Skip to main content

Adaptive Immunity and Spaceflight

  • Chapter
  • First Online:
Stress Challenges and Immunity in Space

Abstract

Spaceflight causes alterations in human immunity, a finding which has been well documented immediately following spaceflight. Limited in-flight studies have also confirmed that to some degree immunity is compromised during spaceflight. A comprehensive understanding of the nature of these immune changes is lacking. This chapter reviews the current evidence regarding spaceflight effects on the function of the adaptive immune system, and speculates on potential adverse clinical outcomes. Potential causes for these alterations are discussed elsewhere in this volume (Chap. 11), as are spaceflight effects on the function of the innate immune system (Chap. 12).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Boonyaratanakornkit JB, Cogoli A, Li CF, Schopper T, Pippia P, Galleri G et al (2005) Key gravity-sensitive signaling pathways drive T cell activation. FASEB J 19(14):2020–2022

    Article  CAS  PubMed  Google Scholar 

  • Bradley JH, Stein R, Randolph B, Molina E, Arnold JP, Gregg RK (2017) T cell resistance to activation by dendritic cells requires long-term culture in simulated microgravity. Life Sci Space Res (Amst) 15:55–61. https://doi.org/10.1016/j.lssr.2017.08.002

    Article  Google Scholar 

  • Buravkova LB, Rykova MP, Grigorieva V, Antropova EN (2004) Cell interactions in microgravity: cytotoxic effects of natural killer cells in vitro. J Gravit Physiol 11(2):P177–P180

    CAS  PubMed  Google Scholar 

  • Chang TT, Spurlock SM, Candelario TL, Grenon SM, Hughes-Fulford M (2015) Spaceflight impairs antigen-specific tolerance induction in vivo and increases inflammatory cytokines. FASEB J 29(10):4122–4132. https://doi.org/10.1096/fj.15-275073. Epub 2015 Jun 17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapes SK, Morrison DR, Guikema JA, Lewis ML, Spooner BS (1994) Production and action of cytokines in space. Adv Space Res 14(8):5–9

    Article  CAS  PubMed  Google Scholar 

  • Chouker A, Morukov B, Sams C (2008) Clinical immunology in new frontiers. Scientific American Presents: Looking up, Europe’s quiet revolution in microgravity research. Scientific American, New York, pp 24–31

    Google Scholar 

  • Cogoli A (1993) The effect of space flight on human cellular immunity. Environ Med 37(2):107–116

    CAS  PubMed  Google Scholar 

  • Cogoli A (1997) Signal transduction in T lymphocytes in microgravity. Gravit Space Biol Bull 10(2):5–16

    CAS  PubMed  Google Scholar 

  • Cogoli A, Tschopp A, Fuchs-Bislin P (1984) Cell sensitivity to gravity. Science 225(4658):228–230

    Article  CAS  PubMed  Google Scholar 

  • Cooper D, Pellis NR (1998) Suppressed PHA activation of T lymphocytes in simulated microgravity is restored by direct activation of protein kinase C. J Leukoc Biol 63(5):550–562

    Article  CAS  PubMed  Google Scholar 

  • Crucian B, Sams C (2009) Immune system dysregulation during spaceflight: clinical risk for exploration-class missions. J Leukoc Biol 86(5):1017–1018

    Article  CAS  PubMed  Google Scholar 

  • Crucian BE, Cubbage ML, Sams CF (2000) Altered cytokine production by specific human peripheral blood cell subsets immediately following space flight. J Interf Cytokine Res 20(6):547–556

    Article  CAS  Google Scholar 

  • Crucian BE, Stowe RP, Pierson DL, Sams CF (2008) Immune system dysregulation following short- vs long-duration spaceflight. Aviat Space Environ Med 79(9):835–843

    Article  PubMed  Google Scholar 

  • Crucian B, Stowe R, Mehta S, Uchakin P, Quiriarte H, Pierson D, Sams C (2013) Immune system dysregulation occurs during short duration spaceflight on board the space shuttle. J Clin Immunol 33(2):456–465. https://doi.org/10.1007/s10875-012-9824-7

    Article  CAS  PubMed  Google Scholar 

  • Crucian B, Stowe RP, Mehta S, Quiriarte H, Pierson D, Sams C (2015) Alterations in adaptive immunity persist during long-duration spaceflight. NPJ Microgravity. Sep 3;1:15013. doi: https://doi.org/10.1038/npjmgrav.2015.13

