Skip to main content

Chitosan for Direct Bioflocculation Processes

  • Chapter
  • First Online:
Sustainable Agriculture Reviews 36
  • The original version of this chapter was revised due to the last name of one of the co-author of this chapter was initially published with error. An erratum to this chapter can be found at https://doi.org/10.1007/978-3-030-16581-9_11

Abstract

Coagulation-flocculation is a major process allowing to remove suspended particles from municipal and industrial wastewater. This process commonly involves metal salts as coagulants and synthetic organic polymers as flocculants. Although those chemicals are cheap, efficient, available and easy to use, they have drawbacks such water pollution by metals, and production of large amounts of toxic sludges. Therefore, safer biocoagulants and bioflocculants of biological origin are currently developed. For instance, the direct flocculation process involves water-soluble, ionic organic polymers, and thus do not need the addition of metal coagulants. In particular, chitosan and byproducts have been recently designed as bioflocculants to remove particulate matter and dissolved pollutants. Chitosan is a partially deacetylated polysaccharide obtained from chitin, a biopolymer extracted from shellfish sources. Chitosan exhibits various physicochemical and functional properties of interest for many environmental applications.

Key achievements of chitosan applications include the removal of more than 90% of solids and 95% of residual oil from palm oil mill effluents. Chitosan highly reduces the turbidity of agricultural wastewater and seawater. Comparison of raw chitosan with modified chitosan, such as 3-chloro-2-hydroxypropyl trimethylammonium chloride grafted onto carboxymethyl-chitosan, to treat a solution of high turbidity (400 mg/L kaolinite) and phosphate (25 mg/L), shows that the modified chitosan decreases the turbidity by 99% and the phosphate content by 97% at all pH, whereas those abatements are below 80% for the raw chitosan. Chitosan also removes toxic Microcystis aeruginosa cyanobacterial cells by 99% and microcystins by 50%. This chapter discusses advantages and drawbacks of using chitosan for direct flocculation for water and wastewater treatment, sludge dewatering, and post-treatment of sanitary landfill leachates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

  • 14 December 2020

    The last name of one of the co-author of this chapter was initially published with error. The correct presentation is given here.

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eric Lichtfouse , Nadia Morin-Crini or Grégorio Crini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lichtfouse, E. et al. (2019). Chitosan for Direct Bioflocculation Processes. In: Crini, G., Lichtfouse, E. (eds) Sustainable Agriculture Reviews 36. Sustainable Agriculture Reviews, vol 36. Springer, Cham. https://doi.org/10.1007/978-3-030-16581-9_9

Download citation

Publish with us

Policies and ethics