Skip to main content

Novel Rabies Vaccines

  • Chapter
  • First Online:
Rabies and Rabies Vaccines
  • 631 Accesses

Abstract

Novel rabies vaccines that are less expensive and more immunogenic than current vaccines are needed to reduce the human death toll of rabies. Such vaccines would also allow for more widespread use of rabies vaccines in childhood immunization programs. A number of adjuvants that would allow for dose sparing of current vaccines as well as alternative vaccine prototypes including protein vaccines, genetically modified rabies viruses, pseudotyped viruses, and different types of genetic vaccines are being explored pre-clinically. Some of those have reached early clinical testing. This chapter describes the potential of these different rabies vaccines for use in pre- or post-exposure vaccination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hampson K, Coudeville L, Lembo T, Sambo M, Kieffer A, Attlan M, Barrat J, Blanton JD, Briggs DJ, Cleaveland S, Costa P, Freuling CM, Hiby E, Knopf L, Leanes F, Meslin FX, Metlin A, Miranda ME, Müller T, Nel LH, Recuenco S, Rupprecht CE, Schumacher C, Taylor L, Vigilato MA, Zinsstag J, Dushoff J. Global alliance for rabies control partners for rabies prevention. Estimating the global burden of endemic canine rabies. PLoS Negl Trop Dis. 2015;9:e0003709. https://doi.org/10.1371/journal.pntd.0003709.eCollection.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Condori-Condori RE, Streicker DG, Cabezas-Sanchez C, Velasco-Villa A. Enzootic and epizootic rabies associated with vampire bats, peru. Emerg Infect Dis. 2013; https://doi.org/10.3201/eid1809.130083.

  3. Dodet B. Asian Rabies Expert Bureau (AREB). Report of the sixth AREB meeting, Manila, The Philippines, 10–12 November 2009. Vaccine. 2010;28:3265–68

    Google Scholar 

  4. Kessels JA, Recuenco S, Navarro-Vela AM, et al. Pre-exposure rabies prophylaxis: a systematic review. Bull World Health Organ. 2017;95:210–19C.

    Article  PubMed  Google Scholar 

  5. Brown D, Featherstone JJ, Fooks AR, Gettner S, Lloyd E, Schweiger M. Intradermal pre-exposure rabies vaccine elicits long lasting immunity. Vaccine. 2008;26:3909–12.

    Article  CAS  PubMed  Google Scholar 

  6. Narayana A, Manoharan A, Narayan MS, Kalappa SM, Biligumba G, Haradanahalli R, Anand AM. Comparison of safety and immunogenicity of 2 WHO prequalified rabies vaccines administered by one week, 4 site intra dermal regimen (4-4-4-0-0) in animal bite cases. Hum Vaccin Immunother. 2015;11:1748–53.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhang X, Zhu Z, Wang C. Persistence of rabies antibody 5 years after postexposure prophylaxis with vero cell antirabies vaccine and antibody response to a single booster dose. Clin Vaccine Immunol CVI. 2011;18:1477–147.

    Article  CAS  PubMed  Google Scholar 

  8. Malissen B, Tamoutounour S, Henri S. The origins and functions of dendritic cells and macrophages in the skin. Nat Rev Immunol. 2014;14:417–28. https://doi.org/10.1038/nri3683.

    Article  CAS  PubMed  Google Scholar 

  9. Plotkin SA. Correlates of protection induced by vaccination. Clin Vaccine Immunol CVI. 2010;17:1055–65.

    Article  CAS  PubMed  Google Scholar 

  10. Rabies vaccines WHO. WHO position paper. Releve Epidemiol Hebd. 2007;82:425–35.

    Google Scholar 

  11. Badrane H, Bahloul C, Perrin P, Tordo N. Evidence of two Lyssavirus phylogroups with distinct pathogenicity and immunogenicity. J Virol. 2001;75:3268–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brookes SM, Parsons G, Johnson N, McElhinney LM, Fooks AR. Rabies human diploid cell vaccine elicits cross-neutralising and cross-protecting immune responses against European and Australian bat lyssaviruses. Vaccine. 2005;23:4101–9.

    Article  CAS  PubMed  Google Scholar 

  13. Malerczyk C, Briggs DJ, Dreesen DW, Banzhoff A. Duration of immunity: an anamnestic response 14 years after rabies vaccination with purified chick embryo cell rabies vaccine. J Travel Med. 2007;14:63–4.

    Article  PubMed  Google Scholar 

  14. Xiang ZQ, Knowles BB, McCarrick JW, Ertl HC. Immune effector mechanisms required for protection to rabies virus. Virology. 1995;214:398–404.

    Article  CAS  PubMed  Google Scholar 

  15. Azzoni L, Foulkes AS, Firnhaber C, et al. Antiretroviral therapy interruptions result in loss of protective humoral immunity to neoantigens in HIV-infected individuals. AIDS. 2012;26:1355–62.