  • Crucian B, Johnston S, Mehta S, Stowe R, Uchakin P, Quiriarte H, Pierson D, Laudenslager ML, Sams C (2016a) A case of persistent skin rash and rhinitis with immune system dysregulation onboard the International Space Station. J Allergy Clin Immunol Pract 4(4):759–762.e8. https://doi.org/10.1016/j.jaip.2015.12.021

    Article  PubMed  Google Scholar 

  • Crucian B, Babiak-Vazquez A, Johnston S, Pierson DL, Ott CM, Sams C (2016b) Incidence of clinical symptoms during long-duration orbital spaceflight. Int J Gen Med 9:383–391. eCollection 2016

    Article  PubMed  PubMed Central  Google Scholar 

  • Feuerecker M, Crucian BE, Quintens R, Pagel J-I, Salam AP, Rybka A, Moreels M, Strewe C, Stowe R, Mehta S, Schelling G, Thiel M, Baatout S, Sams C, Choukèr A (2018) Immune sensitization during one year in the Antarctic high altitude Concordia Environment. Allergy. https://doi.org/10.1111/all.13545

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald W, Chen S, Walz C, Zimmerberg J, Margolis L, Grivel JC (2009) Immune suppression of human lymphoid tissues and cells in rotating suspension culture and onboard the International Space Station. In Vitro Cell Dev Biol Anim 45(10):622–632

    Article  PubMed  PubMed Central  Google Scholar 

  • Frippiat JP, Crucian BE, de Quervain DJ, Grimm D, Montano N, Praun S, Roozendaal B, Schelling G, Thiel M, Ullrich O, Choukèr A (2016) Towards human exploration of space: the THESEUS review series on immunology research priorities. NPJ Microgravity 2:16040. https://doi.org/10.1038/npjmgrav.2016.40

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuchs BB, Medvedev AE (1993) Countermeasures for ameliorating in-flight immune dysfunction. J Leukoc Biol 54(3):245–252

    Article  CAS  PubMed  Google Scholar 

  • Gmunder FK, Konstantinova I, Cogoli A, Lesnyak A, Bogomolov W, Grachov AW (1994) Cellular immunity in cosmonauts during long duration spaceflight on board the orbital MIR station. Aviat Space Environ Med 65(5):419–423

    CAS  PubMed  Google Scholar 

  • Gould CL, Lyte M, Williams J, Mandel AD, Sonnenfeld G (1987) Inhibited interferon-gamma but normal interleukin-3 production from rats flown on the space shuttle. Aviat Space Environ Med 58(10):983–986

    CAS  PubMed  Google Scholar 

  • Gridley DS, Slater JM, Luo-Owen X, Rizvi A, Chapes SK, Stodieck LS et al (2009) Spaceflight effects on T lymphocyte distribution, function and gene expression. J Appl Physiol 106(1):194–202

    Article  PubMed  Google Scholar 

  • Grove DS, Pishak SA, Mastro AM (1995) The effect of a 10-day space flight on the function, phenotype, and adhesion molecule expression of splenocytes and lymph node lymphocytes. Exp Cell Res 219(1):102–109

    Article  CAS  PubMed  Google Scholar 

  • Hashemi BB, Penkala JE, Vens C, Huls H, Cubbage M, Sams CF (1999) T cell activation responses are differentially regulated during clinorotation and in spaceflight. FASEB J 13(14):2071–2082

    Article  CAS  PubMed  Google Scholar 

  • Hatton JP, Gaubert F, Cazenave JP, Schmitt D (2002) Microgravity modifies protein kinase C isoform translocation in the human monocytic cell line U937 and human peripheral blood T-cells. J Cell Biochem 87(1):39–50

    Article  CAS  PubMed  Google Scholar 

  • Hughes-Fulford M (2003) Function of the cytoskeleton in gravisensing during spaceflight. Adv Space Res 32(8):1585–1593

    Article  CAS  PubMed  Google Scholar 

  • Hughes-Fulford M, Chang TT, Martinez EM, Li CF (2015) Spaceflight alters expression of microRNA during T-cell activation. FASEB J 29(12):4893–4900. https://doi.org/10.1096/fj.15-277392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jager A, Kuchroo VK (2010) Effector and regulatory T-cell subsets in autoimmunity and tissue inflammation. Scand J Immunol 72(3):173–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur I, Simons ER, Kapadia AS, Ott CM, Pierson DL (2008) Effect of spaceflight on ability of monocytes to respond to endotoxins of gram-negative bacteria. Clin Vaccine Immunol 15(10):1523–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimzey SL, Ritzmann SE, Mengel CE, Fischer CL (1975) Skylab experiment results: hematology studies. Acta Astronaut 2(1–2):141–154

