Skip to main content

Local Adaptation in the Interior Spruce Hybrid Complex

  • Chapter
  • First Online:
The Spruce Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Interior spruce is a hybrid species complex composed of white spruce, Engelmann spruce, and their hybrids, distributed across a wide area in western Canada. In both interior spruce and allopatric white spruce, half a century of study on local adaptation to climate has been complemented by a large number of genomic studies within the past decade. This chapter reviews the genomic evidence for local adaptation in interior spruce and allopatric white spruce, comparing the results gleaned from these studies with phenotypic studies when possible. In interior spruce, genomic and phenotypic studies have consistently identified local adaptation to cold temperatures, particularly through autumn cold hardiness, with mixed results for other traits and climatic variables. Studies in allopatric white spruce have found variable evidence for local adaptation, with genomic studies largely finding clinal variation with mean annual temperature. Several genomic approaches have been used to infer local adaptation in this species complex, and these have often found contrasting patterns of adaptation between allopatric white spruce and interior spruce, and weak correlation between genetic markers identified across multiple studies. While genomic and phenotypic analyses are often complementary, novel genomic approaches have also been applied to understand aspects of local adaptation that are difficult or impossible to measure exclusively phenotypically, including hybrid fitness, the genetic architectures of adaptive traits, and phenotypic plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal AF, Whitlock MC (2012) Mutation load: the fitness of individuals in populations where deleterious alleles are abundant. Annu Rev Ecol Evol Syst 43:115–135

    Google Scholar 

  • Aitken SN, Whitlock MC (2013) Assisted gene flow to facilitate local adaptation to climate change. Annu Rev Ecol Evol Syst 44:367–388

    Google Scholar 

  • Aitken SN, Hannerz M (2001) Genecology and gene resource management strategies for conifer cold hardiness. In: Bigras FJ, Colombo SJ (eds) Conifer cold hardiness. Springer, Dordrecht, pp 23–53

    Google Scholar 

  • Aitken SN, Bemmels JB (2016) Time to get moving: assisted gene flow of forest trees. Evol Appl 9:271–290

    PubMed  Google Scholar 

  • Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis-McLane S (2008) Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol Appl 1:95–111

    PubMed  PubMed Central  Google Scholar 

  • Alberto FJ, Aitken SN, Alía R, González-Martínez SC, Hänninen H, Kremer A, Lefèvre F, Lenormand T, Yeaman S, Whetten R, Savolainen O (2013) Potential for evolutionary responses to climate change - evidence from tree populations. Glob Chang Biol 19:1645–1661

    PubMed  PubMed Central  Google Scholar 

  • Alexander RR, Shepperd WD (1984) Silvical characteristics of Engelmann spruce. RM-114, USDA Forest Service, Fort Collins

    Google Scholar 

  • Andalo C, Beaulieu J, Bousquet J (2005) The impact of climate change on growth of local white spruce populations in Québec, Canada. For Ecol Manag 205:169–182

    Google Scholar 

  • Arnold ML, Hodges SA (1995) Are natural hybrids fit or unfit relative to their parents? Trends Ecol Evol 10:67–71

    Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29

    Google Scholar 

  • Barton NH (1999) Clines in polygenic traits. Genet Res 74:223–236

    CAS  PubMed  Google Scholar 

  • Barton NH, Gale KS (1993) Genetic analysis of hybrid zones. In: Harrison R (ed) Hybrid zones and the evolutionary process. Oxford University Press, Oxford

    Google Scholar 

  • Beaumont MA, Balding DJ (2004) Identifying adaptive genetic divergence among populations from genome scans. Mol Ecol 13:969–980

    CAS  PubMed  Google Scholar 

  • Benomar L, Lamhamedi MS, Villeneuve I, Rainville A, Beaulieu J, Bousquet J, Margolis HA (2015) Fine-scale geographic variation in photosynthetic-related traits of Picea glauca seedlings indicates local adaptation to climate. Tree Physiol 35:864–878

    CAS  PubMed  Google Scholar 

  • Benomar L, Lamhamedi MS, Rainville A, Beaulieu J, Bousquet J, Margolis HA (2016) Genetic adaptation vs. ecophysiological plasticity of photosynthetic-related traits in young Picea glauca trees along a regional climatic gradient. Front Plant Sci 7:1–15

    Google Scholar 

  • Benton TG, Grant A (2000) Evolutionary fitness in ecology: comparing measures of fitness in stochastic, density-dependent environments. Evol Ecol Res 2:769–789