    Article  CAS  PubMed  Google Scholar 

  16. Celis E, Ou D, Dietzschold B, Koprowski H. Recognition of rabies and rabies-related viruses by T cells derived from human vaccine recipients. J Virol. 1988;62:3128–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Diebold SS. Recognition of viral single-stranded RNA by Toll-like receptors. Adv Drug Deliv Rev. 2008;60:813–23.

    Article  CAS  PubMed  Google Scholar 

  18. Schlee M, Roth A, Hornung V, et al. Recognition of 5′ triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus. Immunity. 2009;31:25–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lebrun A, Portocarrero C, Kean RB, Barkhouse DA, Faber M. Hooper DC (2015) T-bet is required for the rapid clearance of attenuated rabies virus from central nervous system tissue. J Immunol Baltim Md. 1950;195:4358–68.

    Google Scholar 

  20. Kuzmin IV, Hughes GJ, Botvinkin AD, Orciari LA, Rupprecht CE. Phylogenetic relationships of Irkut and West Caucasian bat viruses within the Lyssavirus genus and suggested quantitative criteria based on the N gene sequence for lyssavirus genotype definition. Virus Res. 2005;111:28–43.

    Article  CAS  PubMed  Google Scholar 

  21. Tregoning JS, Russell RF, Kinnear E. Adjuvanted influenza vaccines. Hum Vaccin Immunother. 2018;14:550–64. https://doi.org/10.1080/21645515.2017.1415684.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Harper DM, Franco EL, Wheeler C, et al. Efficacy of a bivalent L1 virus-like particle vaccine in prevention of infection with human papillomavirus types 16 and 18 in young women: a randomised controlled trial. Lancet. 2004;364:1757–65.

    Article  CAS  PubMed  Google Scholar 

  23. Sun X, Belser JA, Pulit-Penaloza JA, et al. Stockpiled pre-pandemic H5N1 influenza virus vaccines with AS03 adjuvant provide cross-protection from H5N2 clade 2.3.4.4 virus challenge in ferrets. Virology. 2017;508:164–9.

    Article  CAS  PubMed  Google Scholar 

  24. Wijnans L, Lecomte C, de Vries C, et al. The incidence of narcolepsy in Europe: before, during, and after the influenza A(H1N1)pdm09 pandemic and vaccination campaigns. Vaccine. 2013;31:1246–54.

    Article  PubMed  Google Scholar 

  25. Warrell MJ, Warrell DA, Suntharasamai P, et al. An economical regimen of human diploid cell strain anti-rabies vaccine for post-exposure prophylaxis. Lancet. 1983;2:301–4.

    Article  CAS  PubMed  Google Scholar 

  26. Nunberg JH, Doyle MV, York SM, York CJ. Interleukin 2 acts as an adjuvant to increase the potency of inactivated rabies virus vaccine. Proc Natl Acad Sci U S A. 1989;86:4240–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. de Souza Matos DC, Marcovistz R, Neway T, Vieira da Silva AM, Alves EN, Pilet C. Immunostimulatory effects of polar glycopeptidolipids of Mycobacterium chelonae for inactivated rabies vaccine. Vaccine. 2000;18:2125–31.

    Article  PubMed  Google Scholar 

  28. Wang X, Bao M, Wan M, Wei H, Wang L, Yu H, Zhang X, Yu Y, Wang L. A CpG oligodeoxynucleotide acts as a potent adjuvant for inactivated rabies virus vaccine. Vaccine. 2008;26:1893–901.

    Article  CAS  PubMed  Google Scholar 

  29. Xiao W, Du L, Liang C, Guan J, Jiang S, Lustigman S, He Y, Zhou Y. Evaluation of recombinant Onchocerca volvulus activation associated protein-1 (ASP-1) as a potent Th1-biased adjuvant with a panel of protein or peptide-based antigens and commercial inactivated vaccines. Vaccine. 2008;26:5022–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. DiStefano D, Antonello JM, Bett AJ, Medi MB, Casimiro DR, ter Meulen J. Immunogenicity of a reduced-dose whole killed rabies vaccine is significantly enhanced by ISCOMATRIXTM adjuvant, Merck amorphous aluminum hydroxylphosphate sulfate (MAA) or a synthetic TLR9 agonist in rhesus macaques. Vaccine. 2013;31:4888–93.

    Article  CAS  PubMed  Google Scholar 

  31. Iwaki Y, Sakai Y, Ochiai K, Umemura T, Sunden Y. Enhancement of antibody production against rabies virus by uridine 5′-triphosphate in mice. Microbes Infect. 2014;16:196–202.

    Article  CAS  PubMed  Google Scholar 

  32. Su X, Pei Z, Hu S. Ginsenoside Re as an adjuvant to enhance the immune response to the inactivated rabies virus vaccine in mice. Int Immunopharmacol. 2014;20:283–9.

    Article  CAS  PubMed  Google Scholar 

  33. Xiao X, Zhang Y, Liu J, Wei Q, Yin X. Immunoenhancement with flagellin as an adjuvant to whole-killed rabies vaccine in mice. Arch Virol. 2016;161:685–91.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang W, Zheng X, Cheng N, Gai W, Xue X, Wang Y, Gao Y, Shan J, Yang S, Xia X. Isatis indigotica root polysaccharides as adjuvants for an inactivated rabies virus vaccine. Int J Biol Macromol. 2016;87:7–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Miao L, Yang Y, Yan M, Li Y, Zhao J, Guo J, Zheng D. Enhanced immune response to rabies viruses by the use of a liposome adjuvant in vaccines. Viral Immunol. 2017; https://doi.org/10.1089/vim.2017.0093.

  36. Wijaya L, Tham CYL, Chan YFZ, Wong AWL, Li LT, Wang L-F, Bertoletti A, Low JG. An accelerated rabies vaccine schedule based on toll-like receptor 3 (TLR3) agonist PIKA adjuvant augments rabies virus specific antibody and T cell response in healthy adult volunteers. Vaccine. 2017;35:1175–83.

    Article  CAS  PubMed  Google Scholar 

  37. Kumar H, Kawai T, Akira S. Pathogen recognition by the innate immune system. Int Rev Immunol. 2011;30:16–34.

    Article  CAS  PubMed  Google Scholar 

  38. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124:783–801.

    Article  CAS  PubMed  Google Scholar 

  39. Shakin-Eshleman SH, Remaley AT, Eshleman JR, Wunner WH, Spitalnik SL. N-linked glycosylation of rabies virus glycoprotein. Individual sequons differ in their glycosylation efficiencies and influence on cell surface expression. J Biol Chem. 1992;267:10690–8.

    CAS  PubMed  Google Scholar 

  40. Fontana D, Kratje R, Etcheverrigaray M, Prieto C. Immunogenic virus-like particles continuously expressed in mammalian cells as a veterinary rabies vaccine candidate. Vaccine. 2015;33:4238–46.

    Article  CAS  PubMed  Google Scholar 

  41. Morimoto K, Kawai A, Mifune K. Comparison of rabies virus G proteins produced by cDNA-transfected animal cells that display either inducible or constitutive expression of the gene. J Gen Virol. 1992;73(Pt 2):335–45.

    Article  CAS  PubMed  Google Scholar 

  42. Fu ZF, Rupprecht CE, Dietzschold B, Saikumar P, Niu HS, Babka I, Wunner WH, Koprowski H. Oral vaccination of racoons (Procyon lotor) with baculovirus-expressed rabies virusglycoprotein. Vaccine. 1993;11:925–8.

    Article  CAS  PubMed  Google Scholar 

  43. Alcock R, Cottingham MG, Rollier CS, et al. Long-term thermostabilization of live poxviral and adenoviral vaccine vectors at supraphysiological temperatures in carbohydrate glass. Sci Transl Med. 2010;2:19ra12.

    Article  PubMed  CAS  Google Scholar 

  44. Xiang Z, Li Y, Cun A, Yang W, Ellenberg S, Switzer WM, Kalish ML, Ertl HCJ. Chimpanzee adenovirus antibodies in humans, sub-Saharan Africa. Emerg Infect Dis. 2006;12:1596–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen H, Xiang ZQ, Li Y, et al. Adenovirus-based vaccines: comparison of vectors from three species of adenoviridae. J Virol. 2010;84:10522–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Coll JM. The glycoprotein G of rhabdoviruses. Arch Virol. 1995;140:827–51.

    Article  CAS  PubMed  Google Scholar 

  47. Rehaud C, Takehara K, Flamand A, Bishop DH. Immunogenic and protective properties of rabies virus glycoprotein expressed by baculovirus vectors. Virology. 1989;173:390–9.

    Article  Google Scholar 

  48. Ramya R, Mohana Subramanian B, Sivakumar V, Senthilkumar RL, Sambasiva Rao KRS, Srinivasan VA. Expression and solubilization of insect cell-based rabies virus glycoprotein and assessment of its immunogenicity and protective efficacy in mice. Clin Vaccine Immunol CVI. 2011;18:1673–9.

    Article  CAS  PubMed  Google Scholar 

  49. Xiang ZQ, Yang Y, Wilson JM, Ertl HC. A replication-defective human adenovirus recombinant serves as a highly efficacious vaccine carrier. Virology. 1996;219:220–7.

    Article  CAS  PubMed  Google Scholar 

  50. Astray RM, Ventini DC, Boldorini VLL, Silva FG, Rocca MP, Pereira CA. Rabies virus glycoprotein and immune response pattern using recombinant protein or recombinant RNA viral vectors. Vaccine. 2014;32:2829–32.

