Skip to main content
  • 1163 Accesses

Abstract

The goal of this chapter is to provide the reader with a basic overview of the mechanisms that mammals use to detect and control endotoxin. This is an introductory chapter to support a more specialized knowledge in subsequent chapters. It should be evident that the structures used in higher organisms, especially mammals, have evolved from invertebrate precursors where, in many cases, the more ancient functionality (as reviewed in Chap. 18) has been combined into further specialized and differentiated structures. An overview of the adaptive immune system was given in Chap. 7. This chapter focuses on the innate immune response with the only adaptive discussion pertaining to the interface of antibody with the innate complement system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Not as descended from Limulus but from the last common ancestor of man and arthropods some 550 million years ago.

  2. 2.

    Native outer membrane vesicles.

  3. 3.

    LPS-depleted outer membrane vesicles.

  4. 4.

    N. meningitidis-LPS.

  5. 5.

    CDC is complement-dependent cytotoxicity.

  6. 6.

    ADCC is antibody-dependent cell cytotoxicity.

  7. 7.

    A polysaccharide coating associated most often with GNB but also with some GPB.

  8. 8.

    In this verbiage one cannot help but see the analogous activity of the release of antimicrobial as well as Limulus serine protease factors from amoebocyte large granulocytes.

  9. 9.

    Biologic administration is often preceded by the administration of anti-pyretic drugs in anticipation of fever.

  10. 10.

    SNP is single nucleotide polymorphism.

  11. 11.

    MPLA is monophosphoral lipid A.

  12. 12.

    Soluble MD-2.

  13. 13.

    GUV is “giant unilamellar vesicles”. See: Preparing giant unilamellar vesicles (GUVs) of complex lipid mixtures on demand: Mixing small unilamellar vesicles of compositionally heterogeneous mixtures, Bhatia et al., Biochimica et Biophysica Acta 1848 (2015) 3175–3180.

  14. 14.

    “…well-defined model membrane systems of a complexity that resembles biological membranes with rafts.”

  15. 15.

    DOPC is dioleoylphosphatidylcholine.

  16. 16.

    Sphingomyelin/cholesterol (6/4).

  17. 17.

    Liquid-crystalline phase.

  18. 18.

    Recently it’s been shown that five fit inside and the remaining one (in prototypical hexaacyl LPS) facilitates dimerization between TLR4–1 and TLR4–2.

  19. 19.

    Multivesicular bodies.

  20. 20.

    This may suggest a similar role for RP105 since it has no signaling ability.

  21. 21.

    However, if one were able to dig deeper, it might remove the “arbitrary” tag, as a mouse existing at the surface level (in the dirt) and feeding on scavenged foodstuffs may indeed benefit from different TLR activation in contrast to a human or a horse, for example.

  22. 22.

    TLR11 is non-functional in man whereas TLR10 in non-functional in mice. As the view is anthropocentric, TLR1–10 are human.

  23. 23.

    Necrotizing enterocolitis.

  24. 24.

    EC is epithelial cells.

References

  1. Beutler B. How mammals sense infection: from endotoxin to the toll-like receptors. Nobel Lecture. 2011; https://www.nobelprize.org/uploads/2018/06/beutler-lecture.pdf.

  2. Beutler B, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science. 1998;282:2085–8.

    Article  PubMed  Google Scholar 

  3. PLoS pathogens issue image. PLoS Pathog. Nov 2005;1(3):ev01.i03. https://doi.org/10.1371/image.ppat.v01.i03.

  4. Mayer-Scholl A, Hurwitz R, Brinkmann V, Schmid M, Jungblut P, Weinrauch Y, et al. Human neutrophils kill Bacillus anthracis. PLoS Pathog. 2005;1(3):e23. https://doi.org/10.1371/journal.ppat.0010023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Heinrich V, Lee C-Y. Blurred line between chemotactic chase and phagocytic consumption: an immunophysical single-cell perspective. J Cell Sci. 2011;124(18):3041–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Matsushita M. Ficolins: complement-activating lectins involved in innate immunity. J Innate Immun. 2010;2:24–32.

    Article  CAS  PubMed  Google Scholar 

  7. Barnum SR. Complement: a primer for the coming therapeutic revolution. Pharmacol Ther. 2017;172:63–72.

    Article  CAS  PubMed  Google Scholar 

  8. Merle NS, et al. Complement system part II: role in immunity. Front Immunol. 2015;6:257.

    PubMed  PubMed Central  Google Scholar 

  9. Fernández FJ, et al. Pathogens’ toolbox to manipulate human complement. Semin Cell Dev Biol. 2017; https://doi.org/10.1016/j.semcdb.2017.12.001.

    Article  CAS  Google Scholar 

  10. Amara U, et al. Interaction between the coagulation and complement system. Adv Exp Med Biol. 2008;632:71–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Amara U, et al. Molecular intercommunication between the complement and coagulation systems. J Immunol. 2010;185:5628–36.

    Article  CAS  PubMed  Google Scholar 

  12. Skattum L, et al. Complement deficiency states and associated infections. Mol Immunol. 2011;48:1643–55.

    Article  CAS  PubMed  Google Scholar 

  13. Merle NS, et al. Complement system part I – molecular mechanisms of activation and regulation. Front Immunol. 2015;6:262.

    PubMed  PubMed Central  Google Scholar 

  14. Krem MM, Di Cera E. Evolution of enzyme cascades from embryonic development to blood coagulation. Trends Biochem Sci. 2002;27:67–74.

    Article  CAS  PubMed  Google Scholar 

  15. Esmon CT. The impact of the inflammatory response on coagulation. Thromb Res. 2004;114:321–7.

    Article  CAS  PubMed  Google Scholar 

  16. Rittirsch D, Flierl MA, Ward PA. Harmful molecular mechanisms in sepsis. Nat Rev Immunol. 2008;8:776–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Davis AE III, Mejia P, Lu F. Biological activities of C1 inhibitor. Mol Immunol. 2008;45:4057–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ghebrehiwet B, Silverberg M, Kaplan AP. Activation of the classical pathway of complement by Hageman factor fragment. J Exp Med. 1981;153:665–76.

    Article  CAS  PubMed  Google Scholar 

  19. Huber-Lang M, Sarma JV, Zetoune FS, Rittirsch D, Neff TA, McGuire SR, Lambris JD, Warner RL, Flierl MA, Hoesel LM, et al. Generation of C5a in the absence of C3: a new complement activation pathway. Nat Med. 2006;12:682–7.

    Article  CAS  PubMed  Google Scholar 

  20. Morrison DC, Kline LF. Activation of the classical and properdin pathways of complement by bacterial lipopolysaccharides (LPS). J Immunol. 1977;118:362–8.

