause eggs of Pontella mediterranea (Crustacea, Copepoda). Mol Reprod Dev 33:463–469

    Article  CAS  PubMed  Google Scholar 

  • Sazhina LI (1968) O zhimuyushchik yaitzak morskik Calanoida. Zool Zhurnal 47:1554–1556. (in Russian)

    Google Scholar 

  • Sazhina LI (1987) Rashmioshenie, rost, produkziya morskik veslonogik rakoobrashiyk. Naukova Dumka, Kyev. (in Russian)

    Google Scholar 

  • Schnack-Schiel SB, Dieckmann GS, Gradinger R, Melnikov IA, Spindler M, Thomas DN (2001) Meiofauna in sea ice of the Weddel Sea (Antarctica). Polar Biol 24:724–728

    Article  Google Scholar 

  • Seger J, Brockmann HJ (1987) What is bet-hedging? Oxford Survey of Evolutionary Biology 14:357–367

    Google Scholar 

  • Sichlau MH, Hansen JLS, Andersen TJ, Hansen BW (2011) Distribution and mortality of diapause eggs from calanoid copepods in relation to sedimentation regimes. Mar Biol 158:665–676

    Article  Google Scholar 

  • Siokou-Frangou I, Zervoudaki S, Kambouroglou V, Belmonte G (2005) Distribution of mesozooplankton resting eggs in seabottom sediments of Thermaikos gulf (NW Aegean Sea, Greece) and possible effects of sediment resuspension. Cont Shelf Res 25:2597–2608

    Article  Google Scholar 

  • Smirnov SS (1935) Über das Auftreten von Acartia tonsa Dana (Copepoda) in Finnischen Meerbusen. Proc Natl Acad Sci URSS 3(5):237–240

    Google Scholar 

  • Stabili L, Miglietta AM, Belmonte G (1999) Lysozyme-like and trypsin like activities in the cyst of Artemia franciscana Kellog 1906. Is there a passive immunity in a resting stage? J Exp Mar Biol Ecol 237:291–303

    Article  CAS  Google Scholar 

  • Tarazona E, García-Roger EM, Carmona MJ (2017) Experimental evolution of bet hedging in rotifer diapause traits as a response to environmental unpredictability. Oikos 126:1162–1172

    Article  Google Scholar 

  • Templeton AR, Levin DA (1979) Evolutionary consequences of seed pools. Am Nat 114:232–249

    Article  Google Scholar 

  • Thomas DN, Dieckmann GS (2002) Antarctic Sea ice – a habitat for extremophiles. Science 295:641–644

    Article  CAS  PubMed  Google Scholar 

  • Tunnacliffe A, Lapinski J, McGee B (2005) A putative LEA protein, but no trehalose, is present in anhydrobiotic bdelloid rotifers. Hydrobiologia 546:315–321

    Article  CAS  Google Scholar 

  • Underwood AJ, Fairweather PG (1989) Supply side ecology and benthic marine assemblages. Trends Ecol Evol 4(1):16–20

    Article  CAS  PubMed  Google Scholar 

  • Uye S-I (1985) Resting egg production as a life-cycle strategy of marine planktonic copepods. Bull Mar Sci 37:440–449

    Google Scholar 

  • Valiela I (1995) Marine Ecological Processes, 2nd edn. Springer Publishing + Business Media, New York

    Book  Google Scholar 

  • Viitasalo S (2007) Effects of bioturbation by three macrozoobenthic species and predation by necto-benthic mysids on cladoceran benthic eggs. Mar Ecol Prog Ser 336:131–140

    Article  Google Scholar 

  • Viitasalo M, Katajisto T (1994) Mesozooplankton resting eggs in the Baltic Sea: identification and vertical distribution in laminated and mixed sediments. Mar Biol 120:455–465

    Article  Google Scholar 

  • Viitasalo S, Viitasalo M (2004) Predation by the mysid shrimps Mysis mixta and M. relicta on benthic eggs of Bosmina longispina maritima (Cladocera) in the northern Baltic Sea. Mar Ecol Prog Ser 281:155–163

    Article  Google Scholar 

  • Wang G, Jiang X, Wu L, Li S (2005) Differences in the density, sinking rate and biochemical composition of Centropages tenuiremis (Copepoda: Calanoida) subitaneous and diapause eggs. Mar Ecol Prog Ser 288:165–171

    Article  CAS  Google Scholar 

  • Werner I, Ikavalko J, Schünemann H (2007) Sea-ice algae in Arctic pack ice during late winter. Polar Biol 30:1493–1504

    Article  Google Scholar 

  • Williams-Howze J (1997) Dormancy in the free-living copepod orders Cyclopoida, Calanoida, and Harpacticoida. Oceanogr Mar Biol Annu Rev 35:257–321

    Google Scholar 

  • Wonham MJ, Bailey SA, MacIsaac HJ, Lewis MA (2005) Modelling the invasion risk of diapausing organisms transported in ballast sediments. Can J Fish Aqua Sci 62:2386–2398

    Article  Google Scholar 

  • Zaitsev Y, Ozturk B (eds) (2001) Exotic species in the Aegean, Marmara, black, Azov and Caspian seas. Istanbul, Turkish Marine Research Foundation

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genuario Belmonte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Belmonte, G., Rubino, F. (2019). Cysts and Resting Eggs from Marine Zooplankton: Dimension of the Phenomenon, Physiology of Rest, and Ecological and Biogeographic Implications. In: Alekseev, V., Pinel-Alloul, B. (eds) Dormancy in Aquatic Organisms. Theory, Human Use and Modeling. Monographiae Biologicae, vol 92. Springer, Cham. https://doi.org/10.1007/978-3-030-21213-1_5

Download citation

Publish with us

Policies and ethics