    Article  CAS  PubMed  Google Scholar 

  51. Klepfer SR, Debouck C, Uffelman J, Jacobs P, Bollen A, Jones EV. Characterization of rabies glycoprotein expressed in yeast. Arch Virol. 1993;128:269–86.

    Article  CAS  PubMed  Google Scholar 

  52. Ben Azoun S, Belhaj AE, Göngrich R, Gasser B, Kallel H. Molecular optimization of rabies virus glycoprotein expression in Pichia pastoris. Microb Biotechnol. 2016;9:355–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Suárez-Patiño SF, Mancini RA, Pereira CA, Suazo CAT, Mendonça RZ, Jorge SAC. Transient expression of rabies virus glycoprotein (RVGP) in Drosophila melanogaster Schneider 2 (S2) cells. J Biotechnol. 2014;192(Pt A):255–62.

    Article  PubMed  CAS  Google Scholar 

  54. Qian W, Aguilar F, Wang T, Qiu B. Secretion of truncated recombinant rabies virus glycoprotein with preserved antigenic properties using a co-expression system in Hansenula polymorpha. J Microbiol Seoul Korea. 2013;51:234–40.

    CAS  Google Scholar 

  55. Xiang Z, Gao G, Reyes-Sandoval A, Cohen CJ, Li Y, Bergelson JM, Wilson JM, Ertl HCJ. Novel, chimpanzee serotype 68-based adenoviral vaccine carrier for induction of antibodies to a transgene product. J Virol. 2002;76:2667–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Loza-Rubio E, Rojas E, Gómez L, Olivera MTJ, Gómez-Lim MA. Development of an edible rabies vaccine in maize using the Vnukovo strain. Dev Biol. 2008;131:477–82.

    CAS  Google Scholar 

  57. Ashraf S, Singh PK, Yadav DK, Shahnawaz M, Mishra S, Sawant SV, Tuli R. High level expression of surface glycoprotein of rabies virus in tobacco leaves and its immunoprotective activity in mice. J Biotechnol. 2005;119:1–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rojas-Anaya E, Loza-Rubio E, Olivera-Flores MT, Gomez-Lim M. Expression of rabies virus G protein in carrots (Daucus carota). Transgenic Res. 2009;18:911–9.

    Article  CAS  PubMed  Google Scholar 

  59. Modelska A, Dietzschold B, Sleysh N, Fu ZF, Steplewski K, Hooper DC, Koprowski H, Yusibov V. Immunization against rabies with plant-derived antigen. Proc Natl Acad Sci U S A. 1998;95:2481–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yusibov V, Hooper DC, Spitsin SV, et al. Expression in plants and immunogenicity of plant virus-based experimental rabies vaccine. Vaccine. 2002;20:3155–64.

    Article  CAS  PubMed  Google Scholar 

  61. Liu R, Wang J, Yang Y, Khan I, Dong Y, Zhu N. A novel rabies virus lipopeptide provides a better protection by improving the magnitude of DCs activation and T cell responses. Virus Res. 2016;221:66–73.

    Article  CAS  PubMed  Google Scholar 

  62. Niu Y, Liu Y, Yang L, Qu H, Zhao J, Hu R, Li J, Liu W. Immunogenicity of multi-epitope-based vaccine candidates administered with the adjuvant Gp96 against rabies. Virol Sin. 2016;31:168–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Schnell MJ, Tan GS, Dietzschold B. The application of reverse genetics technology in the study of rabies virus (RV) pathogenesis and for the development of novel RV vaccines. J Neurovirol. 2005;11:76–81.

    Article  CAS  PubMed  Google Scholar 

  64. Morimoto K, Shoji Y, Inoue S. Characterization of P gene-deficient rabies virus: propagation, pathogenicity and antigenicity. Virus Res. 2005;111:61–7.

    Article  CAS  PubMed  Google Scholar 

  65. Cenna J, Tan GS, Papaneri AB, Dietzschold B, Schnell MJ, McGettigan JP. Immune modulating effect by a phosphoprotein-deleted rabies virus vaccine vector expressing two copies of the rabies virus glycoprotein gene. Vaccine. 2008;26:6405–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ito N, Sugiyama M, Yamada K, Shimizu K, Takayama-Ito M, Hosokawa J, Minamoto N. Characterization of M gene-deficient rabies virus with advantages of effective immunization and safety as a vaccine strain. Microbiol Immunol. 2005;49:971–9.

    Article  CAS  PubMed  Google Scholar 

  67. Hooper DC, Phares TW, Fabis MJ, Roy A. The production of antibody by invading B cells is required for the clearance of rabies virus from the central nervous system. PLoS Negl Trop Dis. 2009;3:e535.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Liu X, Yang Y, Sun Z, Chen J, Ai J, Dun C, Fu ZF, Niu X, Guo X. A recombinant rabies virus encoding two copies of the glycoprotein gene confers protection in dogs against a virulent challenge. PloS One. 2014;9:e87105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Xiang ZQ, Greenberg L, Ertl HC, Rupprecht CE. Protection of non-human primates against rabies with an adenovirus recombinant vaccine. Virology. 2014;450–451:243–9.