    Google Scholar 

  • Bigras FJ, Ryyppö A, Lindström A, Stattin E (2001) Cold acclimation and deacclimation of shoots and roots of conifer seedlings. In: Bigras FJ, Colombo SJ (eds) Conifer cold hardiness. Springer, Dordrecht, pp 57–88

    Google Scholar 

  • Birchler J, Yao H, Chudalayandi S (2006) Unraveling the genetic basis of hybrid vigor. Proc Natl Acad Sci 103:12957–12958

    CAS  PubMed  Google Scholar 

  • Blanquart F, Gandon S, Nuismer SL (2012) The effects of migration and drift on local adaptation to a heterogeneous environment. J Evol Biol 25:1351–1363

    CAS  PubMed  Google Scholar 

  • Blanquart F, Kaltz O, Nuismer SL, Gandon S (2013) A practical guide to measuring local adaptation. Ecol Lett 16:1195–1205

    PubMed  Google Scholar 

  • Bouillé M, Senneville S, Bousquet J (2011) Discordant mtDNA and cpDNA phylogenies indicate geographic speciation and reticulation as driving factors for the diversification of the genus Picea. Tree Genet Genomes 7:469–484

    Google Scholar 

  • Boyle EA, Li YI, Pritchard JK (2017) An expanded view of complex traits: from polygenic to omnigenic. Cell 169:1177–1186

    Google Scholar 

  • Bradshaw AD (1972) Some evolutionary consequences of being a plant. In: Dobzhansky T, Hecht MK, Steere WC (eds) Evolutionary biology. Appleton-Century-Crofts, New York, pp 25–47

    Google Scholar 

  • Bradshaw AD (1960) Population differentiation in Agrostis tenuis Sibth. III. Populations in varied environments. New Phytol 59:92–103

    Google Scholar 

  • Bridle JR, Polechová J, Kawata M, Butlin RR (2010) Why is adaptation prevented at ecological margins? New insights from individual-based simulations. Ecol Lett 13:485–494

    PubMed  Google Scholar 

  • Brown JS, Pavlovic NB (1992) Evolution in heterogeneous environments: effects of migration on habitat specialization. Evol Ecol 6:360–382

    Google Scholar 

  • Buggs RJA (2007) Empirical study of hybrid zone movement. Heredity 99:301–312

    CAS  PubMed  Google Scholar 

  • Ćalić I, Bussotti F, Martínez-García PJ, Neale DB (2016) Recent landscape genomics studies in forest trees—what can we believe? Tree Genet Genomes 12:1–7

    Google Scholar 

  • Chen J, Källman T, Ma X, Gyllenstrang N, Zaina G, Morgante M, Bousquet J, Eckert A, Wegrzyn J, Neale D, Lagercrantz U, Lascoux M (2012) Disentangling the roles of history and local selection in shaping clinal variation of allele frequencies and gene expression in Norway spruce (Picea abies). Genetics 191:865–881

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi Y, Sims GE, Murphy S, Miller JR, Chan AP (2012) Predicting the functional effect of amino acid substitutions and indels. PLoS ONE 7:e46688

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clausen J, Keck DD, Hiesey WM (1940) Experimental studies on the nature of species I. Effect of varied environments on western North American plants. Carnegie Institution of Washington, Washington

    Google Scholar 

  • Colautti RI, Lee CR, Mitchell-Olds T (2012) Origin, fate, and architecture of ecologically relevant genetic variation. Curr Opin Plant Biol 15:199–204

    PubMed  PubMed Central  Google Scholar 

  • Conte GL, Hodgins KA, Yeaman S, Degner JC, Aitken SN, Rieseberg LH, Whitlock MC (2017) Bioinformatically predicted deleterious mutations reveal complementation in the interior spruce hybrid complex. BMC Genomics 18:1–12

    Google Scholar 

  • Conkle MT (1973) Growth data for 29 years from the California elevational transect study of Ponderosa pine. For Sci 19:31–39

    Google Scholar 

  • Cooke JEK, Eriksson ME, Junttila O (2012) The dynamic nature of bud dormancy in trees: environmental control and molecular mechanisms. Plant Cell Environ 35:1707–1728

    CAS  PubMed  Google Scholar 

  • Correa JJ, Verdu M, Martinez SG (2010) The contribution of recombination to heterozygosity differs among plant evolutionary lineages and life-forms. BMC Evol Biol 10

    Google Scholar 

  • Coupé R, Stewart AC, Wikeem BM (1991) Engelmann spruce - subalpine fir zone. In: Meidinger D, Pojar J (eds) Ecosystems of British Columbia. BC Ministry of Forests, Victoria BC

