Skip to main content

Fractional De Giorgi Classes and Applications to Nonlocal Regularity Theory

  • Chapter
  • First Online:
Contemporary Research in Elliptic PDEs and Related Topics

Part of the book series: Springer INdAM Series ((SINDAMS,volume 33))

Abstract

We present some recent results obtained by the author on the regularity of solutions to nonlocal variational problems. In particular, we review the notion of fractional De Giorgi class, explain its role in nonlocal regularity theory, and propose some open questions in the subject.

This note is mostly based on a talk given by the author at a conference held in Bari on May 29–30, 2017, as part of the INdAM intensive period “Contemporary research in elliptic PDEs and related topics”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Brasco, E. Parini, The second eigenvalue of the fractional p-Laplacian. Adv. Calc. Var. 9(4), 323–355 (2016)

    Article  MathSciNet  Google Scholar 

  2. L. Brasco, E. Lindgren, A. Schikorra, Higher Hölder regularity for the fractional p-Laplacian in the superquadratic case. Adv. Math. 338, 782–846 (2018)

    Article  MathSciNet  Google Scholar 

  3. X. Cabré, M. Cozzi, A gradient estimate for nonlocal minimal graphs. Duke Math. J. 168(5), 775–848 (2019)

    Article  MathSciNet  Google Scholar 

  4. L.A. Caffarelli, A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math. (2) 171(3), 1903–1930 (2010)

    Article  MathSciNet  Google Scholar 

  5. L.A. Caffarelli, A. Vasseur, The De Giorgi method for nonlocal fluid dynamics, in Nonlinear Partial Differential Equations. Advanced Courses in Mathematics. CRM Barcelona (Birkhäuser/Springer Basel AG, Basel, 2012), pp. 1–38

    Google Scholar 

  6. L.A. Caffarelli, J.-M. Roquejoffre, Y. Sire, Variational problems for free boundaries for the fractional Laplacian. J. Eur. Math. Soc. 12(5), 1151–1179 (2010)

    Article  MathSciNet  Google Scholar 

  7. L.A. Caffarelli, C.H. Chan, A. Vasseur, Regularity theory for parabolic nonlinear integral operators. J. Am. Math. Soc. 24(3), 849–869 (2011)

    Article  MathSciNet  Google Scholar 

  8. M. Cozzi, Regularity results and Harnack inequalities for minimizers and solutions of nonlocal problems: a unified approach via fractional De Giorgi classes. J. Funct. Anal. 272(11), 4762–4837 (2017)

    Article  MathSciNet  Google Scholar 

  9. M. Cozzi, E. Valdinoci, Plane-like minimizers for a non-local Ginzburg-Landau-type energy in a periodic medium. J. Éc. Polytech. Math. 4, 337–388 (2017)

    Article  MathSciNet  Google Scholar 

  10. E. De Giorgi, Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari. Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3) 3, 25–43 (1957)

    Google Scholar 

  11. A. Di Castro, T. Kuusi, G. Palatucci, Nonlocal Harnack inequalities. J. Funct. Anal. 267(6), 1807–1836 (2014)

    Article  MathSciNet  Google Scholar 

  12. A. Di Castro, T. Kuusi, G. Palatucci, Local behavior of fractional p-minimizers. Ann. Inst. H. Poincaré Anal. Non Linéaire 33(5), 1279–1299 (2016)

    Article  MathSciNet  Google Scholar 

  13. E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)

    Article  MathSciNet  Google Scholar 

  14. E. DiBenedetto, N.S. Trudinger, Harnack inequalities for quasiminima of variational integrals. Ann. Inst. H. Poincaré Anal. Non Linéaire 1(4), 295–308 (1984)

    Article  MathSciNet  Google Scholar 

  15. M. Giaquinta, E. Giusti, On the regularity of the minima of variational integrals. Acta Math. 148, 31–46 (1982)

    Article  MathSciNet  Google Scholar 

  16. M. Giaquinta, L. Martinazzi, An Introduction to the Regularity Theory for Elliptic Systems, Harmonic Maps and Minimal Graphs. Appunti, Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)], vol. 11 (Edizioni della Normale, Pisa, 2012)

    Google Scholar 

  17. E. Giusti, Direct Methods in the Calculus of Variations (World Scientific Publishing Co., Inc., River Edge, 2003)

    Book  Google Scholar 

  18. M. Kassmann, A priori estimates for integro-differential operators with measurable kernels. Calc. Var. Partial Differ. Equ. 34(1), 1–21 (2009)

    Article  MathSciNet  Google Scholar 

  19. M. Kassmann, Harnack inequalities and Hölder regularity estimates for nonlocal operators revisited (2011). Preprint

    Google Scholar 

  20. T. Kuusi, G. Mingione, Y. Sire, Nonlocal self-improving properties. Anal. PDE 8(8), 57–114 (2015)

    Article  MathSciNet  Google Scholar 

  21. O.A. Ladyzhenskaya, N.N. Uraltseva, Linear and Quasilinear Elliptic Equations (Academic, New York, 1968). Translated from the Russian by Scripta Technica, Inc., Translation editor: Leon Ehrenpreis

    Google Scholar 

  22. G. Mingione, Gradient potential estimates. J. Eur. Math. Soc. 13(2), 459–486 (2011)

    MathSciNet  MATH  Google Scholar 

  23. X. Ros-Oton, J. Serra, The boundary Harnack principle for nonlocal elliptic operators in non-divergence form. Potential Anal. (to appear). https://doi.org/10.1007/s11118-018-9713-7

  24. A. Schikorra, Integro-differential harmonic maps into spheres. Commun. Partial Differ. Equ. 40(3), 506–539 (2015)

    Article  MathSciNet  Google Scholar 

  25. L. Silvestre, Hölder estimates for solutions of integro-differential equations like the fractional Laplace. Indiana Univ. Math. J. 55(3), 1155–1174 (2006)

    Article  MathSciNet  Google Scholar 

  26. K.-O. Widman, Hölder continuity of solutions of elliptic systems. Manuscripta Math. 5, 299–308 (1971)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author wishes to thank Serena Dipierro, the Università degli Studi di Bari, and INdAM for their kind invitation, warm hospitality, and financial support. The author also thanks the anonymous referee for her/his keen comments on a previous version of this note. The author is supported by the “Mara de Maeztu” MINECO grant MDM-2014-0445, by the MINECO grant MTM2017-84214-C2-1-P, and by a Royal Society Newton International Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Cozzi .

Editor information

Editors and Affiliations

Appendix A: An Explicit Example

Appendix A: An Explicit Example

It is easy to see that the characteristic function of a sufficiently smooth subset E of \(\mathbb {R}^n\) is contained in the fractional Sobolev space W s, p, provided sp < 1. In this appendix we show that, in dimension n = 1 and under this assumption on s and p, a step function may also belong to a weak fractional De Giorgi class \(\widetilde {\mbox{ DG}}{\mathstrut }^{s,p}\)—but never to a strong class DGs, p. From this, it follows that the C α estimates of Theorem 2.5 and the Harnack inequality of Theorem 2.9—both valid for the elements of the smaller class DGs, p—cannot be extended to \(\widetilde {\mbox{ DG}}{\mathstrut }^{s,p}\).

Proposition A.1

Let n = 1 and sp < 1. Then,

$$\displaystyle \begin{aligned} \chi_{(0, +\infty)} \in \widetilde{\mathit{\mbox{ DG}}}{\mathstrut}^{s,p}((-1, 1); 0, H, 0) \end{aligned} $$
(A.1)

for some constant \(H \geqslant 1\) . Furthermore,

$$\displaystyle \begin{aligned} \chi_{(0, +\infty)} \notin \mathit{\mbox{ DG}}_-^{s,p}((-1, 1); d, H, \lambda) \end{aligned} $$
(A.2)

for every \(d, \lambda \geqslant 0\) and \(H \geqslant 1\).

Proof

We begin by showing that (A.1) holds true. We only check that u := χ (0,+) belongs to the class \(\widetilde {\mbox{ DG}}{\mathstrut }_-^{s,p}\), as the verification of its inclusion in \(\widetilde {\mbox{ DG}}{\mathstrut }_+^{s,p}\) is analogous.

Fix any x 0 ∈ (−1, 1), 0 < r < R < 1 −|x 0|, and \(k \in \mathbb {R}\). In order to check the validity of the inequality defining \(\widetilde {\mbox{ DG}}{\mathstrut }_-^{s,p}\), we clearly can restrict ourselves to considering the case of k > 0, since otherwise (uk)≡ 0. For shortness, we only deal with k ∈ (0, 1], the case k > 1 being similar. We first estimate from above the left-hand side of (2.2):

$$\displaystyle \begin{aligned} \begin{aligned}{}[(u - k)_-]_{W^{s, p}((x_0 - r, x_0 + r))}^p & = \int_{x_0 - r}^{x_0 + r} \int_{x_0 - r}^{x_0 + r} \frac{|(u(x) - k)_- - (u(y) - k)_-|{}^p}{|x - y|{}^{1 + s p}} \, dx dy \\ & = 2 k^p \chi_{(|x_0|, +\infty)}(r) \int_{x_0 - r}^0 \int_0^{x_0 + r} \frac{dx dy}{|x - y|{}^{1 + s p}} \\ & \leqslant \frac{2 (r - |x_0|)_+^{1 - s p} k^p}{s p (1 - s p)}. \end{aligned} \end{aligned} $$
(A.3)

In view of this, it suffices to estimate from below the right-hand side of (2.2) when r > |x 0|. In this case, also R > |x 0| and therefore such right-hand side is larger than

$$\displaystyle \begin{aligned} H \frac{R^{(1 - s) p}}{(R - r)^p} \| (u - k)_- \|{}_{L^p(x_0 - R, x_0 + R)}^p = H \frac{R^{(1 {-} s) p}}{(R - r)^p} k^p \int_{x_0 - R}^0 dx {\geqslant} H (R - |x_0|)^{1 {-} s p} k^p. \end{aligned} $$

As R > r, the latter quantity controls the one appearing on the last line of (A.3), provided H is sufficiently large (in dependence of s and p only). Consequently, u belongs to the class \(\widetilde {\mbox{ DG}}{\mathstrut }_-^{s,p}((-1, 1); 0, H, 0)\).

We now turn our attention to (A.2). We point out that, arguing by contradiction, its validity could be inferred from Theorem 2.10. Nevertheless, we present here a proof of it based on a direct computation, for we show that inequality (2.5) does not hold when x 0 = 0 and R = 2r, with k, r > 0 suitably small. Indeed, under these assumptions the left-hand side of (2.5) is larger than

$$\displaystyle \begin{aligned} \int_{-r}^{r} (u(x) - k)_- \left\{ \int_{\mathbb{R}} \frac{ (u(y) - k)_+^{p - 1}}{|x - y|{}^{1 + s p}} \, dy \right\} dx & \geqslant \int_{- r}^{0} k \left\{ \int_{0}^{x + r} \frac{(1 - k)^{p - 1}}{(y - x)^{1 + s p}} \, dy \right\} dx \\ & = \frac{r^{1 - s p} k (1 - k)^{p - 1}}{1 - s p}. \end{aligned} $$

On the other hand, it is easy to check that the right-hand side of (2.5) is bounded above by CH(r 1+λ d p + r 1−sp k p), for some constant \(C \geqslant 1\) depending only on s and p. By taking r and k smaller and smaller (but positive), it follows that the latter quantity cannot control the one displayed above, no matter how large H is. Hence, (A.2) holds true. □

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cozzi, M. (2019). Fractional De Giorgi Classes and Applications to Nonlocal Regularity Theory. In: Dipierro, S. (eds) Contemporary Research in Elliptic PDEs and Related Topics. Springer INdAM Series, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-030-18921-1_7

Download citation

Publish with us

Policies and ethics