    Article  PubMed  CAS  Google Scholar 

  70. Ge J, Wang X, Tao L, Wen Z, Feng N, Yang S, Xia X, Yang C, Chen H, Bu Z. Newcastle disease virus-vectored rabies vaccine is safe, highly immunogenic, and provides long-lasting protection in dogs and cats. J Virol. 2011;85:8241–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wu Q, Yu F, Xu J, Li Y, Chen H, Xiao S, Fu ZF, Fang L. Rabies-virus-glycoprotein-pseudotyped recombinant baculovirus vaccine confers complete protection against lethal rabies virus challenge in a mouse model. Vet Microbiol. 2014;171:93–101.

    Article  CAS  PubMed  Google Scholar 

  72. Chen Z, Zhou M, Gao X, Zhang G, Ren G, Gnanadurai CW, Fu ZF, He B. A novel rabies vaccine based on a recombinant parainfluenza virus 5 expressing rabies virus glycoprotein. J Virol. 2013;87:2986–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Reyes-Sandoval A, Ertl HC. DNA vaccines. Curr Mol Med. 2001;1:217–43.

    Article  CAS  PubMed  Google Scholar 

  74. Sardesai NY, Weiner DB. Electroporation delivery of DNA vaccines: prospects for success. Curr Opin Immunol. 2011;23:421–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Krieg AM. CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol. 2002;20:709–60.

    Article  CAS  PubMed  Google Scholar 

  76. Kibuuka H, Berkowitz NM, Millard M, et al. Safety and immunogenicity of Ebola virus and Marburg virus glycoprotein DNA vaccines assessed separately and concomitantly in healthy Ugandan adults: a phase 1b, randomised, double-blind, placebo-controlled clinical trial. Lancet. 2015;385:1545–54.

    Article  CAS  PubMed  Google Scholar 

  77. Liu MA, Ulmer JB. Human clinical trials of plasmid DNA vaccines. Adv Genet. 2005;55:25–40.

    Article  CAS  PubMed  Google Scholar 

  78. Ledgerwood JE, Bellamy AR, Belshe R, et al. DNA priming for seasonal influenza vaccine: a phase 1b double-blind randomized clinical trial. PloS One. 2015;10:e0125914.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Xiang ZQ, Spitalnik S, Tran M, Wunner WH, Cheng J, Ertl HC. Vaccination with a plasmid vector carrying the rabies virus glycoprotein gene induces protective immunity against rabies virus. Virology. 1994;199:132–40.

    Article  CAS  PubMed  Google Scholar 

  80. Ray NB, Ewalt LC, Lodmell DL. Nanogram quantities of plasmid DNA encoding the rabies virus glycoprotein protect mice against lethal rabies virus infection. Vaccine. 1997;15:892–5.

    Article  CAS  PubMed  Google Scholar 

  81. Lodmell DL, Ray NB, Ewalt LC. Gene gun particle-mediated vaccination with plasmid DNA confers protective immunity against rabies virus infection. Vaccine. 1998;16:115–8.

    Article  CAS  PubMed  Google Scholar 

  82. Bahloul C, Jacob Y, Tordo N, Perrin P. DNA-based immunization for exploring the enlargement of immunological cross-reactivity against the lyssaviruses. Vaccine. 1998;16:417–25.

    Article  CAS  PubMed  Google Scholar 

  83. Lodmell DL, Parnell MJ, Bailey JR, Ewalt LC, Hanlon CA. One-time gene gun or intramuscular rabies DNA vaccination of non-human primates: comparison of neutralizing antibody responses and protection against rabies virus 1 year after vaccination. Vaccine. 2001;20:838–44.

    Article  CAS  PubMed  Google Scholar 

  84. Osorio JE, Tomlinson CC, Frank RS, Haanes EJ, Rushlow K, Haynes JR, Stinchcomb DT. Immunization of dogs and cats with a DNA vaccine against rabies virus. Vaccine. 1999;17:1109–16.

    Article  CAS  PubMed  Google Scholar 

  85. Xiang Z, Ertl HC. Manipulation of the immune response to a plasmid-encoded viral antigen by coinoculation with plasmids expressing cytokines. Immunity. 1995;2:129–35.

    Article  CAS  PubMed  Google Scholar 

  86. Garg R, Kaur M, Saxena A, Prasad R, Bhatnagar R. Alum adjuvanted rabies DNA vaccine confers 80% protection against lethal 50 LD50 rabies challenge virus standard strain. Mol Immunol. 2017;85:166–73.