    Google Scholar 

  • Crow JF (1948) Alternative hypotheses of hybrid vigor. Genetics 33:447–487

    Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. Murray, London

    Google Scholar 

  • Daubenmire RF (1968) Some geographic variations in Picea sitchensis and their ecological interpretation. Can J Bot 46:787–798

    Google Scholar 

  • Daubenmire RF (1974) Taxonomic and ecologic relationships between Picea glauca and Picea engelmannii. Can J Bot 52:1545–1560

    Google Scholar 

  • De La Torre AR, Roberts DR, Aitken SN (2014a) Genome-wide admixture and ecological niche modelling reveal the maintenance of species boundaries despite long history of interspecific gene flow. Mol Ecol 23:2046–2059

    Google Scholar 

  • De La Torre AR, Wang T, Jaquish B, Aitken SN (2014b) Adaptation and exogenous selection in a Picea glauca x Picea engelmannii hybrid zone: implications for forest management under climate change. New Phytol 201:687–699

    Google Scholar 

  • De La Torre A, Ingvarsson PK, Aitken SN (2015) Genetic architecture and genomic patterns of gene flow between hybridizing species of Picea. Heredity 115:153–164

    Google Scholar 

  • de Villemereuil P, Frichot É, Bazin É, François O, Gaggiotti OE (2014) Genome scan methods against more complex models: when and how much should we trust them? Mol Ecol 23:2006–2019

    PubMed  Google Scholar 

  • Evans LM, Slavov GT, Rodgers-Melnick E, Martin J, Ranjan P, Muchero W, Brunner AM, Schackwitz W, Gunter L, Chen JG, Tuskan GA, Difazio SP (2014) Population genomics of Populus trichocarpa identifies signatures of selection and adaptive trait associations. Nat Genet 46:1089–1096

    CAS  PubMed  Google Scholar 

  • Falkenhagen ER (1985) Isozyme studies in provenance research of forest trees. Theor Appl Genet 69:335–347

    CAS  PubMed  Google Scholar 

  • Felsenstein J (1976) The theoretical population genetics of variable selection and migration. Annu Rev Genet 10:253–280

    CAS  PubMed  Google Scholar 

  • Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315

    Google Scholar 

  • Fournier-Level A, Korte A, Cooper MD, Nordborg M, Schmitt J, Wilczek AM (2011) A map of local adaptation in Arabidopsis thaliana. Science 334:86–90

    CAS  PubMed  Google Scholar 

  • Fraser DJ, Weir LK, Bernatchez L, Hansen MM, Taylor EB (2011) Extent and scale of local adaptation in salmonid fishes: review and meta-analysis. Heredity 106:404–420

    CAS  PubMed  PubMed Central  Google Scholar 

  • Funk JL (2008) Differences in plasticity between invasive and native plants from a low resource environment. J Ecol 96:1162–1173

    Google Scholar 

  • Garman EH (1957) The occurrence of spruce in the interior of British Columbia. British Columbia Forest Service, Victoria

    Google Scholar 

  • Grøndahl E, Ehlers BK (2008) Local adaptation to biotic factors: reciprocal transplants of four species associated with aromatic Thymus pulegioides and T. serpyllum. J Ecol 96:981–992

    Google Scholar 

  • Hamilton JA, Aitken SN (2013) Genetic and morphological structure of a spruce hybrid (Picea sitchensis x P. glauca) zone along a climatic gradient. Am J Bot 100:1651–1662

    PubMed  Google Scholar 

  • Hamilton JA, Lexer C, Aitken SN (2013) Differential introgression reveals candidate genes for selection across a spruce (Picea sitchensis × P. glauca) hybrid zone. New Phytol 197:927–938

    CAS  PubMed  Google Scholar 

  • Hamilton JA, De la Torre AR, Aitken SN (2015) Fine-scale environmental variation contributes to introgression in a three-species spruce hybrid complex. Tree Genet Genomes 11:817

    Google Scholar 

  • Hannerz M, Sonesson J, Ekberg I (1999) Genetic correlations between growth and growth rhythm observed in a short-term test and performance in long-term field trials of Norway spruce. Can J For Res 29:768–778

    Google Scholar 

  • Haselhorst MSH, Buerkle CA (2013) Population genetic structure of Picea engelmannii, P. glauca and their previously unrecognized hybrids in the central Rocky Mountains. Tree Genet Genomes 9:669–681

    Google Scholar 

  • Hereford J (2009) A quantitative survey of local adaptation and fitness trade-offs. Am Nat 173:579–588

    PubMed  Google Scholar 

  • Hewitt GM (1988) Hybrid zones - natural laboratories for evolutionary studies. Trends Ecol Evol 3:158–167

    CAS  PubMed  Google Scholar 

  • Hoban S, Kelley JL, Lotterhos KE, Antolin MF, Bradburd G, Lowry DB, Poss ML, Reed LK, Storfer A, Whitlock MC (2016) Finding the genomic basis of local adaptation: Pitfalls, practical solutions, and future directions. Am Nat 188:379–397

    PubMed  PubMed Central  Google Scholar 

  • Hoeksema JD, Forde SE (2008) A meta-analysis of factors affecting local adaptation between interacting species. Am Nat 171:275–290

    PubMed  Google Scholar 

  • Holliday JA, Ralph SG, White R, Bohlmann J, Aitken SN (2008) Global monitoring of autumn gene expression within and among phenotypically divergent populations of Sitka spruce (Picea sitchensis). New Phytol 178:103–122

    CAS  PubMed  Google Scholar 

  • Hong EP, Park JW (2012) Sample size and statistical power calculation in genetic association studies. Genomics Inform 10:117

    PubMed  PubMed Central  Google Scholar 

  • Hornoy B, Pavy N, Gérardi S, Beaulieu J, Bousquet J (2015) Genetic adaptation to climate in white spruce involves small to moderate allele frequency shifts in functionally diverse genes. Genome Biol Evol 7:3269–3285

    PubMed  PubMed Central  Google Scholar 

  • Howe GT, Aitken SN, Neale DB, Jermstad KD, Wheeler NC, Chen TH (2003) From genotype to phenotype: unraveling the complexities of cold adaptation in forest trees. Can J Bot 81:1247–1266

    CAS  Google Scholar 

  • Huxley JS (1939) Clines: an auxiliary method in taxonomy. Bijdr tot Dierkd 27:491–520

    Google Scholar 

  • Jaramillo-Correa JP, Beaulieu J, Bousquet J (2001) Contrasting evolutionary forces driving population structure at expressed sequence tag polymorphisms, allozymes and quantitative traits in white spruce. Mol Ecol 10:2729–2740

    CAS  PubMed  Google Scholar 

  • Kassen R (2002) The experimental evolution of specialists, generalists, and the maintenance of diversity. J Evol Biol 15:173–190

    Google Scholar 

  • Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7:1225–1241

    Google Scholar 

  • Kerner von Marilaun A (1895) Dependence of plant form on soil and climate. In: Oliver FW (ed) The natural history of plants. Blackie, London, pp 495–514

    Google Scholar 

  • Kim E, Donohue K (2013) Local adaptation and plasticity of Erysimum capitatum to altitude: its implications for responses to climate change. J Ecol 101:796–805

    Google Scholar 

  • Kueppers LM, Conlisk E, Castanha C, Moyes AB, Germino MJ, de Valpine P, Torn MS, Mitton JB (2017) Warming and provenance limit tree recruitment across and beyond the elevation range of subalpine forest. Glob Chang Biol 23:2383–2395

    PubMed  Google Scholar 

  • Langlet O (1971) Two hundred years genecology. Taxon 20:653–721

    Google Scholar 

  • Lasky JR, Forester BR, Reimherr M (2018) Coherent synthesis of genomic associations with phenotypes and home environments. Mol Ecol Resour 18:91–106

    CAS  PubMed  Google Scholar 

  • Le Corre V, Kremer A (2012) The genetic differentiation at quantitative trait loci under local adaptation. Mol Ecol 21:1548–1566

    PubMed  Google Scholar 

  • Ledig FT, Hodgskiss PD, Johnson DR (2006) The structure of genetic diversity in Engelmann spruce and a comparison with blue spruce. Can J Bot 84:1806–1828

    CAS  Google Scholar 

  • Leimu R, Fischer M (2008) A meta-analysis of local adaptation in plants. PLoS ONE 3:e4010

    PubMed  PubMed Central  Google Scholar 

  • Lenormand T (2002) Gene flow and the limits to natural selection. Trends Ecol Evol 17:183–189

    Google Scholar 

  • Lesser MR, Parker WH (2004) Genetic variation in Picea glauca for growth and phenological traits from provenance tests in Ontario. Silvae Genet 53:141–148

    Google Scholar 

  • Li P, Beaulieu J, Bousquet J (1997) Genetic structure and patterns of genetic variation among populations in eastern white spruce (Picea glauca). Can J For Res 27:189–198

