Skip to main content

Variable Stiffness Mechanism for Robotic Rehabilitation

  • Conference paper
  • First Online:
Advances in Mechanism and Machine Science (IFToMM WC 2019)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 73))

Included in the following conference series:

  • 141 Accesses

Abstract

This paper presents a variable stiffness mechanism suitable for use in robotic rehabilitation. By inherently varying both the magnitude and direction of loading in the mechanism using a single input, a large variation in effective stiffness is achieved. Design and analysis of the variable stiffness mechanism are presented, along with an example illustrating performance capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Proietti, T., Crocher, V., Roby-Brami, A., Jarrasse, N. (2016) Upper-limb robotic exoskeletons for neurorehabilitation: a review on control strategies. IEEE Rev Biomed Eng. DOI: https://doi.org/10.1109/RBME.2016.2552201.

  2. Vanderborght, B., Albu-Schaeffer, A., Bicchi, A., Burdet, E., Caldwell, D.G., Carloni, R., Catalano, M., Eiberger, O., Friedl, W., Ganesh, G., Garabini, M., Grebenstein, M., Grioli, G., Haddadin, S., Hoppner, H., Jafari, A., Laffranchi, M., Lefeber, D., Petit, F., Stramigioli, S., Tsagarakis, N., Van Damme, M., Van Ham, R., Visser, L.C., Wolf, S. (2013) Variable impedance actuators: A review. Robotics and Autonomous Systems, https://doi.org/10.1016/j.robot.2013.06.009.

  3. Sugar, T. (2002) A novel selective compliant actuator. Mechatronics 12(9): 1157-1171.

    Google Scholar 

  4. Tsagarakis, N., Laffranchi, M., Vanderborght, B., Caldwell, D. (2009) A Compact Soft Actuator Unit for Small Scale Human Friendly Robots, in: IEEE International Conference on Robotics and Automation (ICRA 2009) pp. 4356-4362.

    Google Scholar 

  5. Palli, G., Berselli, G., Melchiorri, C., Vassura, G. (2011) Design of a Variable Stiffness Actuator Based on Flexures. ASME Journal of Mechanisms and Robotics 3: 034501 (5 pp.)

    Google Scholar 

  6. English, C., Russell, D. (1999) Implementation of variable joint stiffness through antagonistic actuation using rolamite springs, Mechanism and Machine Theory 34(1): 27–40.

    Google Scholar 

  7. Boehler, Q. (2016) Analyse, conception et commande de mécanismes de tenségrité et systèmes précontraints, PhD thesis, Univ. de Strasbourg.

    Google Scholar 

  8. Zhou, X., Jun, S.-K., Krovi, V. (2015) A Cable Based Active Variable Stiffness Module With Decoupled Tension. ASME Journal of Mechanisms and Robotics 7: 011005 (5 pp.).

    Google Scholar 

  9. Enoch. A., Vijayakumar, S. (2016) Rapid manufacture of novel variable impedance robots, ASME Journal of Mechanisms and Robotics 8: 011003 (11 pp.).

    Google Scholar 

  10. Hollander, K., T. (2004) Sugar, Concepts for compliant actuation in wearable robotic systems, in: US-Korea Conference on Science, Technology and Entrepreneurship (UKC2004).

    Google Scholar 

  11. Kawamura, S., Yamamoto, T., Ishida, D., Ogata, T., Nakayama, Y., Tabata, O., Sugiyama, S. (2002) Development of passive elements with variable mechanical impedance for wearable robots, in: IEEE International Conference on Robotics and Automation (ICRA 2002) 1: 248-253.

    Google Scholar 

  12. Kani, M. H. H., Bonabi, H. A. Y., Bidgoly, H. J., Yazdanpanah, M. J., Ahmadabadi, M. N. (2016) Design and Implementation of a Distributed Variable Impedance Actuator Using Parallel Linear Springs, ASME Journal of Mechanisms and Robotics, 8: 021024 (12 pp.).

    Google Scholar 

  13. Tsagarakis, N.I. Sardellitti, C.D.G. (2011) A new variable stiffness actuator (CompAct-VSA): Design and Modelling, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, September 25-30, 2011, San Francisco, CA, USA, pp. 378 – 383.

    Google Scholar 

  14. Jafari, A., Tsagarakis, N., Caldwell, D.G. (2011) AwAS-II: A new actuator with adjustable stiffness based on the novel principle of adaptable pivot point and variable lever ratio, in: IEEE International Conference on Robotics and Automation (ICRA): 4638–4643.

    Google Scholar 

  15. Groothuis, S. S., Rusticelli, G., Zucchelli, A., Stramigioli, S., Carloni, R. (2012) The vsaUT-II: a novel rotational variable stiffness actuator, in: IEEE International Conference on Robotics and Automation (ICRA 2012).

    Google Scholar 

  16. Fumagalli, M., Barrett, E., Stramigioli, S., Carloni, R. (2012) The mVSA-UT: a miniaturized differential mechanism for a continuous rotational variable stiffness actuator, in: 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob 2012): 1943-1948.

    Google Scholar 

  17. Howell, L. L. (2001) Compliant Mechanisms, John Wiley & Sons.

    Google Scholar 

Download references

Acknowledgements

The work described in this paper was supported in part by the University of Orléans.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl A. Nelson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nelson, C.A., Nouaille, L., Poisson, G. (2019). Variable Stiffness Mechanism for Robotic Rehabilitation. In: Uhl, T. (eds) Advances in Mechanism and Machine Science. IFToMM WC 2019. Mechanisms and Machine Science, vol 73. Springer, Cham. https://doi.org/10.1007/978-3-030-20131-9_174

Download citation

Publish with us

Policies and ethics