Skip to main content

An Improved Principal Coordinate Frame for use with Spatial Rigid Body Displacement Metrics

  • Conference paper
  • First Online:
Advances in Mechanism and Machine Science (IFToMM WC 2019)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 73))

Included in the following conference series:

Abstract

This paper presents an improved definition of a coordinate frame, entitled the principal frame (PF), that is useful for metric calculations on spatial rigid-body displacements. For a finite set of displacements a point mass model of the moving rigid-body is employed. Next, we compute the centroid and principal axes associated with the point mass locations. The PF is then determined from the principal axes. Here, a new algorithm for determining the PF from the principal axes is proposed. The PF is invariant with respect to the choice of the fixed coordinate frame as well as the system of units used; therefore, the PF is useful for left invariant metric computations. An example including a set of 10 spatial rigid-body displacements is presented to demonstrate the application and utility of the PF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Venkataramanujam, V., Larochelle, P.: A Coordinate Frame Useful for Rigid-Body Displacement Metrics. ASME J. Mechanisms and Robotics. vol. 2, no. 4 (2010). doi:https://doi.org/10.1115/1.4002245

  2. Larochelle, P., Murray, A., Angeles, J.: A Distance Metric for Finite Sets of Rigid-Body Displacements via the Polar Decomposition. ASME J. Mechanical Design. vol. 129, no. 8, pp. 805-812 (2006). doi:https://doi.org/10.1115/1.2735640

    Article  Google Scholar 

  3. Fanghella, P., Galletti, C.: Metric Relations and Displacement Groups in Mechanism and Robot Kinematics. ASME J. Mechanical Design. vol. 117, no. 3 (1995). doi:https://doi.org/10.1115/1.2826702

    Article  Google Scholar 

  4. Zefran, M., Kumar, V., Croke, C.: Metrics and Connections for Rigid-Body Kinematics. The Int. J. of Robotics Research. vol. 18, no. 2 (1999). doi:https://doi.org/10.1177/027836499901800208

    Article  Google Scholar 

  5. Park, F., Brocket, R.: Kinematic Dexterity of Robotic Mechanisms. The Int. J. of Robotics Research. vol. 13, no. 1 (1994). doi:https://doi.org/10.1177/027836499401300101

    Article  Google Scholar 

  6. Lin, Q., Burdick, J.: Objective and Frame-Invariant Kinematic Metric Functions for Rigid Bodies. The Int. J. of Robotics Research. vol. 19, no. 6 (2000). doi: https://doi.org/10.1177/027836490001900605

    Article  Google Scholar 

  7. Bobrow, J., Park, F.: On Computing Exact Gradients for Rigid Body Guidance Using Screw Parameters. In: Proceedings of the ASME Design Engineering Technical Conferences, vol. 1, pp. 839-844. ASME Press, New York (1995).

    Google Scholar 

  8. Chirikjian, G.: Convolution Metrics for Rigid Body Motion. In: Proceedings of the ASME Design Engineering Technical Conferences. ASME Press, New York (1998).

    Google Scholar 

  9. Park, F.: Distance Metrics on the Rigid-Body Motions with Application to Mechanism Design. ASME J. Mechanical Design. vol. 117, no. 1, pp. 48-54 (1995). doi:https://doi.org/10.1115/1.2826116

    Article  Google Scholar 

  10. Chirikjian, G., Zhou, S.: Metrics on Motion and Deformation of Solid Models. ASME J. Mechanical Design. vol. 120, no. 2, pp. 252-261 (1998). doi:https://doi.org/10.1115/1.2826966

    Article  Google Scholar 

  11. Martinez, J., Duffy, J.: On the Metrics of Rigid Body Displacements for Infinite and Finite Bodies. ASME J. Mechanical Design. vol. 117, no. 1, pp. 44-47 (1995). doi:https://doi.org/10.1115/1.2826115

    Article  Google Scholar 

  12. Larochelle, P., McCarthy, J.: Planar Motion Synthesis using an Approximate Bi-Invariant Metric. ASME J. Mechanical Design. vol. 117, no. 4, pp. 646-651 (1995). doi:https://doi.org/10.1115/1.2826735

    Article  Google Scholar 

  13. Etzel, C., McCarthy, J.: A Metric for Spatial Displacements Using Biquaternions on SO(4). In: Proceedings of IEEE International Conference on Robotics and Automation. vol. 4, pp. 3185-3190. IEEE International (1996). doi:https://doi.org/10.1109/ROBOT.1996.509197

  14. Gupta, K.: Measures of Positional Error for a Rigid Body. ASME J. Mechanical Design. vol. 119, no. 3, pp. 346-348 (1997).

    Article  Google Scholar 

  15. Tse, D., Larochelle, P.: Approximating Spatial Locations With Spherical Orientations for Spherical Mechanism Design. ASME J. Mechanical Design. vol. 122, no. 4, pp. 457-463 (2000). doi:https://doi.org/10.1115/1.1289139

    Article  Google Scholar 

  16. Eberharter, J., Ravani, B.: Local Metrics for Rigid Body Displacements. ASME J. Mechanical Design. vol. 126, no. 5, pp. 805-812 (2004). doi:https://doi.org/10.1115/1.1767816

    Article  Google Scholar 

  17. Kazerounian, K., Rastegar, J.: Object Norms: A Class of Coordinate and Metric Independent Norms for Displacements. In: Proceedings of the ASME Design Engineering Technical Conferences, vol. 47, pp. 271-275. ASME Press, New York (1992).

    Google Scholar 

  18. Sharf, I., Wolf, A., Rubin, M.: Arithmetic and Geometric Solutions for Average Rigid-Body Rotation. Mechanism and Machine Theory. vol. 45, no. 9, pp. 1239-1251 (2010). doi:https://doi.org/10.1016/j.mechmachtheory.2010.05.002

    Article  Google Scholar 

  19. Angeles, J.: Is there a Characteristic Length of a Rigid-Body Displacement?. Mechanism and Machine Theory. vol. 41, no. 8, pp. 884-896 (2006). doi:https://doi.org/10.1016/j.mechmachtheory.2006.03.010

    Article  Google Scholar 

  20. Zhang, Y., Ting, K.: Point-Line Distance Under Riemannian Metrics. ASME J.Mechanical Design. vol. 130, no. 9, pp. 805-812 (2008). doi:https://doi.org/10.1115/1.294330110

  21. Di Gregorio, R.: A Novel Point of View to Define the Distance between Two Rigid-Body Poses. In: Lenarčič J., Wenger P. (eds) Advances in Robot Kinematics: Analysis and Design. Springer, Dordrecht (2008). doi:https://doi.org/10.1007/978-1-4020-8600-7_38

    Chapter  Google Scholar 

  22. Ravani, B., Roth, B.: Motion Synthesis Using Kinematic Mappings. ASME J.Mech., Trans., and Auto. vol. 105, no. 3, pp. 460-467 (1983). doi:https://doi.org/10.1115/1.3267382

    Article  Google Scholar 

  23. Horn, B.: Closed-Form Solution of Absolute Orientation using Unit Quaternions. J. of the Optical Society of America A. vol. 4, no. 4, pp. 629-642 (1987). doi:https://doi.org/10.1364/JOSAA.4.000629

    Article  Google Scholar 

  24. Shoemake, K., Duff, T.: Matrix Animation and Polar Decomposition. In: Proceedings of Graphics Interface ‘92, pp. 258-264 (1992). doi:https://doi.org/10.20380/GI1992.30

  25. Venkataramanujam, V., Larochelle, P.: A Displacement Metric for Finite Sets of Rigid Body Displacements. In: Proceedings of the ASME Design Engineering Technical Conferences, vol. 2, pp. 1463-1469. ASME Press, New York (2008). doi:https://doi.org/10.1115/DETC2008-49554

  26. Venkataramanujam, V.: Approximate Motion Synthesis of RoboticMechanical Systems. Masters thesis, Florida Institute of Technology (2007)

    Google Scholar 

  27. Larochelle, P.: A Polar Decomposition Based Displacement Metric for a Finite Region of SE(n). In: Lennarčič J., Roth B. (eds) Advances in Robot Kinematics. Springer, Dordrecht (2006). doi:https://doi.org/10.1007/978-1-4020-4941-5_4

  28. Schilling, R., Lee, H.: Engineering Analysis - A Vector Space Approach. Wiley, New York (2000). isbn:978-0471827603

    Google Scholar 

  29. Greenwood, D.: Advanced Dynamics. Cambridge University Press (2006). isbn: 978-0521029933

    Google Scholar 

  30. Angeles, J.: Fundamentals of Robotic Mechanical Systems. 4th edition. Springer International Publishing (2014). isbn:978-3-319-01850-8

    Google Scholar 

  31. Al-Widyan, K., Cervantes-Sánchez, J., Angeles, J.: A Numerically Robust Algorithm to Solve the Five-Pose Burmester Problem. In: Proceedings of the ASME Design Engineering Technical Conferences. ASME Press, New York (2002).

    Google Scholar 

  32. Larochelle, P.: On the Geometry of Approximate Bi-Invariant Projective Displacement Metrics In: Proceedings of the World Congress on the Theory of Machines and Mechanisms (1999).

    Google Scholar 

  33. Higham, N.: Computing the Polar Decomposition|with Applications. SIAM Journal on Scientific and Statistical Computing. vol. 7, no. 4, pp. 1160-1174 (1995). doi:https://doi.org/10.1137/0907079

    Article  MathSciNet  Google Scholar 

  34. Dubrulle, A.: An Optimum Iteration for the Matrix Polar Decomposition In: Electronic Transactions on Numerical Analysis (2001). vol. 8, pp. 21-25. (2001).

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the insightful discussions about metrics and the principal frame PF with Michal Juránek of Photoneo S.R.O. (https://www.photoneo.com). This work builds upon preliminary results reported in Refs. [1, 25, 2, 26].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Larochelle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Larochelle, P., Venkataramanujam, V. (2019). An Improved Principal Coordinate Frame for use with Spatial Rigid Body Displacement Metrics. In: Uhl, T. (eds) Advances in Mechanism and Machine Science. IFToMM WC 2019. Mechanisms and Machine Science, vol 73. Springer, Cham. https://doi.org/10.1007/978-3-030-20131-9_32

Download citation

Publish with us

Policies and ethics