Skip to main content

Advertisement

Log in

In vitro antifungal activity of the berberine and its synergism with fluconazole

  • Short Communication
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Berberine with and without fluconazole was tested by an agar disk diffusion assay in which clinical isolates of Candida albicans were applied onto yeast extract-peptone-dextrose agar plate. Berberine, which had no intrinsic antifungal activity at the concentration tested, exerted a powerful antifungal activity in combination of fluzonazole. Combinations of berberine and fluconazole were also tested by the checkerboard assay to determine whether they had favorable or unfavorable antifungal interactions. The MIC of fluconazole was 1.9 μg/ml when the drug was tested alone and decreased to 0.48 μg/ml in the presence of berberine concentrations of 1.9 μg/ml. However, berberine at concentrations of >1.9 μg/ml combined with a fluconazole supra-MIC (i.e., >1.9 μg/ml) eliminated the residual turbidity in the incubation wells. This endpoint fitted to the definition of MIC-0 (optically clear wells) and reflected the absence of a trailing effect, which is the result of a residual growth at fluconazole concentrations greater than the MIC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Birdsall TC (1997) Berberine: therapeutic potential of an alkaloid found in several medicinal plants. Altern Med Rev 2(2):94–103

    Google Scholar 

  • Clinical and Laboratory Standards Institute (CLSI) (2004) Method for antifungal disk diffusion susceptibility testing of yeasts: NCCLS document M44-A. National Committee for Clinical Laboratory Standards, Wayne, Pa, pp 1–36

    Google Scholar 

  • Gudlaugsson O, Gillespie S, Lee K, Vande Berg J, Hu J, Messer S, Herwaldt L, Pfaller M, Diekema D (2003) Attributable mortality of nosocomial candidemia, revisited. Clin Infect Dis 37:1172–1177

    Article  PubMed  Google Scholar 

  • Jennings BR, Ridler PJ (1983) Interaction of chromosomal stains with DNA, an electrofluorescence study. Biophys Struct Mech 10:71–79

    Article  CAS  PubMed  Google Scholar 

  • Ko W, Yao X, Lau C, Law W, Chen Z, Kwok W, Ho K, Huang Y (2000) Vasorelaxant and antiproliferative effects of berberine. Eur J Pharmacol 399:187–196

    Article  CAS  PubMed  Google Scholar 

  • Kuo C, Chi C, Liu T (2004) The anti-inflammatory potential of berberine in vitro and in vivo. Cancer Lett 203:127–137

    Article  CAS  PubMed  Google Scholar 

  • Lewis K (2001) In search of natural substrates and inhibitors of MDR pumps. J Mol Microbiol Biotechnol 3:247--254

    Google Scholar 

  • Lipsitch M, Bergstrom CT, Levin BR (2000) The epidemiology of antibiotic resistance in hospitals: paradoxes and prescriptions. Proc Natl Acad Sci USA 97:1938–1943

    Article  CAS  PubMed  Google Scholar 

  • Marchetti O, Moreillon P, Glauser MP, Bille J, Sanglard D (2000) Potent synergism of the combination of fluconazole and cyclosporine in Candida albicans. Antimicrob Agents Chemother 44:2373–2381

    Article  CAS  PubMed  Google Scholar 

  • Marinova E, Nikolova D, Popova D, Gallacher G, Ivanovska N (2000) Suppression of experimental autoimmune tubulointerstitial nephritis in BALB/c mice by berberine. Immunopharmacology 48:9–16

    Article  CAS  PubMed  Google Scholar 

  • Mitani N, Murakami K, Yamaura T, Ikeda T, Saiki I (2001) Inhibitory effect of berberine on the mediastinal lymph node metastasis produced by orthotopic implantation of Lewis lung carcinoma. Cancer Lett 165:35–42

    Article  CAS  PubMed  Google Scholar 

  • Odds F (2003) Synergy, antagonism, and what the checkerboard puts between them. J Antim Chemother 52:1

    Article  CAS  Google Scholar 

  • Park KS, Kang KC, Kim JH, Adams DJ, Johng TN, Paik YK (1999) Differential inhibitory effects of protoberberines on sterol and chitin biosyntheses in Candida albicans. J Antimicrob Chemother 43:667–674

    Article  CAS  PubMed  Google Scholar 

  • Perea S, Patterson TF (2002) Antifungal resistance in pathogenic fungi. Clin Infect Dis 35:1073–1080

    Article  PubMed  Google Scholar 

  • Polak A (1990) Combination therapy in systemic mycosis. J Chemother 2:211–217

    CAS  PubMed  Google Scholar 

  • Severina II, Muntyan MS, Lewis K, Skulachev VP (2001) Transfer of cationic antibacterial agents beerberine, palmatine and benzalkonium through bimolecular planar phospholipid film and Staphylococcus aureus membrane. IUBMB-Life Sci 52:321–324

    Article  CAS  Google Scholar 

  • Stermitz FR, Lorenz P, Tawara JN, Zenewicz LA, Lewis K (2000a) Synergy in a medicinal plant: antimicrobial action of berberine potentiated by 5′-methoxyhydnocarpin, a multidrug pump inhibitor. Proc Natl Acad Sci 97:1433–1437

    Article  CAS  PubMed  Google Scholar 

  • Stermitz FR, Tawara-Matsuda J, Lorenz P, Mueller P, Zenewicz L, Lewis K (2000b) 5′-Methoxyhydnocarpin-D and pheophorbide A: Berberis species components that potentiate berberine growth inhibition of resistant Staphylococcus aureus. J Nat Prod 63:1146–1149

    Article  CAS  PubMed  Google Scholar 

  • Stermitz FR, Beeson TD, Mueller PJ, Hsiang JF, Lewis K (2001) Staphylococcus aureus MDR efflux pump inhibitors from a Berberis and a Mahonia (sensu strictu) species. Biochem Syst Ecol 29:793–798

    Article  CAS  PubMed  Google Scholar 

  • Vollekova A, Kost’alova D, Kettmann V, Toth J (2003) Antifungal activity of Mahonia aquifolium extract and its major protoberberine alkaloids. Phytother Res 17:834–837

    Article  CAS  PubMed  Google Scholar 

  • White TC, Marr KA, Bowden RA (1998) Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev 11(2):382–402

    CAS  PubMed  Google Scholar 

  • Zhao XZ, Guo X (1989) Antiarrhythmic effect and electrophysiologic study of berberine. Zhong Hua Xin Xue Guan Bing Za Zhi 17:159–161

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Capacitação e Aperfeiçoamento de Pessoal de Nível Superior, (Capes), Fundação Araucária, and Programa de Pós-graduação em Análises Clínicas da Universidade Estadual de Maringá. Part of the experiments were carried out at the Complexo de Central de Apoio a Pesquisa (COMCAP) MCT/FINEP/UEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedito Prado Dias Filho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwazaki, R.S., Endo, E.H., Ueda-Nakamura, T. et al. In vitro antifungal activity of the berberine and its synergism with fluconazole. Antonie van Leeuwenhoek 97, 201–205 (2010). https://doi.org/10.1007/s10482-009-9394-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-009-9394-8

Keywords

Navigation