Skip to main content

Microbes affect the speciation of various uranium compounds in wastes and soils

  • Conference paper
  • First Online:
Uranium - Past and Future Challenges
  • 2391 Accesses

Abstract

Large volumes of uranium wastes are generated by nuclear- fuel pro-duction, nuclear power plants, and by facilities producing nuclear weapons. Uranium is present in various chemical forms such as elemental, oxide, sulfide, ionic, inorganic complex, organic complex, and co-precipitated with iron-, manganese- oxides, and carbonate. The mineralogical association and the oxidation states of uranium affect solubility, stability, bioavailability, and environmental mobility. Microorganisms affect the speciation of various chemical forms of uranium present in wastes and contaminated soils. The speciation of uranium affected by microbial action such as bioreduction, biosorption, biotransformation of uranium complexed with naturally occurring organic ligands, and solubility are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berthelin, J. and C. Munier-Lamy. 1983. Microbial mobilization and preconcentration of uranium from various rock materials by fungi. In R. Hallberg, (ed.) Environmental Biogeochemistry. Ecol. Bull. Stockholm 35:395-401.

    Google Scholar 

  • Bloomfield, C. and G. Pruden. 1975. The effects of aerobic and anaerobic incubation on the extractabilities of heavy metals in digested sewage sludge. Environ. Pollut. 8:217-232.

    Google Scholar 

  • Brainard, J. R., B. A. Strietelmeier, P. H. Smith, P. J. Langston-Unkefer, M. E. Barr and R. R. Ryan. 1992. Actinide binding and solubilization by microbial siderophores. Radiochim. Acta 58-59:357-363.

    Google Scholar 

  • Dodge, C. J., Francis, A. J., and Clayton, C. R. 1966. X-ray spectroscopic studies of microbial transformations of uranium. pp. 159-168. In Synchrotron Radiation Techniques in Industrial, Chemical, and Materials Science, K. L. D’Amico, L. J. Terminello, and D. K. Shuh, Editors, Plenum Publishing, NY. 1996.

    Google Scholar 

  • Francis, A.J. 1990. Microbial dissolution and stabilization of toxic metals and radionuclides in mixed wastes. Experientia 46:840-851.

    Google Scholar 

  • Francis, A.J. 1994. Biotransformation of uranium and other actinides in radioactive wastes. J. Alloys Compds. 271/273:78-84.

    Google Scholar 

  • Francis, A.J. 1999. Bioremedition of Radionuclide and Toxic Metal Contaminated Soils and Wastes. In Agronomy Monograph 37; SSA, Madison WI, pp 239-271.

    Google Scholar 

  • Francis, A.J. and C.J. Dodge. 1993. Influence of complex structure on the biodegradation of iron citrate complexes. Appl. Environ. Microbiol. 59:109-113.

    Google Scholar 

  • Francis, A.J., C.J. Dodge and J.B. Gillow. 1992. Biodegradation of metal-citrate complexes and implication of for toxic metal mobility. Nature 356:14-142.

    Google Scholar 

  • Francis, A.J., C.J. Dodge, F. Lu G. Halada and C.R. Clayton. 1994. XPS and XANES studies of uranium reduction by Clostridium sp. Environ. Sci. Technol. 28:636-639.

    Google Scholar 

  • Francis, A.J., J. B. Gillow, C.J. Dodge, M. Dunn, K. Mantione, B.A.Strietelmeier, M.E. Pansoy-Hjelvik and H.W. Papenguth. 1998. Role of microbes as biocolloids in the transport of actinides from a deep underground radioactive waste repository. Radiochim. Acta 82:347-354.

    Google Scholar 

  • Francis A.J., C.J. Dodge, J.B. Gillow and H.W. Papenguth. 2000. Biotransformation of uranium compounds in high ionic strength brine by a halophilic bacterium under denitrifying conditions. Environ. Sci. Technol. 34: 2311-2317.

    Google Scholar 

  • Francis A.J, J.B Gillow, C.J Dodge, R Harris, T.J Beveridge and H.W Papenguth. 2004. Association of uranium with halophilic and nonhalophilic bacteria and archaea. Radiochim. Acta 92:481-488.

    Google Scholar 

  • Francis, A.J. and C.J. Dodge. 2008. Bioreduction of uranium (VI) complexed with citric acid by Clostridia affects its structure and solubility. Environ. Sci. Technol. 42:8277-8282.

    Google Scholar 

  • Ganesh, R., K.G. Robinson, G.R. Reed and G. S. Saylor. 1997. Reduction of hexavlaent uranium from organic complexes by sulfate- and iron-reducing bacteria. Appl. Environ. Microbiol. 63:4385-4391.

    Google Scholar 

  • Gao, W. and A.J. Francis. 2008. Reduction of uranium (VI) to uranium (IV) by Clostridia. Appl. Environ. Microbiol. 74:4580-4584.

    Google Scholar 

  • Gillow, J.B., Dunn, M., Francis, A.J., and Papenguth, H.W. 2001. The role of subterranean microbes as biocolloids in the transport of actinides at the Waste Isolation Pilot Plant and Grimsel Test Site. Radiochim Acta. 88:769-774.

    Google Scholar 

  • Gu, B.; Yan, H.; Zhou, P.; Watson, D.; Park, M.; Istok, J. D. 2005. Natural humics impact uranium bioreduction and oxidation. Environ. Sci. Technol. 39:5268-5275.

    Google Scholar 

  • Joshi-Tope, G. and Francis, A. J. 1995. Mechanisms of biodegradation of metal-citrate complexes by Pseudomonas fluorescens. J. Bacteriol. 177:1989-1993.

    Google Scholar 

  • Premuzic, E.T., A.J. Francis, M. Lin and J. Schubert. 1985. Induced formation of chelating agents by Pseudomonas aeruginosa grown in presence of thorium and uranium. Arch. Environ. Contam. Toxicol. 14:759-768.

    Google Scholar 

  • Strandberg, G.W., S.E. Shumate II and J. R. Parrot Jr. 1981. Microbial cells as biosorbents for heavy metals: accumulation of uranium by Saccharomyces cerevisiae and Pseudomonas aeruginosa. Appl. Environ. Microbiol.41:237-245.

    Google Scholar 

  • Vazquez, G.J., C.J. Dodge and A.J. Francis. 2009. Bioreduction of U(VI)-phthalate to a polymeric U(IV)-phthalate colloid. Inorganic Chemistry. 48: 9485–9490.

    Google Scholar 

  • Wall, J. D. and L. R. Krumholz. 2006. Uranium reduction. Ann. Rev. Microbiol. 60:149-166.

    Google Scholar 

Download references

Acknowledgments

This research was in part supported by BK-21 plus pro-gram through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (R31–30005) and by the Office of Biological and Environmental Research, Office of Science, U.S. Department of Energy, under contract No. DE-AC02-98CH10886.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Francis, A.J. (2015). Microbes affect the speciation of various uranium compounds in wastes and soils. In: Merkel, B., Arab, A. (eds) Uranium - Past and Future Challenges. Springer, Cham. https://doi.org/10.1007/978-3-319-11059-2_39

Download citation

Publish with us

Policies and ethics