    Google Scholar 

  • Liepe KJ, Hamann A, Smets P, Fitzpatrick CR, Aitken SN (2016) Adaptation of lodgepole pine and interior spruce to climate: implications for reforestation in a warming world. Evol Appl 9:409–419

    PubMed  PubMed Central  Google Scholar 

  • Lind BM, Friedline CJ, Wegrzyn JL, Maloney PE, Vogler DR, Neale DB, Eckert AJ (2017) Water availability drives signatures of local adaptation in whitebark pine (Pinus albicaulis Engelm.) across fine spatial scales of the Lake Tahoe Basin, USA. Mol Ecol 26:3168–3185

    PubMed  Google Scholar 

  • Lind BM, Menon M, Bolte CE, Faske TM, Eckert AJ (2018) The genomics of local adaptation in trees: are we out of the woods yet? Tree Genet Genomes 14:29

    Google Scholar 

  • Linhart YB, Grant MC (1996) Evolutionary significance of local genetic differentiation in plants. Annu Rev Ecol Syst 27:237–277

    Google Scholar 

  • Little EL (1953) A natural hybrid species in Alaska. J For 41:745–746

    Google Scholar 

  • Little E (1971) Atlas of United States trees volume 1: conifers and important hardwoods. USDA Forest Service, Washington

    Google Scholar 

  • Lockwood JD, Aleksić JM, Zou J, Wang J, Liu J, Renner SS (2013) A new phylogeny for the genus Picea from plastid, mitochondrial, and nuclear sequences. Mol Phylogenet Evol 69:717–727

    PubMed  Google Scholar 

  • Lotterhos KE, Whitlock MC (2014) Evaluation of demographic history and neutral parameterization on the performance of FST outlier tests. Mol Ecol 23:2178–2192

    PubMed  PubMed Central  Google Scholar 

  • Lotterhos KE, Whitlock MC (2015) The relative power of genome scans to detect local adaptation depends on sampling design and statistical method. Mol Ecol 24:1031–1046

    PubMed  Google Scholar 

  • Lu P, Parker WH, Cherry M, Colombo S, Parker WC, Man R, Roubal N (2014) Survival and growth patterns of white spruce (Picea glauca [Moench] Voss) rangewide provenances and their implications for climate change adaptation. Ecol Evol 4:2360–2374

    PubMed  PubMed Central  Google Scholar 

  • Lu P, Parker WC, Colombo SJ, Man R (2016) Restructuring tree provenance test data to conform to reciprocal transplant experiments for detecting local adaptation. J Appl Ecol 53:1088–1097

    Google Scholar 

  • MacLachlan IR, Yeaman S, Aitken SN (2018) Growth gains from selective breeding in a spruce hybrid zone do not compromise local adaptation to climate. Evol Appl 11:166–181

    CAS  PubMed  Google Scholar 

  • Mägi M, Semchenko M, Kalamees R, Zobel K (2011) Limited phenotypic plasticity in range-edge populations: a comparison of co-occurring populations of two Agrimonia species with different geographical distributions. Plant Biol 13:177–184

    PubMed  Google Scholar 

  • Mátyás C (1996) Climatic adaptation of trees: rediscovering provenance tests. Euphytica 92:45–54

    Google Scholar 

  • Mckay JK, Latta RG (2002) Adaptive population divergence: markers, QTL and traits. Trends Ecol Evol 17:285–291

    Google Scholar 

  • Meirmans PG, Hedrick PW (2011) Assessing population structure: FST and related measures. Mol Ecol Resour 11:5–18

    PubMed  Google Scholar 

  • Merilä J, Hendry AP (2014) Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evol Appl 7:1–14

    PubMed  PubMed Central  Google Scholar 

  • Mimura M, Aitken SN (2007) Adaptive gradients and isolation-by-distance with postglacial migration in Picea sitchensis. Heredity 99:224–232

    CAS  PubMed  Google Scholar 

  • Molina-Montenegro MA, Naya DE (2012) Latitudinal patterns in phenotypic plasticity and fitness-related traits: assessing the climatic variability hypothesis (CVH) with an invasive plant species. PLoS One 7:e47620

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moore WS (1977) An evaluation of narrow hybrid zones in vertebrates. Q Rev Biol 52:263–277

    Google Scholar 

  • Namroud MC, Beaulieu J, Juge N, Laroche J, Bousquet J (2008) Scanning the genome for gene single nucleotide polymorphisms involved in adaptive population differentiation in white spruce. Mol Ecol 17:3599–3613