    Article  CAS  PubMed  Google Scholar 

  87. Lodmell DL, Ray NB, Ulrich JT, Ewalt LC. DNA vaccination of mice against rabies virus: effects of the route of vaccination and the adjuvant monophosphoryl lipid A (MPL). Vaccine. 2000;18:1059–66.

    Article  CAS  PubMed  Google Scholar 

  88. Fischer L, Minke J, Dufay N, Baudu P, Audonnet JC. Rabies DNA vaccine in the horse: strategies to improve serological responses. Vaccine. 2003;21:4593–6.

    Article  CAS  PubMed  Google Scholar 

  89. Margalith M, Vilalta A. Sustained protective rabies neutralizing antibody titers after administration of cationic lipid-formulated pDNA vaccine. Genet Vaccines Ther. 2006;4:2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Kaur M, Saxena A, Rai A, Bhatnagar R. Rabies DNA vaccine encoding lysosome-targeted glycoprotein supplemented with Emulsigen-D confers complete protection in preexposure and postexposure studies in BALB/c mice. FASEB J Off Publ Fed Am Soc Exp Biol. 2010;24:173–83.

    Google Scholar 

  91. Spearman P, Mulligan M, Anderson EJ, Shane AL, Stephens K, Gibson T, Hartwell B, Hannaman D, Watson NL, Singh K. A phase 1, randomized, controlled dose-escalation study of EP-1300 polyepitope DNA vaccine against Plasmodium falciparum malaria administered via electroporation. Vaccine. 2016;34:5571–8. https://doi.org/10.1016/j.vaccine.2016.09.041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Elizaga ML, Li SS, Kochar NK, Wilson GJ, Allen MA, Tieu HVN, Frank I, Sobieszczyk ME, Cohen KW, Sanchez B, Latham TE, Clarke DK, Egan MA, Eldridge JH, Hannaman D, Xu R, Ota-Setlik A, McElrath MJ, Hay CM, NIAID HIV Vaccine Trials Network (HVTN) 087 Study Team. Safety and tolerability of HIV-1 multiantigen pDNA vaccine given with IL-12 plasmid DNA via electroporation, boosted with a recombinant vesicular stomatitis virus HIV Gag vaccine in healthy volunteers in a randomized, controlled clinical trial. PLoS One. 2018;13(9):e0202753. https://doi.org/10.1371/journal.pone.0202753.. eCollection 2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tuyishime S, Haut LH, Kurupati RK, Billingsley JM, Carnathan D, Gangahara S, Styles TM, Xiang Z, Li Y, Zopfs M, Liu Q, Zhou X, Lewis MG, Amara RR, Bosinger S, Silvestri G, Ertl HCJ. Correlates of protection against SIVmac251 infection in rhesus macaques immunized with chimpanzee-derived adenovirus vectors. EBioMedicine. 2018;31:25–35. https://doi.org/10.1016/j.ebiom.2018.02.025.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Maki J, Guiot AL, Aubert M, Brochier B, Cliquet F, Hanlon CA, King R, Oertli EH, Rupprecht CE, Schumacher C, Slate D, Yakobson B, Wohlers A, Lankau EW. Oral vaccination of wildlife using a vaccinia-rabies-glycoprotein recombinant virus vaccine (RABORAL V-RG®): a global review. Vet Res. 2017;48:57. https://doi.org/10.1186/s13567-017-0459-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hooper JW, Moon JE, Paolino KM, Newcomer R, McLain DE, Josleyn M, Hannaman D, Schmaljohn C. A Phase 1 clinical trial of Hantaan virus and Puumala virus M-segment DNA vaccines for haemorrhagic fever with renal syndrome delivered by intramuscular electroporation. Clin Microbiol Infect. 2014;20(Suppl 5):110–7. https://doi.org/10.1111/1469-0691.12553.

    Article  CAS  PubMed  Google Scholar 

  96. Kibuuka H, Berkowitz NM, Millard M, Enama ME, Tindikahwa A, Sekiziyivu AB, Costner P, Sitar S, Glover D, Hu Z, Joshi G, Stanley D, Kunchai M, Eller LA, Bailer RT, Koup RA, Nabel GJ, Mascola JR, Sullivan NJ, Graham BS, Roederer M, Michael NL, Robb ML, Ledgerwood JE, RV 247 Study Team. Safety and immunogenicity of Ebola virus and Marburg virus glycoprotein DNA vaccines assessed separately and concomitantly in healthy Ugandan adults: a phase 1b, randomised, double-blind, placebo-controlled clinical trial. Lancet. 2015;385:1545–54. https://doi.org/10.1016/S0140-6736(14)62385-0.

    Article  CAS  PubMed  Google Scholar 

  97. Taylor J, Tartaglia J, Rivière M, Duret C, Languet B, Chappuis G, Paoletti E. Applications of canarypox (ALVAC) vectors in human and veterinary vaccination. Dev Biol Stand. 1994;82:131–5.