    CAS  PubMed  Google Scholar 

  21. Cooper NR, Morrison DC. Binding and activation of the first component of human complement by the lipid A region of lipopolysaccharides. J Immunol. 1978;120:1862–8.

    CAS  PubMed  Google Scholar 

  22. Vukajlovich SW, Hoffman J, Morrison DC. Activation of human serum complement by bacterial lipopolysaccharides: structural requirements for antibody independent activation of the classical and alternative pathways. Mol Immunol. 1987;24:319–31.

    Article  CAS  PubMed  Google Scholar 

  23. Bjerre A, et al. Complement activation induced by purified Neisseria meningitidis lipopolysaccharide (LPS), outer membrane vesicles, whole bacteria, and an LPS-free mutant. J Infect Dis. 2002;185:220–8.

    Article  CAS  PubMed  Google Scholar 

  24. Wang M, et al. Mannan-binding lectin regulates dendritic cell maturation and cytokine production induced by lipopolysaccharide. BMC Immunol. 2011;12:1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Swierzko A, et al. New functional ligands for ficolin-3 among lipopolysaccharides of Hafnia alvei. Glycobiology. 2012;22(2):267–80. https://doi.org/10.1093/glycob/cwr119. Epub 2 Sep 2011.

    Article  CAS  PubMed  Google Scholar 

  26. Hansen S, et al. Collectin 11 (CL-11, CL-K1) is a MASP-1/3–associated plasma collectin with microbial-binding activity. J Immunol. 2010;185:6096–104.

    Article  CAS  PubMed  Google Scholar 

  27. Ma YG, et al. Human mannose-binding lectin and L-ficolin function as specific pattern recognition proteins in the lectin activation pathway of complement. J Biol Chem. 2004;279(24):25307–12.

    Article  CAS  PubMed  Google Scholar 

  28. Kimura Y, et al. Activator-specific requirement of properdin in the initiation and amplification of the alternative pathway complement. Blood. 2008;111(2):732–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Roumenina LT, et al. Interaction of the globular domain of human C1q with Salmonella typhimurium lipopolysaccharide. Biochim Biophys Acta. 2008;1784:1271–6.

    Article  CAS  PubMed  Google Scholar 

  30. de Haas CJC, et al. Serum amyloid P omponent bound to gram-negative bacteria prevents lipopolysaccharide-mediated classical pathway complement activation. Infect Immunity. 2000;68(4):1753–9.

    Article  Google Scholar 

  31. Mold C, et al. C-reactive protein mediates protection from lipopolysaccharide through interactions with FcR1. J Immunol. 2002;169:7019–25.

    Article  CAS  PubMed  Google Scholar 

  32. Baldo B. Safety of biologics therapy. Cham: Springer; 2017. p. 268.

    Google Scholar 

  33. Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol. 2014;5:520.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Hayes JM, et al. Fc gamma receptors: glycobiology and therapeutic prospects. J Inflamm Res. 2016;9:209–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Thulin T, Wang T. The role of Fc gamma receptors in broad protection against influenza viruses. Vaccines. 2018;6(3):36.

    Article  PubMed Central  Google Scholar 

  36. Wright A, Morrison SL. Effect of glycosylation on antibody function: implications for genetic engineering. Trends Biotechnol. 1997;15:26–32.

    Article  CAS  PubMed  Google Scholar 

  37. Shields RL, et al. High resolution mapping of the binding site on human IgG1 for FcγRI, FcγRII, FcγRIII, and FcRn and design of IgG1 variants with improved binding to the FcγR. J Biol Chem. 2001;276:6591–604.

    Article  CAS  PubMed  Google Scholar 

  38. Arnold JN, et al. The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol. 2007;25:21–50.

    Article  CAS  PubMed  Google Scholar 

  39. Rosales C. Fcγ receptor heterogeneity in leukocyte functional responses. Front Immunol. 2017;8:280.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Moulton EA, Atkinson JP, Buller RML. Surviving mousepox infection requires the complement system. Plos One PLoS Pathog. 2008;4(12):e1000249.

    Article  CAS  Google Scholar 

  41. Heesterbeek DAC, et al. Complement and bacterial infections: from molecular mechanisms to therapeutic applications. J Innate Immun. 2018;10(5-6):455–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Diago-Navarro E, et al. Novel, broadly reactive anticapsular antibodies against carbapenem-resistant Klebsiella pneumoniae protect from infection. M Bio. 2018;9:1–20.

    Google Scholar 

  43. Rollenske T, et al. Crossspecificity of protective human antibodies against Klebsiella pneumoniae LPS O-antigen. Nat Immunol. 2018;19:1.

    Article  CAS  Google Scholar 

  44. Chakraborti S, et al. Phase-variable heptose i glycan extensions modulate efficacy of 2C7 vaccine antibody directed against Neisseria gonorrhoeae lipooligosaccharide. J Immunol. 2016;196:4576–86.

    Article  CAS  PubMed  Google Scholar 

  45. Schroder NWJ, Schumann RR. Non-LPS targets and actions of LPS binding protein (LBP). J Endotoxin Res. 2005;11:4.

    Article  CAS  Google Scholar 

  46. Ariki S, et al. Factor C acts as a lipopolysaccharide-responsive C3 convertase in horseshoe crab complement activation. J Immunol. 2008;181(11):7994–8001.

    Article  CAS  PubMed  Google Scholar 

  47. Eckert JK, et al. The crystal structure of lipopolysaccharide binding protein reveals the location of a frequent, mutation that impairs innate immunity. Immunity. 2013;39:647–60.

    Article  CAS  PubMed  Google Scholar 

  48. Chen YY, et al. Lipopolysaccharide binding protein in cirrhotic patients with severe sepsis. J Chin Med Assoc. 2014;77:68–74.

    Article  CAS  PubMed  Google Scholar 

  49. Ryu JK, et al. Reconstruction of LPS transfer cascade reveals structural determinants within LBP, CD14, and TLR4-MD2 for efficient LPS recognition and transfer. Immunity. 2017;46:38–50.

    Article  CAS  PubMed  Google Scholar 

  50. Kim SJ, Kim HM. Dynamic lipopolysaccharide transfer cascade to TLR4/MD2 complex via LBP and CD14. BMB Rep. 2017;50(2):55–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ariki S, et al. A serine protease zymogen functions as a pattern-recognition receptor for lipopolysaccharides. PNAS. 2004;101(4):953–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Billod JM, et al. Computational approaches to toll-like receptor 4 modulation. Molecules. 2016;21:994. https://doi.org/10.3390/molecules21080994.

    Article  CAS  PubMed Central  Google Scholar 

  53. Cochet F, Peri F. The Role of carbohydrates in the lipopolysaccharide (LPS)/toll-like receptor 4 (TLR4) signalling. Int J Mol Sci. 2017;18:2318. https://doi.org/10.3390/ijms18112318.

    Article  CAS  PubMed Central  Google Scholar 

  54. Latty SL, et al. Activation of Toll-like receptors nucleates assembly of the MyDDosome signaling hub. eLife. 2018;7:e31377. https://doi.org/10.7554/eLife.31377.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Purba E, Saita E, Maruyama I. Activation of the EGF receptor by ligand binding and oncogenic mutations: the “rotation model”. Cells. 2017;6:13. https://doi.org/10.3390/cells6020013.

    Article  CAS  PubMed Central  Google Scholar 

  56. Maruyama IN. Activation of transmembrane cell-surface receptors via a common mechanism? The “rotation model”. Bioessays. 2015;37(9):959–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gross L. Anatomy of a fever. PLoS Biol. 2006;4(9):e305.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Li Z, Perlik V, Feleder C, Tang Y, Blatteis CM. Kupffer cell-generated PGE2 triggers the febrile response of guinea pigs to intravenously injected LPS. Am J Physiol ReguI Integr Comp Physiol. 2006;290(5):R1262–70.

    Article  CAS  Google Scholar 

  59. Walter EJ, et al. The pathophysiological basis and consequences of fever. Crit Care. 2016;20:200.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Greisman LA, Mackowiak PA. Fever: beneficial and detrimental effects of antipyretics. Curr Opin Infect Dis. 2002;15:241–5.

    Article  CAS  PubMed  Google Scholar 

  61. Greisman LA, Mackowiak PA. The structural biology of toll-like receptors. Structure. 2011;19:447–59.

    Article  CAS  Google Scholar 

  62. Kobe B, Kajava AV. The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol. 2001;11:725–32.

    Article  CAS  PubMed  Google Scholar 

  63. Roach JC, et al. The evolution of vertebrate Toll-like receptors. PNAS. 2005;102(27):9577–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Robinson JA, Moehle K. Structural aspects of molecular recognition in the immune system. Part II: pattern recognition receptors. Pure Appl Chem. 2014;86(10):1483–538. https://doi.org/10.1515/pac-2013-1026.

    Article  CAS  Google Scholar 

  65. Toussi DN, Massari P. Immune adjuvant effect of molecularly-defined Toll-like receptor ligands. Vaccines (Basel). 2014;2(2):323–53.

    Article  CAS  Google Scholar 

  66. Gomez R, et al. TLR4 signalling in osteoarthritis-finding targets for candidate DMOADs. Nat Rev Rheumatol. 2015;11:159.

    Article  CAS  PubMed  Google Scholar 

  67. Da Silva Correia J, Ulevitch RJ. MD-2 and TLR4 N-linked glycosylations are important for a functional lipopolysaccharide receptor. J Biol Chem. 2002;277:1845–54.

    Article  PubMed  CAS  Google Scholar 

  68. Raijmakers R, Kraiczek K, de Jong AP, Mohammed S, Heck AJ. Exploring the human leukocyte phosphoproteome using a microfluidic reversed-phase-TiO2-reversed-phase high-performance liquid chromatography phosphochip coupled to a quadrupole time-of-flight mass spectrometer. Anal Chem. 2010;82:824–32.

    Article  CAS  PubMed  Google Scholar 

  69. Medvedev AE, et al. Role of TLR4 tyrosine phosphorylation in signal transduction and endotoxin tolerance. J Biol Chem. 2007;282:16042–53.

    Article  CAS  PubMed  Google Scholar 

  70. Sullivan C, et al. The gene history of zebrafish tlr4a and tlr4b is predictive of their divergent functions. J Immunol. 2009;183(9):5896–908. https://doi.org/10.4049/jimmunol.0803285.

    Article  CAS  PubMed  Google Scholar 

  71. Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature. 1997;388:394.

    Article  CAS  PubMed  Google Scholar 

  72. Sciora T, Alexander C, Zaehringer U. Reviewing and identifying amino acids of human, murine, canine and equine TLR4 / MD-2 receptor complexes conferring endotoxic innate immunity activation by LPS/lipid A, or antagonistic effects by Eritoran, in contrast to species-dependent modulation by lipid Iva. Comput Struct Biotechnol J. 2013;5(6):e201302012. https://doi.org/10.5936/csbj.201302012.

    Article  Google Scholar 

  73. Chaturveidi SK, Pierce A. How location governs Toll like receptor signaling. Traffic. 2009;10(6):621–8.

    Article  CAS  Google Scholar 

  74. Kagan JC, et al. TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta. Nat Immunol. 2008;9(4):361–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. The Human Protein Atlas (CC 3.0). https://www.proteinatlas.org/ENSG00000136869-TLR4/tissue.

  76. Kim HM, Park BS, Kim JI, Kim SE, Lee J, Oh SC, Enkhbayar P, Matsushima N, Lee H, Yoo OJ, Lee JO. Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist Eritoran. Cell. 2007;130(5):906–17.

    Article  CAS  PubMed  Google Scholar 

  77. Paramo T, et al. The structural basis for endotoxin-induced allosteric regulation of the Toll-like receptor 4 (TLR4) innate immune receptor. J Biol Chem. 2013;288(51):36215–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kim HM, et al. Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist Eritoran. Cell. 2007;130:906–17.

    Article  CAS  PubMed  Google Scholar 

  79. Park BS, Song DH, Kim HM, Choi BS, Lee H, Lee JO. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature. 2009;458:1191–5.

    Article  CAS  PubMed  Google Scholar 

  80. Ohto U, Fukase K, Miyake K, Satow Y. Crystal structures of human MD-2 and its complex with antiendotoxic lipid IVa. Science. 2007;316:1632–4.

    Article  CAS  PubMed  Google Scholar 

  81. Teghanemt A, Re F, Prohinar P, Widstrom R, Gioannini TL, Weiss JP. Novel roles in human MD-2 of phenylalanines 121 and 126 and tyrosine 131 in activation of Toll-like receptor 4 by endotoxin. J Biol Chem. 2008;283:1257–66.

    Article  CAS  PubMed  Google Scholar 

  82. Yu L, et al. NMR studies of hexaacylated endotoxin bound to wild-type and F126A mutant MD-2 and MD-2-TLR4 ectodomain complexes. J. Biol Chem. 2012;287(20):16346–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zamyatina A. Aminosugar-based immunomodulator lipid A: synthetic approaches. Beilstein J Org Chem. 2018;2018(14):25–53.

    Article  CAS  Google Scholar 

  84. Ohto U, Fukase K, Miyake K, Shimizu T. Structural basis of species-specific endotoxin sensing by innate immune receptor TLR4/MD-2. Proc Natl Acad Sci U S A. 2012;109:7421–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Resman N, Vašl J, Oblak A, Pristovšek P, Gioannini TL, Weiss JP, Jerala R. Essential roles of hydrophobic residues in both MD-2 and Toll-like receptor 4 in activation by endotoxin. J Biol Chem. 2009;284:15052–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Laursen TL, et al. The damage-associated molecular pattern HMGB1 is elevated in human alcoholic hepatitis, but does not seem to be a primary driver of inflammation. APMIS. 2016;124(9):741–7. https://doi.org/10.1111/apm.12568. Epub.

    Article  CAS  PubMed  Google Scholar 

  87. Yang H, Wang H, Ju Z, et al. MD-2 is required for disulfide HMGB1- dependent TLR4 signaling. J Exp Med. 2015;212(1):5–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kurt-Jones EA, Popova L, Kwinn L, et al. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat Immunol. 2000;1(5):398–401.

    Article  CAS  PubMed  Google Scholar 

  89. Ohashi K, Burkart V, Flohé S, Kolb H. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J Immunol. 2000;164(2):558–61.

    Article  CAS  PubMed  Google Scholar 

  90. Biragyn A, Ruffini PA, Leifer CA, et al. Toll-like receptor 4-dependent activation of dendritic cells by beta-defensin 2. Science. 2002;298(5595):1025–9.

    Article  CAS  PubMed  Google Scholar 

  91. Termeer C, Benedix F, Sleeman J, et al. Oligosaccharides of Hyaluronan activate dendritic cells via toll-like receptor 4. J Exp Med. 2002;195(1):99–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Stewart CR, et al. CD36 ligands promote sterile inflammation through assembly of a Tolllike receptor 4 and 6 heterodimer. Nat Immunol. 2010;11:155–61.

    Article  CAS  PubMed  Google Scholar 

  93. Chen K, et al. Toll-like receptors in inflammation, infection and cancer. Int Immunopharmacol. 2007;7:1271–85.

    Article  CAS  PubMed  Google Scholar 

  94. Frommer KW, et al. Free fatty acids: potential proinflammatory mediators in rheumatic diseases. Ann Rheum Dis. 2013; https://doi.org/10.1136/annrheumdis-2013-203755.

    Article  PubMed  CAS  Google Scholar 

  95. Lee JY, et al. Saturated fatty acid activates but polyunsaturated fatty acid inhibits Toll-like receptor 2 dimerized with Toll-like receptor 6 or 1. J Biol Chem. 2004;279:16971–9.

    Article  CAS  PubMed  Google Scholar 

  96. Liu-Bryan R, Terkeltaub R. Chondrocyte innate immune myeloid differentiation factor 88-dependent signaling drives procatabolic effects of the endogenous Toll-like receptor 2/Toll-like receptor 4 ligands low molecular weight hyaluronan and high mobility group box chromosomal protein 1 in mice. Arthritis Rheum. 2010;62:2004–12.

    PubMed  PubMed Central  Google Scholar 

  97. Sohn DH, et al. Plasma proteins present in osteoarthritic synovial fluid can stimulate cytokine production via Toll-like receptor 4. Arthritis Res Ther. 2012;14:R7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Campo GM, et al. Small hyaluronan oligosaccharides induce inflammation by engaging both Toll-like-4 and CD44 receptors in human chondrocytes. Biochem Pharmacol. 2010;80:480–90.

    Article  CAS  PubMed  Google Scholar 

  99. Scott P, Ma H, Viriyakosol S, Terkeltaub R, Liu-Bryan R. Engagement of CD14 mediates the inflammatory potential of monosodium urate crystals. J Immunol. 2006;177:6370–8.

    Article  CAS  PubMed  Google Scholar 

  100. Schelbergen RFP, et al. Alarmins S100A8 and S100A9 elicit a catabolic effect in human osteoarthritic chondrocytes that is dependent on Toll-like receptor 4. Arthritis Rheum. 2012;64:1477–87.

    Article  CAS  PubMed  Google Scholar 

  101. Zreiqat H, et al. S100A8 and S100A9 in experimental osteoarthritis. Arthritis Res Ther. 2010;12:R16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. De Seny D, et al. Acute-phase serum amyloid A in osteoarthritis: regulatory mechanism and proinflammatory properties. PLoS ONE. 2013;8:e66769.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Midwood K, et al. Tenascin-C is an endogenous activator of Toll-like receptor 4 that is essential for maintaining inflammation in arthritic joint disease. Nat Med. 2009;15:774–80.

    Article  CAS  PubMed  Google Scholar 

  104. Stewart CR, et al. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol. 2010;11:155–61.

    Article  CAS  PubMed  Google Scholar 

  105. Wang YC, et al. Toll-like receptor 2/4 heterodimer mediates inflammatory injury in intracerebral hemorrhage. Ann Neurol. 2014;75(6):876–89. https://doi.org/10.1002/ana.24159. Epub.

    Article  CAS  PubMed  Google Scholar 

  106. Maeshima N, Fernandez R. Recognition of lipid A variants by the TLR4-MD-2 receptor complex. Front Cell Infect Microbiol. 2013;3:3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Perrin-Cocon L, et al. TLR4 antagonist FP7 inhibits LPS-induced cytokine production and glycolytic reprogramming in dendritic cells, and protects mice from lethal influenza infection. Sci Rep. 2017;7:40791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Matsunaga N. TAK-242 (resatorvid), a small-molecule inhibitor of Toll-like receptor (TLR) 4 signaling, binds selectively to TLR4 and interferes with interactions between TLR4 and its adaptor molecules. Mol Pharmacol. 2011;79(1):34–41.

    Article  CAS  PubMed  Google Scholar 

  109. Kuzmich N, et al. TLR4 signaling pathway modulators as potential therapeutics in inflammation and sepsis. Vaccines. 2017;5:34.

    Article  PubMed Central  CAS  Google Scholar 

  110. National Center for Biotechnology Information. PubChem Compound Database; CID=11703255, https://pubchem.ncbi.nlm.nih.gov/compound/11703255. Accessed 20 July 2018.

  111. Mockenhaupt FP, et al. Toll-like receptor (TLR) polymorphisms in African children: common TLR-4 variants predispose to severe malaria. Proc Natl Acad Sci U S A. 2006;103(1):177–82.

    Article  CAS  PubMed  Google Scholar 

  112. Jang JC, et al. Human resistin protects against endotoxic shock by blocking LPS-TLR4 interaction. PNAS. 2017;114(48):E10399–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wang Y, et al. TLR4/MD-2 activation by a synthetic agonist with no similarity to LPS. Proc Natl Acad Sci U S A. 2016;113(7):E884–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lonnemann G, et al. Detection of endotoxin-like interleukin-l-inducing activity during in vitro dialysis. Kidney Int. 1988;33:29–35.

    Article  CAS  PubMed  Google Scholar 

  115. Bernice JJ, et al. In vivo studies of dialysisrelated endotoxemia and bacteremia. Nephron. 1981;27:307–19.

    Article  Google Scholar 

  116. Port FK, Bernick JJ. Pyrogen and endotoxin reactions during hemodialysis. Contrib Nephrol. 1983;36:100–6.

    Article  CAS  PubMed  Google Scholar 

  117. Sind polysurfonmenbranen. Pyrogen-permeable? Nieren-und Hochdruck-krankhei:en. 1985;9:411–2.

    Google Scholar 

  118. Laude-Sharp M, et al. Dissociation between the interleukin 1-inducing capacity and Limulus reactivity of lipopolysaccharides from Gram-negative bacteria. Cytokine. 1990;2(4):253–8.

    Article  CAS  PubMed  Google Scholar 

  119. Murgueitio MS, et al. Balancing inflammation: computational design of small-molecule Toll-like receptor modulators. Trends Pharmacol Sci. 2017;38(2):155–68.

    Article  CAS  PubMed  Google Scholar 

  120. Ullah MO, et al. TRIF-dependent TLR signaling, its functions in host defense and inflammation, and its potential as a therapeutic target. J Leukoc Biol. 2016;100:27–45.

    Article  CAS  PubMed  Google Scholar 

  121. Yamamoto M, Takeda K. Review article current views of Toll-like receptor signaling pathways. Gastroenterol Res Pract. 2010;240365:8.

    Google Scholar 

  122. Pires B, et al. NF-kappaB: two sides of the same coin. Genes. 2018;9:24.

    Article  PubMed Central  CAS  Google Scholar 

  123. Gupta SC, Sundaram C, Reuter S, Aggarwal BB. Inhibiting NF-κB activation by small molecules as a therapeutic strategy. Biochim Biophys Acta. 2010;1799:775–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Chen J, Chen ZJ. Regulation of NF-κB by ubiquitination. Curr Opin Immunol. 2008;2013(25):4–12.

    Google Scholar 

  125. Hayden MS, Ghosh S. Shared principles in NF-κB signaling. Cell. 2008;132:344–62.

    Article  CAS  PubMed  Google Scholar 

  126. Vandenabeele P, Galluzzi L, Berghe TV, Kroemer G. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol. 2010;11:700–14.

    Article  CAS  PubMed  Google Scholar 

  127. Luan L, et al. Comparative transcriptome profiles of human blood in response to the Toll-like receptor 4 ligands lipopolysaccharide and monophosphoryl lipid A. Sci Rep. 2017;7:40050. https://doi.org/10.1038/srep40050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hagar JA, et al. Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science. 2013;341(6151):1250–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Beutler B, Poltorak A. The sole gateway to endotoxin response: how LPS was identified as Tlr4, and its role in innate immunity. Drug Metab Dispos. 2001;29(4 Pt 2):474–8.

    CAS  PubMed  Google Scholar 

  130. Poltorak A, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science. 1998;282:2085–8.

    Article  CAS  PubMed  Google Scholar 

  131. Opal SM, et al. Effect of eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis the ACCESS randomized trial. JAMA. 2013;309(11):1154–62. https://doi.org/10.1001/jama.2013.2194.

    Article  CAS  PubMed  Google Scholar 

  132. Diamond CE, et al. Novel perspectives on non-canonical inflammasome activation. ImmunoTargets Ther. 2015;4:131–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Meng J, Gong M, Björkbacka H, Golenbock DT. Genome-wide expression profiling and mutagenesis studies reveal that lipopolysaccharide responsiveness appears to be absolutely dependent on TLR4 and MD-2 expression and is dependent upon intermolecular ionic interactions. J Immunol. 2011;187(7):3683–93.

    Article  CAS  PubMed  Google Scholar 

  134. Triantafilou M, Triantafilou K. Lipopolysaccharide recognition: CD14, TLRs and the LPS-activation cluster. Trends Immunol. 2002;23(6):301–4.

    Article  CAS  PubMed  Google Scholar 

  135. Branger J, Leemans JC, Florquin S, Weijer S, Speelman P, Van Der Poll T. Toll-like receptor 4 plays a protective role in pulmonary tuberculosis in mice. Int Immunol. 2004;16(3):509–16.

    Article  CAS  PubMed  Google Scholar 

  136. Blander JM, Medzhitov R. Regulation of phagosome maturation by signals from toll-like receptors. Science. 2004;304(5673):1014–8.

    Article  CAS  PubMed  Google Scholar 

  137. Sanjuan MA, Dillon CP, Tait SW, et al. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature. 2007;450(7173):1253–7.

    Article  CAS  PubMed  Google Scholar 

  138. West AP, Brodsky IE, Rahner C, et al. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature. 2011;472(7344):476–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Hagar JA, Powell DA, Aachoui Y, Ernst RK, Miao EA. Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science. 2013;341(6151):1250–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kayagaki N, Wong MT, Stowe IB, et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science. 2013;341(6151):1246–9.

    Article  CAS  PubMed  Google Scholar 

  141. Kayagaki N, Warming S, Lamkanfi M, et al. Non-canonical inflammasome activation targets caspase-11. Nature. 2011;479(7371):117–21.

    Article  CAS  PubMed  Google Scholar 

  142. Israel L, et al. Human adaptive immunity rescues an inborn error of innate immunity. Cell. 2017;168:789–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Płóciennikowska A, Hromada-Judycka A, Borzęcka K, et al. Co-operation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling. Cell Mol Life Sci. 2015;72:557.

    Article  PubMed  CAS  Google Scholar 

  144. Hancock JF. Lipid rafts: contentious only from simplistic standpoints. Nat Rev Mol Cell Biol. 2006;7:456–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Lingwood D, Simons K. Lipid rafts as a membrane organizing principle. Science. 2010;327:46–50.

    Article  CAS  PubMed  Google Scholar 

  146. Simons K, Ikonen E. Functional rafts in cell membranes. Nature. 1997;387:569–72.

    Article  CAS  PubMed  Google Scholar 

  147. Esparza GA, et al. Endotoxin-albumin complexes transfer endotoxin monomers to MD-2 resulting in activation of TLR4, Innate Immunity. Innate Immunity. 2012;18(3):478–91.

    Article  CAS  PubMed  Google Scholar 

  148. Viriyakosol S, et al. MD-2 binds to bacterial lipopolysaccharide. J Biol Chem. 2001;276(41):38044–51.

    CAS  PubMed  Google Scholar 

  149. Alam JM, Yamazaki M. Spontaneous insertion of lipopolysaccharide into lipid membranes from aqueous solution. Chem Phys Lipids. 2011;164:166–74.

    Article  CAS  PubMed  Google Scholar 

  150. Tanaka T, Sano R, Yamashita Y, Yamazaki M. Shape changes and vesicle fission of giant unilamellar vesicles of liquid-ordered phase membrane induced by lysophosphatidylcholine. Langmuir. 2004;20:9526–34.

    Article  CAS  PubMed  Google Scholar 

  151. Klockner U, et al. Inhibition of cardiac pacemaker channel hHCN2 depends on intercalation of lipopolysaccharide into channel-containing membrane microdomains. J Physiol. 2014;592(6):1199–211.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Nagai Y, et al. Requirement for MD-1 in cell surface expression of RP105/CD180 and B-cell responsiveness to lipopolysaccharide. Blood. 2002;99(5):1699–705.

    Article  CAS  PubMed  Google Scholar 

  153. Nagai Y, et al. The radioprotective 105/MD-1 complex links TLR2 and TLR4/MD-2 in antibody response to microbial membranes. J Immunol. 2005;174:7043–9.

    Article  CAS  PubMed  Google Scholar 

  154. Chaplin JW, et al. Anti-CD180 (RP105) activates B cells to rapidly produce polyclonal Ig via a T cell and MyD88-independent pathway. J Immunol. 2011;187(8):4199–209. https://doi.org/10.4049/jimmunol.1100198.

    Article  CAS  PubMed  Google Scholar 

  155. Gorczynski RM, Kai Y, Miyake K. MD1 expression regulates development of regulatory T cells. J Immunol. 2006;177:1078–84.

    Article  CAS  PubMed  Google Scholar 

  156. Hadidi S, et al. Antisense deoxyoligonucleotides or antibodies to murine MD-1 inhibit rejection of allogenic and xenogenic skin grafts in C3H mice. Transplantation. 2002;73:1771–9.

    Article  CAS  PubMed  Google Scholar 

  157. Nagai Y, Watanabe Y, Takatsu K. The TLR family protein RP105/MD-1 complex. Adipocyte. 2013;2(2):61–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Pan H, et al. MD-1 deficiency attenuates dextran sodium sulfate (DSS)-induced colitis through modulating the function of colonic lamina propria dendritic cells. Mol Immun. 2016;75:1–10.

    Article  CAS  Google Scholar 

  159. Yoon S, Hong M, Wilson IA. An unusual dimeric structure and assembly for RP105-MD-1, a regulator for the TLR4 response to LPS. Nat Struct Mol Biol. 2012;18(9):1028–35.

    Article  CAS  Google Scholar 

  160. Ogata H, et al. The toll-like receptor protein RP105 regulates lipopolysaccharide signaling in B cells. J Exp Med. 2000;192:23–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Divanovic S, et al. Negative regulation of Toll-like receptor 4 signaling by the Toll-like receptor homolog RP105. Nat Immunol. 2005;6:571–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Divanovic S, et al. Regulation of TLR4 signaling and the host interface with pathogens and danger: the role of RP105. J Leukoc Biol. 2007;82:265–71.

    Article  CAS  PubMed  Google Scholar 

  163. Divanovic S, et al. Inhibition of TLR-4/MD-2 signaling by RP105/MD-1. J Endotoxin Res. 2005;11:363–8.

    Article  CAS  PubMed  Google Scholar 

  164. Blumenthal A, et al. RP105 facilitates macrophage activation by Mycobacterium tuberculosis lipoproteins. Cell Host Microbe. 2009;5:35–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Zhu L, Zhao Q, Wu B. Structure-based studies of chemokine receptors. Curr Opin Struct Biol. 2013;23:539–46.

    Article  CAS  PubMed  Google Scholar 

  166. Marchese A, et al. G protein-coupled receptor sorting to endosomes and lysosomes. Annu Rev Pharmacol Toxicol. 2008;48:601–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Bönsch C, et al. Potent anti-HIV chemokine analogs direct post-endocytic sorting of CCR5. PLOS ONE. 2015;10:e0125396.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Bachelerie F, et al. International Union of Basic and Clinical Pharmacology. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev. 2014;66:1–79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Steen A, et al. Biased and G protein-independent signaling of chemokine receptors. Front Immunol. 2014;5:277.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Kufareva I. Chemokines and their receptors: insights from molecular modeling and crystallography. Curr Opin Pharmacol. 2016;30:27–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Trantafilou M, et al. Chemokine receptor 4 (CXCR4) is part of the lipopolysaccharide “sensing apparatus”. Euro J Immunol. 2008;38:192–203.

    Article  CAS  Google Scholar 

  172. Chvatchk Y, et al. A key role for CC chemokine receptor 4 in lipopolysaccharide-induced endotoxic shock. J Exp Med. 2000;191(10):1755–63.

    Article  Google Scholar 

  173. Visintin A, et al. Lysines 128 and 132 enable lipopolysaccharide binding to MD2, leading to Toll-like receptor 4-aggregation and signal transduction. J Biol Chem. 2003;278:48313–20.

    Article  CAS  PubMed  Google Scholar 

  174. Byrd CA, et al. Heat shock 90 mediates macrophage activation by Taxol and bacterial lipopolysaccharide. Proc Natl Acad Sci U S A. 1999;96:5645–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Triantafilou K, Triantafilou M, Dedrick RL. A CD14-independent LPS receptor cluster. Nat Immunol. 2001;4:338–45.

    Article  CAS  Google Scholar 

  176. El-Samalouti VT, et al. Identification of the 80-kDa LPSbinding protein (LMP-80): as decay-accelerating factor (DAF, CD55). FEMS Immunol Med Microbiol. 1999;23:259–69.

    Article  CAS  PubMed  Google Scholar 

  177. Heine H, et al. Decay-accelerating factor (DAF/CD55) is a functional active element of the LPS receptor complex. J Endotoxin Res. 2001;7:227–31.

    Article  CAS  PubMed  Google Scholar 

  178. Heine H, et al. CD55/decay accelerating factor is part of the lipopolysaccharide-induced receptor complex. Eur J Immunol. 2003;33:1399–408.

    Article  CAS  PubMed  Google Scholar 

  179. Triantafilou M, Brandenburg K, Kusumoto S, Fukase K, Mackie A, Seydel U, Triantafilou K. Combinational clustering of receptors following stimulation by bacterial products determines LPS responses. Biochem J. 2004;381:527–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Seemann S, Lupp A. Administration of a CXCL12 analog in endotoxemia is associated with antiInflammatory, anti-oxidative and cytoprotective effects in vivo. Plos One. 2015; https://doi.org/10.1371/journal.pone.0138389.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Turner MD, et al. Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta. 2014;1843:2563–82.

    Article  CAS  PubMed  Google Scholar 

  182. Delano MJ, et al. Neutrophil mobilization from the bone marrow during polymicrobial sepsis is dependent on CXCL12 signaling. J Immunol. 2011;187:911–8; Prepublished online 20 June 2011.

    Article  CAS  PubMed  Google Scholar 

  183. Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement: a key system for immune surveillance and homeostasis. Nat Immunol. 2010;11:785–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Seow V, et al. Inflammatory responses induced by lipopolysaccharide are amplified in primary human monocytes but suppressed in macrophages by complement protein C5a. J Immunol. 2013;191:4308–16.

    Article  CAS  PubMed  Google Scholar 

  185. Fang C, Zhang X, Miwa T, Song WC. Complement promotes the development of inflammatory Thelper 17 cells through synergistic interaction with Toll-like receptor signaling and interleukin-6 production. Blood. 2009;114:1005–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Maekawa T, et al. Porphyromonas gingivalis manipulates complement and TLR signaling to uncouple bacterial clearance from inflammation and promote dysbiosis. Cell Host Microbe. 2014;15:768–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Zaal A, et al. Crosstalk between Toll like receptors and C5a receptor in human monocyte derived DCs suppress inflammatory cytokine production. Immunobiology. 2013;218:175–80.

    Article  CAS  PubMed  Google Scholar 

  188. Bosmann M, et al. Evidence for anti-inflammatory effects of C5a on the innate IL-17A/IL-23 axis. FASEB J. 2011;26:1640–51.

    Article  PubMed  CAS  Google Scholar 

  189. Yamada M, et al. Complement C1q regulates LPS-induced cytokine production in bone marrow derived dendritic cells. Eur J Immunol. 2004;34:221–30.

    Article  CAS  PubMed  Google Scholar 

  190. Hajishengallis G, Lambris JD. Crosstalk pathways between Toll-like receptors and the complement system. Trends Immunol. 2010;31:154–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Hajishengallis G, Lambris JD. More than complementing Tolls: complement–Toll-like receptor synergy and crosstalk in innate immunity and inflammation. Immunol Rev. 2016;274(1):233–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Demon D, Walle LV, Lamkanfi M. Sensing the enemy within: how macrophages detect intracellular Gram-negative bacteria. Trends Biochem Sci. 2014;39(12):574–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Monie T. The innate immune system: a compositional and functional perspective. London: Academic Press; 2017. p. 130.

    Google Scholar 

  194. Kayagaki N, et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science. 2013;341(6151):1246–9.

    Article  CAS  PubMed  Google Scholar 

  195. Schwarz H, et al. Biological activity of masked endotoxin. Sci Rep. 2017;7:44750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Husebye H, et al. Endocytic pathways regulate Toll-like receptor 4 signaling and link innate and adaptive immunity. EMBO J. 2006;25:683–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Tan Y, Kagan JC. A cross-disciplinary perspective on the innate immune responses to bacterial lipopolysaccharide. Mol Cell. 2014;54:212–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Gioannini TL, et al. Regulation of the interactions of Gram-negative bacterial endotoxins with mammalian cells. Immunol Res. 2007;39:249–60.

    Article  CAS  PubMed  Google Scholar 

  199. Blomkalns AL, et al. Low level bacterial endotoxin activates two distinct signaling pathways in human peripheral blood mononuclear cells. J Inflamm. 2011;8:4.

    Article  CAS  Google Scholar 

  200. Coats SR, et al. The lipid A phosphate position determines differential host Toll-like receptor 4 responses to phylogenetically related symbiotic and pathogenic bacteria. Infect Immunity. 2011;79(1):203–10.

    Article  CAS  Google Scholar 

  201. Kawahara K. Modification of the structure and activity of lipid A in Yersinia pestis lipopolysaccharide by growth temperature. Infect Immun. 2002;70(8):4092–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Ittig S, et al. The lipopolysaccharide from Capnocytophaga canimorsus reveals an unexpected role of the core-oligosaccharide in MD-2 binding. PLoS Pathog. 2012;8(5):e1002667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Park BS, et al. The structural basis of lipopolysaccharide recognition by the TLR4–MD-2 complex. Nature. 2009;458:1191–5.

    Article  CAS  PubMed  Google Scholar 

  204. Yoon S, et al. Crystal structure of soluble MD-1 and its interaction with lipid Iva. PNAS. 2010;107(24):10990–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Walsh C, et al. Elucidation of the MD-2/TLR4 interface required for signaling by lipid Iva. J Immunol. 2008;181(2):1245–54.

    Article  CAS  PubMed  Google Scholar 

  206. Raetz CR. Bacterial endotoxins: extraordinary lipids that activate eucaryotic signal transduction. J Bacteriol. 1993;175(18):5745–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Rosenzweig H, et al. NLRs in immune privileged sites. Curr Opin Pharmacol. 2011;11(4):423–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Munford RS. Sensing gram-negative bacterial lipopolysaccharides: a human disease determinant? Infect Immun. 2008;76(2):454.

    Article  CAS  PubMed  Google Scholar 

  209. Yu S, Gao N. Compartmentalizing intestinal epithelial cell Toll-like receptors for immune surveillance. Cell Mol Life Sci. 2015;72(17):3343–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Romaine A, et al. Safety of histamine-2 receptor blockers in hospitalized VLBW infants. Early Hum Dev. 2016;99:27–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Gane B, et al. Risk factors and outcome in neonatal necrotising enterocolitis. Indian J Pediatr. 2014;81:425–8.

    Article  PubMed  Google Scholar 

  212. Abreu MT. Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat Rev Immunol. 2010;10(2):131–44.

    Article  CAS  PubMed  Google Scholar 

  213. Otte JM, Cario E, Podolsky DK. Mechanisms of cross hyporesponsiveness to Toll-like receptor bacterial ligands in intestinal epithelial cells. Gastroenterology. 2004;126(4):1054–70.

    Article  CAS  PubMed  Google Scholar 

  214. Cario E, et al. Commensal-associated molecular patterns induce selective toll-like receptortrafficking from apical membrane to cytoplasmic compartments in polarized intestinal epithelium. Am J Pathol. 2002;160(1):165–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Melmed G, et al. Human intestinal epithelial cells are broadly unresponsive to Toll-like receptor 2- dependent bacterial ligands: implications for host-microbial interactions in the gut. J Immunol. 2003;170(3):1406–15.

    Article  CAS  PubMed  Google Scholar 

  216. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11(5):373–84.

    Article  CAS  PubMed  Google Scholar 

  217. Lavelle EC, et al. The role of TLRs, NLRs, and RLRs in mucosal innate immunity and homeostasis. Mucosal Immunol. 2010;3(1):17–28.

    Article  CAS  PubMed  Google Scholar 

  218. Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011;34(5):637–50.

    Article  CAS  PubMed  Google Scholar 

  219. Egan CE, et al. Toll-like receptor 4- mediated lymphocyte influx induces neonatal necrotizing enterocolitis. J Clin Invest. 2016;126:495–508.

    Article  PubMed  Google Scholar 

  220. Leaphart CL, et al. A critical role for TLR4 in the pathogenesis of necrotizing enterocolitis by modulating intestinal injury and repair. J Immunol. 2007;179:4808–20.

    Article  CAS  PubMed  Google Scholar 

  221. Sampath V, et al. SIGIRR genetic variants in premature infants with necrotizing enterocolitis. Pediatrics. 2015;135:e1530–4.

    Article  PubMed  PubMed Central  Google Scholar 

  222. Fawley J, et al. Immunoglobulin Interleukin-1-related receptor regulates vulnerability to TLR4-mediated necrotizing enterocolitis in a mouse model. Pediatr Res. 2018;83:164–74.

    Article  CAS  PubMed  Google Scholar 

  223. Wu W, et al. Bifidobacterium adolescentis protects against necrotizing enterocolitis and upregulates TOLLIP and SIGIRR in premature neonatal rats. BMC Pediatr. 2017;17:1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Ganguli K, et al. Probiotics prevent necrotizing enterocolitis by modulating enterocyte genes that regulate innate immune-mediated inflammation. Am J Physiol Gastrointest Liver Physiol. 2013;304:G132–41.

    Article  CAS  PubMed  Google Scholar 

  225. Neal MD, et al. Discovery and validation of a new class of small molecule Toll-like receptor 4 (TLR4) inhibitors. PLoS One. 2013;8:e65779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Sodhi CP, et al. Intestinal epithelial Toll-like receptor 4 regulates goblet cell development and is required for necrotizing enterocolitis in mice. Gastroenterology. 2012;143:708–18, e1–5.

    Article  CAS  PubMed  Google Scholar 

  227. Nino DF, Sodhi CP, Hackam DJ. Necrotizing enterocolitis: new insights into pathogenesis and mechanisms. Nat Rev Gastroenterol Hepatol. 2016;13:590–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Barton GM, Kagan JC. A cell biological view of Toll-like receptor function: regulation through compartmentalization. Nat Rev Immunol. 2009;9(8):535–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Nanthakumar N, et al. The mechanism of excessive intestinal inflammation in necrotizing enterocolitis: an immature innate immune response. PLoS One. 2011;6:e17776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Hackam DJ, Sodhi CP. Toll-like receptor–mediated intestinal inflammatory imbalance in the pathogenesis of necrotizing enterocolitis. Cell Mol Gastroenterol Hepatol. 2018;6:229–38.

    Article  PubMed  PubMed Central  Google Scholar 

  231. Lafferty EI, et al. The role of toll-like receptors in acute and chronic lung inflammation. J Inflamm. 2010;7:57.

    Article  CAS  Google Scholar 

  232. Andonegui G, et al. Endothelium-derived Toll-like receptor-4 is the key molecule in LPS-induced neutrophil sequestration into lungs. J Clin Invest. 2003;111(7):1011–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Koller B, et al. TLR expression on neutrophils at the pulmonary site of infection: TLR1/TLR2-mediated up-regulation of TLR5 expression in cystic fibrosis lung disease. J Immunol. 2008;181(4):2753–63.

    Article  CAS  PubMed  Google Scholar 

  234. GeurtsvanKessel CH, Lambrecht BN. Division of labor between dendritic cell subsets of the lung. Mucosal Immunol. 2008;1(6):442–50.

    Article  CAS  PubMed  Google Scholar 

  235. Wikstrom ME, Stumbles PA. Mouse respiratory tract dendritic cell subsets and the immunological fate of inhaled antigens. Immunol Cell Biol. 2007;85(3):182–8.

    Article  CAS  PubMed  Google Scholar 

  236. Perros F, Lambrecht BN, Hammad H. TLR4 signaling in pulmonary stromal cells is critical for inflammation and immunity in the airways. Respir Res. 2011;12:125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Schiraldi M, et al. HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4. J Exp Med. 2012, www.jem.org/cgi/doi/10.1084/jem.20111739.

  238. Jia H, et al. Pulmonary epithelial Toll-like receptor 4 activation leads to lung injury in neonatal necrotizing enterocolitis. J Immunol. 2016;197(3):859–71. https://doi.org/10.4049/jimmunol.1600618.

    Article  CAS  PubMed  Google Scholar 

  239. Hortal J, European Study Group on Nosocomial Infections; European Workgroup of Cardiothoracic Intensivists, et al. Ventilator-associated pneumonia in patients undergoing major heart surgery: an incidence study in Europe. Crit Care. 2009;13:R80; PMID:19463176.

    Article  PubMed  PubMed Central  Google Scholar 

  240. Chalk K, et al. Dysfunction of alveolar macrophages after 3 cardiac surgery and postoperative pneumonia? – an 5 observational study. Crit Care. 2013;17:R285; PMID:24321282.

    Article  PubMed  PubMed Central  Google Scholar 

  241. Sender V, Stamme C. Lung cell-specific modulation of LPS-induced TLR4 receptor and adaptor localization. Commun Integr Biol. 2014;7:e29053; May; Landes Bioscience.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  242. Ferwerda B, et al. TLR4 polymorphisms, infectious diseases, and evolutionary pressure during migration of modern humans. Proc Natl Acad Sci U S A. 2007;104:16645–50; PMID:17925445.

    Article  PubMed  PubMed Central  Google Scholar 

  243. Arbour NC, et al. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet. 2000;25:187–91; PMID:10835634.

    Article  CAS  PubMed  Google Scholar 

  244. Kumpf O, et al. Influence of genetic variations in TLR4 and TIRAP/Mal on the course of sepsis and pneumonia and cytokine release: an observational study in three cohorts. Crit Care. 2010;14:R103; PMID:20525286.

    Article  PubMed  PubMed Central  Google Scholar 

  245. Ohto U, et al. Structural analyses of human Toll-like receptor 4 polymorphisms D299G and T399I. J Biol Chem. 2012;287:40611–7; PMID:23055527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Figueroa L, et al. The Asp299Gly polymorphism alters TLR4 signaling by interfering with recruitment of MyD88 and TRIF. J Immunol. 2012;188:4506–15; PMID:22474023.

    Article  CAS  PubMed  Google Scholar 

  247. Zhang D, et al. A novel molecule designed to keep bacteria out of the urinary tract a Toll-like receptor that prevents infection by uropathogenic bacteria. Science. 2004;303:1522–6.

    Article  CAS  PubMed  Google Scholar 

  248. Schilling JD, et al. Toll-like receptor 4 on stromal and hematopoietic cells mediates innate resistance to uropathogenic Escherichia coli. Proc Natl Acad Sci. 2003;100:4203–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Patra MC, et al. Computational insight into the structural organization of full-length Toll-Like receptor 4 dimer in a model phospholipid bilayer. Front Immunol. 2018;9(489):1–15.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin L. Williams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Williams, K.L. (2019). The Mammalian Response: A Mosaic of Structures. In: Williams, K. (eds) Endotoxin Detection and Control in Pharma, Limulus, and Mammalian Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-17148-3_20

Download citation

Publish with us

Policies and ethics