    CAS  PubMed  PubMed Central  Google Scholar 

  • Naudin C, Radlkofer L (1876) Recherches au sujet des influences que les changement de climats exercent sur les plantes. Libraire de L’Académie de Médecine, Paris

    Google Scholar 

  • Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ, Mathesius U, Poo P, Purugganan MD, Richards CL, Valladares F, van Kleunen M (2010) Plant phenotypic plasticity in a changing climate. Trends Plant Sci 12:684–692

    Google Scholar 

  • Nosil P (2012) Ecological speciation. Oxford University Press, Oxford

    Google Scholar 

  • O’Neill GA, Aitken SN, King JN, Alfaro RI (2002) Geographic variation in resin canal defenses in seedlings from the Sitka spruce × white spruce introgression zone. Can J For Res 32:390–400

    Google Scholar 

  • O’Neill GA, Stoehr M, Jaquish B (2014) Quantifying safe seed transfer distance and impacts of tree breeding on adaptation. For Ecol Manag 328:122–130

    Google Scholar 

  • Pavy N, Paule C, Parsons L, Crow JA, Morency MJ, Cooke J, Johnson JE, Noumen E, Guillet-Claude C, Butterfield Y, Barber S, Yang G, Liu J, Stott J, Kirkpatrick R, Siddiqui A, Holt R, Marra M, Seguin A et al (2005) Generation, annotation, analysis and database integration of 16,500 white spruce EST clusters. BMC Genom 6:1–19

    Google Scholar 

  • Pavy N, Namroud MC, Gagnon F, Isabel N, Bousquet J (2012) The heterogeneous levels of linkage disequilibrium in white spruce genes and comparative analysis with other conifers. Heredity 108:273–284

    CAS  PubMed  Google Scholar 

  • Pavy N, Lamothe M, Pelgas B, Gagnon F, Birol I, Bohlmann J, Mackay J, Isabel N, Bousquet J (2017) A high‐resolution reference genetic map positioning 8.8 K genes for the conifer white spruce: Structural genomics implications and correspondence with physical distance. Plant J 90:189-203

    CAS  PubMed  Google Scholar 

  • Pelgas B, Bousquet J, Meirmans PG, Ritland K, Isabel N (2011) QTL mapping in white spruce: gene maps and genomic regions underlying adaptive traits across pedigrees, years and environments. BMC Genom 12:145

    Google Scholar 

  • Rajora OP, Dancik BP (2000) Population genetic variation, structure, and evolution in Engelmann spruce, white spruce, and their natural hybrid complex in Alberta. Can J Bot 78:768–780

    Google Scholar 

  • Ran JH, Wei XX, Wang XQ (2006) Molecular phylogeny and biogeography of Picea (Pinaceae): implications for phylogeographical studies using cytoplasmic haplotypes. Mol Phylogenet Evol 41:405–419

    CAS  PubMed  Google Scholar 

  • Ran JH, Shen TT, Liu WJ, Wang PP, Wang XQ (2015) Mitochondrial introgression and complex biogeographic history of the genus Picea. Mol Phylogenet Evol 93:63–76

    PubMed  Google Scholar 

  • Rausher MD, Delph LF (2015) Commentary: when does understanding phenotypic evolution require identification of the underlying genes? Evolution 69:1655–1664

    PubMed  Google Scholar 

  • Rehfeldt GE (1994) Adaptation of Picea engelmannii populations to the heterogeneous environments of the intermountain west. Can J Bot 72:1197–1208

    Google Scholar 

  • Rehfeldt GE (2004) Interspecific and intraspecific variation in Picea engelmannii and its congeneric cohorts: biosystematics, genecology, and climate change. RMRS-GTR-134, USDA Forest Service, Fort Collins

    Google Scholar 

  • Rellstab C, Gugerli F, Eckert AJ, Hancock AM, Holderegger R (2015) A practical guide to environmental association analysis in landscape genomics. Mol Ecol 24:4348–4370

    PubMed  Google Scholar 

  • Richardson AD, Keenan TF, Migliavacca M, Ryu Y, Sonnentag O, Toomey M (2013) Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric For Meteorol 169:156–173

    Google Scholar 

  • Roche L (1969) A genecological study of the genus Picea in British Columbia. New Phytol 68:505–554

    Google Scholar 

  • Rweyongeza DM, Barnhardt LK, Hansen CR (2011) Patterns of optimal growth for white spruce provenances in Alberta. Ref. T/255, Alberta Tree Improvement and Seed Centre, Alberta Sustainable Resource Development, Smoky Lake

    Google Scholar 

  • Sáenz-Romero C, Lindig-Cisneros RA, Joyce DG, Beaulieu J, Bradley JSC, Jaquish BC (2016) Assisted migration of forest populations for adapting trees to climate change. Rev Chapingo, Ser Ciencias For y del Ambient 22:303–323

    Google Scholar 

  • Sæther SA, Fiske P, Kålås JA, Kuresoo A, Luigujoe L, Piertney SB, Sahlman T, Höglund J (2007) Inferring local adaptation from QST–FST comparisons: neutral genetic and quantitative trait variation in European populations of great snipe. J Evol Biol 20:1563–1576

    Google Scholar 

  • Sanford E, Kelly MW (2011) Local adaptation in marine invertebrates. Ann Rev Mar Sci 3:509–535

    PubMed  Google Scholar 

  • Savolainen O, Pyhäjärvi T, Knürr T (2007) Gene flow and local adaptation in trees. Annu Rev Ecol Evol Syst 38:595–619

    Google Scholar 

  • Savolainen O, Lascoux M, Merilä J (2013) Ecological genomics of local adaptation. Nat Rev Genet 14:807–820

    CAS  PubMed  Google Scholar 

  • Schweizer RM, Vonholdt BM, Harrigan R, Knowles JC, Musiana M, Coltman D, Novembre J, Wayne RK (2016) Genetic subdivision and candidate genes under selection in North American grey wolves. Mol Ecol 25:380–402

    CAS  PubMed  Google Scholar 

  • Sebastian-Azcona J, Hacke UG, Hamann A (2018) Adaptations of white spruce to climate: strong intraspecific differences in cold hardiness linked to survival. Ecol Evol 8:1758–1768

    PubMed  PubMed Central  Google Scholar 

  • Shafer ABA, Cullingham CI, Côté SD, Coltman DW (2010) Of glaciers and refugia: a decade of study sheds new light on the phylogeography of northwestern North America. Mol Ecol 19:4589–4621

    PubMed  Google Scholar 

  • Shepperd WD, Jeffers RM, Ronco F (1981) An Engelmann spruce seed source study in the Central Rockies. RM-231, USDA Forest Service, Fort Collins

    Google Scholar 

  • Sigurgeirsson A, Szmidt AE (1993) Phylogenetic and biogeographic implications of chloroplast DNA variation in Picea. Nord J Bot 13:233–246

    CAS  Google Scholar 

  • Simpson DG (1994) Seasonal and geographic origin effects on cold hardiness of white spruce buds, foliage, and stems. Can J For Res 24:1066–1070

    Google Scholar 

  • Singh RK, Svystun T, AlDahmash B, Jönsson AM, Bhalerao RP (2017) Photoperiod- and temperature-mediated control of phenology in trees – a molecular perspective. New Phytol 213:511–524

    CAS  PubMed  Google Scholar 

  • Sork VL (2018) Genomic studies of local adaptation in natural plant populations. J Hered 109:3–15

    Google Scholar 

  • Spichtig M, Kawecki TJ (2004) The maintenance (or not) of polygenic variation by soft selection in heterogeneous environments. Am Nat 164:70–84

    PubMed  Google Scholar 

  • Stackpole DJ, Vaillancourt RE, de Aguigar M, Potts BM (2010) Age trends in genetic parameters for growth and wood density in Eucalyptus globulus. Tree Genet Genomes 6:179–193

    Google Scholar 

  • Strasburg JL, Sherman NA, Wright KM, Moyle LC, Willis JH, Rieseberg LH (2012) What can patterns of differentiation across plant genomes tell us about adaptation and speciation? Philos Trans R Soc Lond B Biol Sci 367:364–373

    Google Scholar 

  • Sonia SE (2000) Phenotypic plasticity for plant development, function and life history. Trends Plant Sci 5:537–542

    Google Scholar 

  • Sultan SE, Spencer HG (2002) Metapopulation structure favors plasticity over local adaptation. Am Nat 160:271–283

    Google Scholar 

  • Suren H, Hodgins KA, Yeaman S, Nurkowski KA, Smets P, Rieseberg LH (2016) Exome capture from the spruce and pine giga-genomes. Mol Ecol Resour 16:1136–1146

    CAS  PubMed  Google Scholar 

  • Tigano A, Friesen VL (2016) Genomics of local adaptation with gene flow. Mol Ecol 25:2144–2164

    PubMed  Google Scholar 

  • Turesson G (1922) The genotypical response of the plant species to the habitat. Hereditas 3:211–350

    Google Scholar 

  • Ukrainetz NK, O’Neill GA, Jaquish B (2011) Comparison of fixed and focal point seed transfer systems for reforestation and assisted migration: a case study for interior spruce in British Columbia. Can J For Res 41:1452–1464

    Google Scholar 

  • Valladares F, Matesanz S, Guilhaumon F, Araújo MB, Balaguer L, Benito-Garzón M, Cornwell W, Gianoli E, van Kleunen M, Naya DE, Nicotra AB, Poorter H, Zavala MA (2014) The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol Lett 17:1351–1364

    PubMed  Google Scholar 

  • Wang T, Hamann A, Spittlehouse DL, Aitken SN (2006) Development of scale-free climate data for western Canada for use in resource management. Int J Climatol 26:383–397

    Google Scholar 

  • Wang T, Hamann A, Spittlehouse D, Carroll C (2016) Locally downscaled and spatially customizable climate data for historical and future periods in North America. PLoS ONE 11:e0156720

    PubMed  PubMed Central  Google Scholar 

  • Warren RL, Keeling CI, Saint YM, Raymond A, Taylor GA, Vandervalk BP, Mohamadi H, Paulino D, Chiu R, Jackman SD, Robertson G, Yang C, Boyle B, Hoffmann M, Weigel D, Nelson DR, Ritland C, Isabel N, Jaquish B et al (2015) Improved white spruce (Picea glauca) genome assemblies and annotation of large gene families of conifer terpenoid and phenolic defense metabolism. Plant J 83:189–212

    CAS  PubMed  Google Scholar 

  • Waser NM, Price MV (1985) Reciprocal transplant experiments with Delphinium nelsonii (Ranunculaceae): evidence for local adaptation. Am J Bot 72:1726–1732

    Google Scholar 

  • Weeden NF, Wendel JF (1989) Genetics of plant isozymes. In: Soltis D, Soltis P (eds) Isozymes in plant biology. Chapman and Hall, London, pp 46–72

    Google Scholar 

  • Weng YH, Tosh KJ, Park YS, Fullarton MS (2007) Age-related trends in genetic parameters for jack pine and their implications for early selection. Silvae Genet 56:242–252

    Google Scholar 

  • Whitlock MC (2008) Evolutionary inference from QST. Mol Ecol 17:1885–1896

    PubMed  Google Scholar 

  • Willi Y, Van Buskirk J, Hoffmann AA (2006) Limits to the adaptive potential of small populations. Annu Rev Ecol Evol Syst 37:433–458

    Google Scholar 

  • Williams GC (1966) Adaptation and natural selection. Princeton University Press, Princeton

    Google Scholar 

  • Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wright S (1949) The genetical structure of populations. Ann Eugen 15:323–354

    Google Scholar 

  • Xie C-Y (2003) Genotype by environment interaction and its implications for genetic improvement of interior spruce in British Columbia. Can J For Res 33:1635–1643

    Google Scholar 

  • Yeaman S (2015) Local adaptation by alleles of small effect. Am Nat 186:S74–S89

    PubMed  Google Scholar 

  • Yeaman S, Otto SP (2011) Establishment and maintenance of adaptive genetic divergence under migration, selection, and drift. Evolution 65:2123–2129

    PubMed  Google Scholar 

  • Yeaman S, Hodgins KA, Suren H, Nurkowski KA, Rieseberg LH, Holliday JA, Aitken SN (2014) Conservation and divergence of gene expression plasticity following c. 140 million years of evolution in lodgepole pine (Pinus contorta) and interior spruce (Picea glauca x Picea engelmannii). New Phytol 203:578–591

    CAS  PubMed  Google Scholar 

  • Yeaman S, Hodgins KA, Lotterhos KE, Suren H, Nadeau S, Degner JC, Nurkowski KA, Smets P, Wang T, Gray LK, Liepe KJ, Hamann A, Holliday JA, Whitlock MC, Rieseberg LH, Aitken SN (2016) Convergent local adaptation to climate in distantly related conifers. Science 353:23–26

    Google Scholar 

  • Ying CC, Yanchuk AD (2006) The development of British Columbia’s tree seed transfer guidelines: purpose, concept, methodology, and implementation. For Ecol Manag 227:1–13

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Degner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Degner, J. (2020). Local Adaptation in the Interior Spruce Hybrid Complex. In: Porth, I., De la Torre, A. (eds) The Spruce Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-21001-4_10

Download citation

Publish with us

Policies and ethics