Skip to main content

Bone Metastasis

  • Chapter
  • First Online:
International Manual of Oncology Practice

Abstract

Bone is a common site of distant involvement in advanced cancers. About 70% of patients with advanced breast and prostate cancers and up to 30–40% of patients with advanced lung, thyroid and kidney cancers develop metastatic bone disease.

Cancer-bone cell interactions are complex and can lead to altered bone metabolism and increased bone fragility. Metastatic bone disease is associated with significant morbidity and can have a substantial survival impact. Typically, skeletal complications of bone metastasis include pathological fracture, spinal cord compression, the need for surgery or radiotherapy for a symptomatic bone metastases, and hypercalcemia, collectively referred as skeletal-related events (SREs).

The treatment landscape of bone metastasis is multimodal and has evolved over the last decade. It includes both medical, radiation and surgical management.

In this chapter we will review the epidemiology, pathophysiology, clinical evaluation and management of metastatic bone disease from solid tumors.

The authors would like to thank Irene Ferreira for the invaluable help in the development of Fig. 49.1 and Sandra Casimiro for the insightful comments during the discussion of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALP:

Alkaline phosphatase

BMPs:

Bone morphogenetic proteins

BP:

Bisphosphonate

BS:

Bone scintigraphy

BTA:

Bone-targeted agents

CRT:

Convential radiotherapy

CT:

Computerized tomography

CXCL12:

C-X-C motif chemokine 12

CXCR4:

C-X-C chemokine receptor type 4

CXCR7:

C-X-C chemokine receptor type 7

IGF:

Insulin like growth factor

IL:

Interleukin

ISUP:

International Society of Urological Pathology

IV:

Intravenous

LHRH:

Luteinizing hormone releasing hormone

MRI:

Magnetic resonance imaging

NTX:

N-terminal cross-linked telopeptide of type I collagen

PET:

Positron emission tomography

PO:

Per Os

PTHrp:

Parathyroid hormone-related peptide

RANKL:

Receptor activator of nuclear factor κ B ligand

RT:

Radiotherapy

SBRT:

Stereotactic Body Radiotherapy

SC:

Subcutaneous

SRE:

Skeletal related event

TGF- β:

Transforming growth factor-β

TNF-α:

Tumor necrosis factor α

XR:

Plain radiograph

ZA:

Zoledronic acid

References

  1. Lee Y-TN (Margaret) (1983) Breast carcinoma: pattern of metastasis at autopsy. J Surg Oncol 23:175–180

    Google Scholar 

  2. Jensen A, Jacobsen J, Norgaard M, Yong M, Fryzek J, Sorensen H (2011) Incidence of bone metastases and skeletal-related events in breast cancer patients: a population-based cohort study in Denmark. BMC Cancer 11:29

    Article  PubMed  PubMed Central  Google Scholar 

  3. Norgaard M, Jensen AO, Jacobsen JB, Cetin K, Fryzek JP, Sorensen HT (2010) Skeletal related events, bone metastasis and survival of prostate cancer: a population based cohort study in Denmark (1999 to 2007). J Urol 184:162–167

    Article  PubMed  Google Scholar 

  4. Bubendorf L, Schopfer A, Wagner U et al (2000) Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Hum Pathol 31:578–583

    Article  CAS  PubMed  Google Scholar 

  5. Galasko CSB (1981) The anatomy and pathways of skeletal metastases. In: Weiss L, Gilbert AH (eds) Bone metastases. G. K. Hall, Boston, pp 49–63

    Google Scholar 

  6. Yin JJ, Pollock CB, Kelly K (2005) Mechanisms of cancer metastasis to the bone. Cell Res 15:57–62

    Article  CAS  PubMed  Google Scholar 

  7. Coleman RE (2001) Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat Rev 27:165–176

    Article  CAS  PubMed  Google Scholar 

  8. Coleman RE (2006) Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res 12:6243s–6249s

    Article  PubMed  Google Scholar 

  9. Pockett RD, Castellano D, McEwan P, Oglesby A, Barber BL, Chung K (2010) The hospital burden of disease associated with bone metastases and skeletal-related events in patients with breast cancer, lung cancer, or prostate cancer in Spain. Eur J Cancer Care (Engl) 19:755–760

    Article  CAS  Google Scholar 

  10. Wang J, Shiozawa Y, Wang Y et al (2008) The role of CXCR7/RDC1 as a chemokine receptor for CXCL12/SDF-1 in prostate cancer. J Biol Chem 283:4283–4294

    Article  CAS  PubMed  Google Scholar 

  11. Pluijm G, Lowik C, Papapoulos S (2000) Tumour progression and angiogenesis in bone metastasis from breast cancer: new approaches to an old problem. Cancer Treat Rev 26:11–27

    Article  CAS  PubMed  Google Scholar 

  12. Tranquilli Leali P, Doria C, Zachos A, Ruggiu A, Milia F, Barca F (2009) Bone fragility: current reviews and clinical features. Clin Cases Miner Bone Metab 6:109–113

    PubMed  Google Scholar 

  13. Mundy GR (1997) Malignancy and the skeleton. Horm Metab Res 29:120–127

    Article  CAS  PubMed  Google Scholar 

  14. Lee JJ, Lotze MT (2009) Molecular basis of metastasis. N Engl J Med 360:1679; author reply 1679–1680

    Article  CAS  PubMed  Google Scholar 

  15. Roato I, Ferracini R (2013) Solid tumours show osteotropism: mechanisms of bone metastases. Clin Rev Bone Miner Metab 11:87–93

    Article  CAS  Google Scholar 

  16. Front D (1979) Bone metastases and bone pain in breast cancer. JAMA 242:1747–1748

    Article  CAS  PubMed  Google Scholar 

  17. Namer M (1991) Clinical consequences of osteolytic bone metastases. Bone 12:S7

    Article  PubMed  Google Scholar 

  18. Coleman R, Costa L, Saad F et al (2011) Consensus on the utility of bone markers in the malignant bone disease setting. Crit Rev Oncol Hematol 80:411–432

    Article  PubMed  Google Scholar 

  19. Hamaoka T, Madewell JE, