Skip to main content

Current and Emerging 3D Models to Study Breast Cancer

  • Chapter
  • First Online:
Breast Cancer Metastasis and Drug Resistance

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1152))

Abstract

For decades 2D culture has been used to study breast cancer. In recent years, however, the importance of 3D culture to recapitulate the complexity of human disease has received attention. A breakthrough for 3D culture came as a result of a Nature editorial ‘Goodbye Flat Biology’ (Anonymous, Nature 424:861–861, 2003). Since then scientists have developed and implemented a range of different and more clinically relevant models, which are used to study breast cancer. In this chapter multiple different 3D models will be discussed including spheroids, microfluidic and bio-printed models and in silico models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bissell MJ, Radisky DC, Rizki A et al (2002) The organizing principle: microenvironmental influences in the normal and malignant breast. Differentiation 70:537–546

    Article  Google Scholar 

  2. Bissell MJ, Rizki A, Mian IS (2003) Tissue architecture: the ultimate regulator of breast epithelial function. Curr Opin Cell Biol 15:753–762

    Article  CAS  Google Scholar 

  3. Bissell MJ, Weaver VM, Lelievre SA et al (1999) Tissue structure, nuclear organization, and gene expression in normal and malignant breast. Cancer Res 59:1757–1763s; discussion 1763s–1764s

    CAS  PubMed  Google Scholar 

  4. Weaver VM, Fischer AH, Peterson OW et al (1996) The importance of the microenvironment in breast cancer progression: recapitulation of mammary tumorigenesis using a unique human mammary epithelial cell model and a three-dimensional culture assay. Biochem Cell Biol 74:833–851

    Article  CAS  Google Scholar 

  5. Anonymous (2003) Goodbye, flat biology? Nature 424:861–861

    Google Scholar 

  6. Roberts S, Speirs V (2017) Advances in the development of improved animal-free models for use in breast cancer biomedical research. Biophysical Rev 9:321–327

    Article  Google Scholar 

  7. Kim JB, Stein R, O’hare MJ (2004) Three-dimensional in vitro tissue culture models of breast cancer – a review. Breast Cancer Res Treat 85:281–291

    Article  Google Scholar 

  8. Holen I, Speirs V, Morrissey B et al (2017) In vivo models in breast cancer research: progress, challenges and future directions. Dis Model Mech 10:359–371

    Article  CAS  Google Scholar 

  9. Orimo A, Gupta PB, Sgroi DC et al (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121:335–348

    Article  CAS  Google Scholar 

  10. Sutherland RM, Inch WR, Mccredie JA et al (1970) A multi-component radiation survival curve using an in vitro tumour model. Int J Radiat Biol Relat Stud Phys Chem Med 18:491–495

    Article  CAS  Google Scholar 

  11. Mehta G, Hsiao AY, Ingram M et al (2012) Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy. J Control Release 164:192–204

    Article  CAS  Google Scholar 

  12. Torisawa YS, Takagi A, Shiku H et al (2005) A multicellular spheroid-based drug sensitivity test by scanning electrochemical microscopy. Oncol Rep 13:1107–1112

    CAS  PubMed  Google Scholar 

  13. Debnath J, Mills KR, Collins NL et al (2002) The role of apoptosis in creating and maintaining luminal space within normal and oncogene-expressing mammary acini. Cell 111:29–40

    Article  CAS  Google Scholar 

  14. Nash CE, Mavria G, Baxter EW et al (2015) Development and characterisation of a 3D multi-cellular in vitro model of normal human breast: a tool for cancer initiation studies. Oncotarget 6:13731–13741

    Article  Google Scholar 

  15. Roberts GC, Morris PG, Moss MA et al (2016) An evaluation of matrix-containing and humanised matrix-free 3-dimensional cell culture systems for studying breast cancer. PLoS One 11:e0157004

    Article  Google Scholar 

  16. Achilli TM, Meyer J, Morgan JR (2012) Advances in the formation, use and understanding of multi-cellular spheroids. Expert Opin Biol Ther 12:1347–1360

    Article  CAS  Google Scholar 

  17. Metzger W, Sossong D, Bachle A et al (2011) The liquid overlay technique is the key to formation of co-culture spheroids consisting of primary osteoblasts, fibroblasts and endothelial cells. Cytotherapy 13:1000–1012

    Article  CAS  Google Scholar 

  18. Foty R (2011) A simple hanging drop cell culture protocol for generation of 3D spheroids. J Vis Exp 51:e2720

    Google Scholar 

  19. Jaganathan H, Gage J, Leonard F et al (2014) Three-dimensional in vitro co-culture model of breast tumor using magnetic levitation. Sci Rep 4:6468

    Article  CAS  Google Scholar 

  20. Booth ME, Nash CE, Roberts NP et al (2015) 3-D tissue modelling and virtual pathology as new approaches to study ductal carcinoma in situ. Altern Lab Anim 43:377–383

    Article  Google Scholar 

  21. Kleinman HK, Mcgarvey ML, Hassell JR et al (1986) Basement membrane complexes with biological activity. Biochemistry 25:312–318

    Article  CAS  Google Scholar 

  22. Lee GY, Kenny PA, Lee EH et al (2007) Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Methods 4:359–365

    Article  CAS  Google Scholar 

  23. Sokol ES, Miller DH, Breggia A et al (2016) Growth of human breast tissues from patient cells in 3D hydrogel scaffolds. Breast Cancer Res 18:19

    Article  Google Scholar 

  24. Zanoni M, Piccinini F, Arienti C et al (2016) 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained. Sci Rep 6:19103

    Article  CAS  Google Scholar 

  25. Charafe-Jauffret E, Ginestier C, Iovino F et al (2009) Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res 69:1302–1313

    Article  CAS  Google Scholar 

  26. Croker AK, Goodale D, Chu J et al (2009) High aldehyde dehydrogenase and expression of cancer stem cell markers selects for breast cancer cells with enhanced malignant and metastatic ability. J Cell Mol Med 13:2236–2252

    Article  Google Scholar 

  27. Wilson H, Botfield B, Speirs V (2015) A global view of breast tissue banking. Adv Exp Med Biol 864:69–77

    Article  Google Scholar 

  28. Walsh AJ, Cook RS, Sanders ME et al (2016) Drug response in organoids generated from frozen primary tumor tissues. Sci Rep 6:18889

    Article  CAS  Google Scholar 

  29. Walsh AJ, Cook RS, Sanders ME et al (2014) Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer. Cancer Res 74:5184–5194

    Article  CAS  Google Scholar 

  30. Holliday DL, Moss MA, Pollock S et al (2013) The practicalities of using tissue slices as preclinical organotypic breast cancer models. J Clin Pathol 66:253–255

    Article  CAS  Google Scholar 

  31. Davies EJ, Dong M, Gutekunst M et al (2015) Capturing complex tumour biology in vitro: histological and molecular characterisation of precision cut slices. Sci Rep 5:17187

    Article  CAS  Google Scholar 

  32. Grosso SH, Katayama ML, Roela RA et al (2013) Breast cancer tissue slices as a model for evaluation of response to rapamycin. Cell Tissue Res 352:671–684

    Article  CAS  Google Scholar 

  33. Pennington K, Chu QD, Curiel DT et al (2010) The utility of a tissue slice model system to determine breast cancer infectivity by oncolytic adenoviruses. J Surg Res 163:270–275

    Article  Google Scholar 

  34. Naipal KA, Verkaik NS, Sanchez H et al (2016) Tumor slice culture system to assess drug response of primary breast cancer. BMC Cancer 16:78

    Article  Google Scholar 

  35. Salamanna F, Contartese D, Maglio M et al (2016) A systematic review on in vitro 3D bone metastases models: a new horizon to recapitulate the native clinical scenario? Oncotarget 7:44803–44820

    PubMed  PubMed Central  Google Scholar 

  36. Krishnan V, Shuman LA, Sosnoski DM et al (2011) Dynamic interaction between breast cancer cells and osteoblastic tissue: comparison of two- and three-dimensional cultures. J Cell Physiol 226:2150–2158

    Article  CAS  Google Scholar 

  37. Marlow R, Honeth G, Lombardi S et al (2013) A novel model of dormancy for bone metastatic breast cancer cells. Cancer Res 73:6886–6899

    Article  CAS  Google Scholar 

  38. Albritton JL, Miller JS (2017) 3D bioprinting: improving in vitro models of metastasis with heterogeneous tumor microenvironments. Dis Model Mech 10:3–14

    Article  CAS  Google Scholar 

  39. Charbe N, Mccarron PA, Tambuwala MM (2017) Three-dimensional bio-printing: a new frontier in oncology research. World J Clin Oncol 8:21–36

    Article  Google Scholar 

  40. Jiang T, Munguia-Lopez JG, Flores-Torres S et al (2017) Directing the self-assembly of tumour spheroids by bioprinting cellular heterogeneous models within alginate/gelatin hydrogels. Sci Rep 7:4575

    Article  Google Scholar 

  41. Zhou X, Zhu W, Nowicki M et al (2016) 3D bioprinting a cell-laden bone matrix for breast cancer metastasis study. ACS Appl Mater Interfaces 8:30017–30026

    Article  CAS  Google Scholar 

  42. Sackmann EK, Fulton AL, Beebe DJ (2014) The present and future role of microfluidics in biomedical research. Nature 507:181–189

    Article  CAS  Google Scholar 

  43. Prakadan SM, Shalek AK, Weitz DA (2017) Scaling by shrinking: empowering single-cell ‘omics’ with microfluidic devices. Nat Rev Genet 18:345–361

    Article  CAS  Google Scholar 

  44. Bhatia SN, Ingber DE (2014) Microfluidic organs-on-chips. Nat Biotechnol 32:760–772

    Article  CAS  Google Scholar 

  45. Van Duinen V, Trietsch SJ, Joore J et al (2015) Microfluidic 3D cell culture: from tools to tissue models. Curr Opin Biotechnol 35:118–126

    Article  Google Scholar 

  46. Bhise NS, Ribas J, Manoharan V et al (2014) Organ-on-a-chip platforms for studying drug delivery systems. J Control Release 190:82–93

    Article  CAS  Google Scholar 

  47. Esch EW, Bahinski A, Huh D (2015) Organs-on-chips at the frontiers of drug discovery. Nat Rev Drug Discov 14:248–260

    Article  CAS  Google Scholar 

  48. Han B, Qu CJ, Park K et al (2016) Recapitulation of complex transport and action of drugs at the tumor microenvironment using tumor-microenvironment-on-chip. Cancer Lett 380:319–329

    Article  CAS  Google Scholar 

  49. Yang YM, Yang XC, Zou J et al (2015) Evaluation of photodynamic therapy efficiency using an in vitro three-dimensional microfluidic breast cancer tissue model. Lab Chip 15:735–744

    Article  CAS  Google Scholar 

  50. Hwang H, Park J, Shin C et al (2013) Three dimensional multicellular co-cultures and anti-cancer drug assays in rapid prototyped multilevel microfluidic devices. Biomed Microdevices 15:627–634

    Article  CAS  Google Scholar 

  51. Lee JM, Seo HI, Bae JH et al (2017) Hydrogel microfluidic co-culture device for photothermal therapy and cancer migration. Electrophoresis 38:1318–1324

    Article  CAS  Google Scholar 

  52. Yildiz-Ozturk E, Gulce-Iz S, Anil M et al (2017) Cytotoxic responses of carnosic acid and doxorubicin on breast cancer cells in butterfly-shaped microchips in comparison to 2D and 3D culture. Cytotechnology 69:337–347

    Article  CAS  Google Scholar 

  53. Kwak B, Ozcelikkale A, Shin CS et al (2014) Simulation of complex transport of nanoparticles around a tumor using tumor-microenvironment-on-chip. J Control Release 194:157–167

    Article  CAS  Google Scholar 

  54. Yu LF, Chen MCW, Cheung KC (2010) Droplet-based microfluidic system for multicellular tumor spheroid formation and anticancer drug testing. Lab Chip 10:2424–2432

    Article  CAS  Google Scholar 

  55. Sabhachandani P, Motwani V, Cohen N et al (2016) Generation and functional assessment of 3D multicellular spheroids in droplet based microfluidics platform. Lab Chip 16:497–505

    Article  CAS  Google Scholar 

  56. Grafton MMG, Wang L, Vidi PA et al (2011) Breast on-a-chip: mimicry of the channeling system of the breast for development of theranostics. Integr Biol 3:451–459

    Article  CAS  Google Scholar 

  57. Bischel LL, Beebe DJ, Sung KE (2015) Microfluidic model of ductal carcinoma in situ with 3D, organotypic structure. BMC Cancer 15:12

    Article  Google Scholar 

  58. Sung KE, Yang N, Pehlke C et al (2011) Transition to invasion in breast cancer: a microfluidic in vitro model enables examination of spatial and temporal effects. Integr Biol 3:439–450

    Article  CAS  Google Scholar 

  59. Song JW, Cavnar SP, Walker AC et al (2009) Microfluidic endothelium for studying the intravascular adhesion of metastatic breast cancer cells. PLoS One 4:e5756

    Article  Google Scholar 

  60. Bersini S, Jeon JS, Dubini G et al (2014) A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone. Biomaterials 35:2454–2461

    Article  CAS  Google Scholar 

  61. Truong D, Puleo J, Llave A et al. (2016) Breast cancer cell invasion into a three dimensional tumor-stroma microenvironment. Sci Rep 6:3404–3412

    Google Scholar 

  62. Booth ME, Treanor D, Roberts N et al (2015) Three-dimensional reconstruction of ductal carcinoma in situ with virtual slides. Histopathology 66:966–973

    Article  Google Scholar 

Download references

Acknowledgements

Sophie Roberts is supported by a studentship from the NC3Rs (NC/N00325X/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerie Speirs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roberts, S., Peyman, S., Speirs, V. (2019). Current and Emerging 3D Models to Study Breast Cancer. In: Ahmad, A. (eds) Breast Cancer Metastasis and Drug Resistance. Advances in Experimental Medicine and Biology, vol 1152. Springer, Cham. https://doi.org/10.1007/978-3-030-20301-6_22

Download citation

Publish with us

Policies and ethics