    Article  CAS  PubMed  Google Scholar 

  • Konstantinova IV, Antropova EN, Legen’kov VI, Zazhirei VD (1973) Reactivity of lymphoid blood cells in the crew of “Soiuz-6”, “Soiuz-7” and “Soiuz-8” spacecraft before and after flight. Kosm Biol Med 7(6):35–40

    CAS  PubMed  Google Scholar 

  • Konstantinova IV, Rykova M, Meshkov D, Peres C, Husson D, Schmitt DA (1995) Natural killer cells after ALTAIR mission. Acta Astronaut 36(8–12):713–718

    Article  CAS  PubMed  Google Scholar 

  • Lewis ML, Reynolds JL, Cubano LA, Hatton JP, Lawless BD, Piepmeier EH (1998) Spaceflight alters microtubules and increases apoptosis in human lymphocytes (Jurkat). FASEB J 12(11):1007–1018

    Article  CAS  PubMed  Google Scholar 

  • Martinez EM, Yoshida MC, Candelario TL, Hughes-Fulford M (2015) Spaceflight and simulated microgravity cause a significant reduction of key gene expression in early T-cell activation. Am J Physiol Regul Integr Comp Physiol 308(6):R480–R488. https://doi.org/10.1152/ajpregu.00449.2014. Epub 2015 Jan 7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meehan RT, Neale LS, Kraus ET, Stuart CA, Smith ML, Cintron NM et al (1992) Alteration in human mononuclear leucocytes following space flight. Immunology 76(3):491–497

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mehta SK, Crucian BE, Stowe RP, Simpson RJ, Ott CM, Sams CF, Pierson DL (2013) Reactivation of latent viruses is associated with increased plasma cytokines in astronauts. Cytokine 61(1):205–209. https://doi.org/10.1016/j.cyto.2012.09.019.PubMed

    Article  CAS  PubMed  Google Scholar 

  • Mehta SK, Laudenslager ML, Stowe RP, Crucian BE, Sams CF, Pierson DL (2014) Multiple latent viruses reactivate in astronauts during Space Shuttle missions. Brain Behav Immun 41:210–217. https://doi.org/10.1016/j.bbi.2014.05.014

    Article  CAS  PubMed  Google Scholar 

  • Mehta SK, Laudenslager ML, Stowe RP, Crucian BE, Feiveson AH, Sams CF, Pierson DL (2017) Latent virus reactivation in astronauts on the international space station. NPJ Microgravity 2017Apr 3:11. doi: https://doi.org/10.1038/s41526-017-0015-y. eCollection 2017

  • Meshkov D, Rykova M (1995) The natural cytotoxicity in cosmonauts on board space stations. Acta Astronaut 36(8–12):719–726

    Article  CAS  PubMed  Google Scholar 

  • Miller ES, Koebel DA, Sonnenfeld G (1995) Influence of spaceflight on the production of interleukin-3 and interleukin-6 by rat spleen and thymus cells. J Appl Physiol 78(3):810–813

    Article  CAS  PubMed  Google Scholar 

  • Mills PJ, Meck JV, Waters WW, D’Aunno D, Ziegler MG (2001) Peripheral leukocyte subpopulations and catecholamine levels in astronauts as a function of mission duration. Psychosom Med 63(6):886–890

    Article  CAS  PubMed  Google Scholar 

  • Morukov VB, Rykova M, Antropova EN, Berendeeva TA, Ponomarev SA, Larina IM (2010) Indicators of innate and adaptive immunity of cosmonauts after long-term space flight to international space station. Fiziol Cheloveka 36(3):19–30

    CAS  PubMed  Google Scholar 

  • Nash PV, Mastro AM (1992) Variable lymphocyte responses in rats after space flight. Exp Cell Res 202(1):125–131

    Article  CAS  PubMed  Google Scholar 

  • Pippia P, Sciola L, Cogoli-Greuter M, Meloni MA, Spano A, Cogoli A (1996) Activation signals of T lymphocytes in microgravity. J Biotechnol 47(2–3):215–222

    Article  CAS  PubMed  Google Scholar 

  • Rykova MP, Gertsik Iu G, Antropova EN, Buravkova LB (2006) Immunoglobulin e and allergen-specific IgE antibodies in cosmonauts before and after long-duration missions on the International Space Station. Aviakosm Ekolog Med 40(2):19–22

    CAS  PubMed  Google Scholar 

  • Rykova MP, Antropova EN, Larina IM, Morukov BV (2008) Humoral and cellular immunity in cosmonauts after the ISS missions. Acta Astronaut 63(7–10):697–705