    CAS  PubMed  Google Scholar 

  98. Kardani K, Bolhassani A, Shahbazi S. Prime-boost vaccine strategy against viral infections: mechanisms and benefits. Vaccine. 2016;34:413–23. https://doi.org/10.1016/j.vaccine.2015.11.062.

    Article  CAS  PubMed  Google Scholar 

  99. De Santis O, Audran R, Pothin E, et al. Safety and immunogenicity of a chimpanzee adenovirus-vectored Ebola vaccine in healthy adults: a randomised, double-blind, placebo-controlled, dose-finding, phase 1/2a study. Lancet Infect Dis. 2016;16:311–20.

    Article  PubMed  CAS  Google Scholar 

  100. Taylor J, Trimarchi C, Weinberg R, Languet B, Guillemin F, Desmettre P, Paoletti E. Efficacy studies on a canarypox-rabies recombinant virus. Vaccine. 1991;9:190–3.

    Article  CAS  PubMed  Google Scholar 

  101. Fries LF, Tartaglia J, Taylor J, Kauffman EK, Meignier B, Paoletti E, Plotkin S. Human safety and immunogenicity of a canarypox-rabies glycoprotein recombinant vaccine: an alternative poxvirus vector system. Vaccine. 1996;14:428–34.

    Article  CAS  PubMed  Google Scholar 

  102. Amann R, Rohde J, Wulle U, Conlee D, Raue R, Martinon O, Rziha H-J. A new rabies vaccine based on a recombinant ORF virus (parapoxvirus) expressing the rabies virus glycoprotein. J Virol. 2013;87:1618–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Schnee M, Vogel AB, Voss D, Petsch B, Baumhof P, Kramps T, Stitz L. An mRNA vaccine encoding rabies virus glycoprotein induces protection against lethal infection in mice and correlates of protection in adult and newborn pigs. PLoS Negl Trop Dis. 2016;10:e0004746.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Alberer M, Gnad-Vogt U, Hong HS, et al. Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: an open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. Lancet. 2017;390:1511–20.

    Article  CAS  PubMed  Google Scholar 

  105. Xiang ZQ, Pasquini S, Ertl HC. Induction of genital immunity by DNA priming and intranasal booster immunization with a replication-defective adenoviral recombinant. J Immunol. 1999;162:6716–23.

    CAS  PubMed  Google Scholar 

  106. Bahloul C, Ahmed SBH, B’chir BI, Kharmachi H, Hayouni EA, Dellagi K. Post-exposure therapy in mice against experimental rabies: a single injection of DNA vaccine is as effective as five injections of cell culture-derived vaccine. Vaccine. 2003;22:177–84.

    Article  CAS  PubMed  Google Scholar 

  107. Lodmell DL, Ewalt LC. Post-exposure DNA vaccination protects mice against rabies virus. Vaccine. 2001;19:2468–73.

    Article  CAS  PubMed  Google Scholar 

  108. Lodmell DL, Parnell MJ, Bailey JR, Ewalt LC, Hanlon CA. Rabies DNA vaccination of non-human primates: post-exposure studies using gene gun methodology that accelerates induction of neutralizing antibody and enhances neutralizing antibody titers. Vaccine. 2002;20:2221–8.

    Article  CAS  PubMed  Google Scholar 

  109. Tesoro Cruz E, Feria Romero IA, López Mendoza JG, Orozco Suárez S, Hernández González R, Favela FB, Pérez Torres A, Aguilar-Setién Á. Efficient post-exposure prophylaxis against rabies by applying a four-dose DNA vaccine intranasally. Vaccine. 2008;26:6936–44.

    Article  CAS  PubMed  Google Scholar 

  110. Saxena S, Dahiya SS, Sonwane AA, Patel CL, Saini M, Rai A, Gupta PK. A sindbis virus replicon-based DNA vaccine encoding the rabies virus glycoprotein elicits immune responses and complete protection in mice from lethal challenge. Vaccine. 2008;26:6592–601.

    Article  CAS  PubMed  Google Scholar 

  111. Rampling T, Ewer KJ, Bowyer G, et al. Safety and high level efficacy of the combination malaria vaccine regimen of RTS, S/AS01B with chimpanzee Adenovirus 63 and modified vaccinia Ankara vectored vaccines expressing ME-TRAP. J Infect Dis. 2016;214:772–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Afolabi MO, Tiono AB, Adetifa UJ, et al. Safety and immunogenicity of ChAd63 and MVA ME-TRAP in West African children and infants. Mol Ther. 2016;24:1470–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Rosenthal SR, Merchlinsky M, Kleppinger C, Goldenthal KL. Developing new smallpox vaccines. Emerg Infect Dis. 2001;7:920–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. McCoy K, Tatsis N, Korioth-Schmitz B, et al. Effect of preexisting immunity to adenovirus human serotype 5 antigens on the immune responses of nonhuman primates to vaccine regimens based on human- or chimpanzee-derived adenovirus vectors. J Virol. 2007;81:6594–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Roberts DM, Nanda A, Havenga MJE, et al. Hexon-chimaeric adenovirus serotype 5 vectors circumvent pre-existing anti-vector immunity. Nature. 2006;441:239–43.

    Article  CAS  PubMed  Google Scholar 

  116. Giel-Moloney M, Rumyantsev AA, David F, Figueiredo M, Feilmeier B, Mebatsion T, Parrington M, Kleanthous H, Pugachev KV. A novel approach to a rabies vaccine based on a recombinant single-cycle flavivirus vector. Vaccine. 2017;35(49 Pt B):6898–904. https://doi.org/10.1016/j.vaccine.2017.08.055.

    Article  CAS  PubMed  Google Scholar 

  117. Rupprecht CE, Wiktor TJ, Johnston DH, Hamir AN, Dietzschold B, Wunner WH, Glickman LT, Koprowski H. Oral immunization and protection of raccoons (Procyon lotor) with a vaccinia-rabies glycoprotein recombinant virus vaccine. Proc Natl Acad Sci U S A. 1986;83:7947–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Thomas I, Brochier B, Languet B, Blancou J, Peharpre D, Kieny MP, Desmettre P, Chappuis G, Pastoret PP. Primary multiplication site of the vaccinia-rabies glycoprotein recombinant virus administered to foxes by the oral route. J Gen Virol. 1990;71(Pt 1):37–42.

    Article  PubMed  Google Scholar 

  119. Weyer J, Rupprecht CE, Mans J, Viljoen GJ, Nel LH. Generation and evaluation of a recombinant modified vaccinia virus Ankara vaccine for rabies. Vaccine. 2007;25:4213–22.

    Article  CAS  PubMed  Google Scholar 

  120. Rupprecht CE, Blass L, Smith K, Orciari LA, Niezgoda M, Whitfield SG, Gibbons RV, Guerra M, Hanlon CA. Human infection due to recombinant vaccinia-rabies glycoprotein virus. N Engl J Med. 2001;345(8):582–6.

    Article  CAS  PubMed  Google Scholar 

  121. Baden LR, Walsh SR, Seaman MS, et al. First-in-human evaluation of the safety and immunogenicity of a recombinant adenovirus serotype 26 HIV-1 Env vaccine (IPCAVD 001). J Infect Dis. 2013;207:240–7.

    Article  CAS  PubMed  Google Scholar 

  122. Barnes E, Folgori A, Capone S, et al. Novel adenovirus-based vaccines induce broad and sustained T cell responses to HCV in man. Sci Transl Med. 2012;4:115ra1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. van Zyl-Smit RN, Esmail A, Bateman ME, et al. Safety and immunogenicity of Adenovirus 35 tuberculosis vaccine candidate in adults with active or previous tuberculosis. A Randomized Trial. Am J Respir Crit Care Med. 2017;195:1171–80.

    Article  PubMed  Google Scholar 

  124. Yarosh OK, Wandeler AI, Graham FL, Campbell JB, Prevec L. Human adenovirus type 5 vectors expressing rabies glycoprotein. Vaccine. 1996;14:1257–64.

    Article  CAS  PubMed  Google Scholar 

  125. Ghebremedhin B. Human adenovirus: Viral pathogen with increasing importance. Eur J Microbiol Immunol (Bp). 2014;4:26–33. https://doi.org/10.1556/EuJMI.4.2014.1.2.

    Article  CAS  Google Scholar 

  126. Tatsis N, Fitzgerald JC, Reyes-Sandoval A, et al. Adenoviral vectors persist in vivo and maintain activated CD8+ T cells: implications for their use as vaccines. Blood. 2007;110:1916–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Vellinga J, Smith JP, Lipiec A, Majhen D, Lemckert A, van Ooij M, Ives P, Yallop C, Custers J, Havenga M. Challenges in manufacturing adenoviral vectors for global vaccine product deployment. Hum Gene Ther. 2014;25:318–27.

    Article  CAS  PubMed  Google Scholar 

  128. Afkhami S, LeClair DA, Haddadi S, Lai R, Toniolo SP, Ertl HC, Cranston ED, Thompson MR, Xing Z. Spray dried human and chimpanzee adenoviral-vectored vaccines are thermally stable and immunogenic in vivo. Vaccine. 2017;35:2916–24.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hildegund C. J. Ertl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ertl, H.C.J. (2020). Novel Rabies Vaccines. In: Ertl, H. (eds) Rabies and Rabies Vaccines. Springer, Cham. https://doi.org/10.1007/978-3-030-21084-7_9

Download citation

Publish with us

Policies and ethics