    Article  Google Scholar 

  • Simpson RJ, Bigley AB, Spielmann G, Kunz HE, Agha N, Baker F, Rooney B, Mylabathula PL, Graff RM, Crucian BE, Laughlin M, Mehta SK, Pierson DL (2016) Long duration spaceflight impairs NK-cell function in astronauts. Med Sci Sports Exerc 48(5 Suppl 1):87

    Article  Google Scholar 

  • Sonnenfeld G, Miller ES (1993) The role of cytokines in immune changes induced by spaceflight. J Leukoc Biol 54(3):253–258

    Article  CAS  PubMed  Google Scholar 

  • Sonnenfeld G, Gould CL, Williams J, Mandel AD (1988) Inhibited interferon production after space flight. Acta Microbiol Hung 35(4):411–416

    CAS  PubMed  Google Scholar 

  • Sonnenfeld G, Davis S, Taylor GR, Mandel AD, Konstantinova IV, Lesnyak A et al (1996) Effect of space flight on cytokine production and other immunologic parameters of rhesus monkeys. J Interf Cytokine Res 16(5):409–415

    Article  CAS  Google Scholar 

  • Sonnenfeld G, Foster M, Morton D, Bailliard F, Fowler NA, Hakenewerth AM et al (1998) Spaceflight and development of immune responses. J Appl Physiol 85(4):1429–1433

    Article  CAS  PubMed  Google Scholar 

  • Stowe RP (2003) Impaired effector function in virus-specific T cells in astronauts. NASA Investigators Workshop, Houston, 2003

    Google Scholar 

  • Stowe RP (2009) Validation of procedures for monitoring crewmember immune function. NASA Investigators Workshop, Houston, 2009

    Google Scholar 

  • Stowe RP, Sams CF, Mehta SK, Kaur I, Jones ML, Feeback DL et al (1999) Leukocyte subsets and neutrophil function after short-term spaceflight. J Leukoc Biol 65(2):179–186

    Article  CAS  PubMed  Google Scholar 

  • Stowe RP, Sams CF, Pierson DL (2003) Effects of mission duration on neuroimmune responses in astronauts. Aviat Space Environ Med 74(12):1281–1284

    PubMed  Google Scholar 

  • Tauber S, Hauschild S, Paulsen K, Gutewort A, Raig C, Hürlimann E, Biskup J, Philpot C, Lier H, Engelmann F, Pantaleo A, Cogoli A, Pippia P, Layer LE, Thiel CS, Ullrich O (2015) Signal transduction in primary human T lymphocytes in altered gravity during parabolic flight and clinostat experiments. Cell Physiol Biochem 35(3):1034–1051. https://doi.org/10.1159/000373930

    Article  CAS  PubMed  Google Scholar 

  • Taylor GR, Janney RP (1992) In vivo testing confirms a blunting of the human cell-mediated immune mechanism during space flight. J Leukoc Biol 51(2):129–132

    Article  CAS  PubMed  Google Scholar 

  • Thiel CS, Paulsen K, Bradacs G, Lust K, Tauber S, Dumrese C, Hilliger A, Schoppmann K, Biskup J, Gölz N, Sang C, Ziegler U, Grote KH, Zipp F, Zhuang F, Engelmann F, Hemmersbach R, Cogoli A, Ullrich O (2012) Rapid alterations of cell cycle control proteins in human T lymphocytes in microgravity. Cell Commun Signal 10(1):1. https://doi.org/10.1186/1478-811X-10-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi B, Rykova M, Feuerecker M, Jäger B, Ladinig C, Basner M, Hörl M, Matzel S, Kaufmann I, Strewe C, Nichiporuk I, Vassilieva G, Rinas K, Baatout S, Schelling G, Thiel M, Dinges DF, Morukov B, Choukèr A (2014) 520-d Isolation and confinement simulating a flight to Mars reveals heightened immune responses and alterations of leukocyte phenotype. Brain Behav Immun 40:203–210. https://doi.org/10.1016/j.bbi.2014.03.018

    Article  CAS  PubMed  Google Scholar 

  • Yi B, Rykova M, Jäger G, Feuerecker M, Hörl M, Matzel S, Ponomarev S, Vassilieva G, Nichiporuk I, Choukèr A (2015) Influences of large sets of environmental exposures on immune responses in healthy adult men. Sci Rep 5:13367. https://doi.org/10.1038/srep13367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Crucian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Crucian, B., Makedonas, G., Sams, C. (2020). Adaptive Immunity and Spaceflight. In: Choukèr, A. (eds) Stress Challenges and Immunity in Space. Springer, Cham. https://doi.org/10.1007/978-3-030-16996-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16996-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16995-4

  • Online ISBN: 978-3-030-16996-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics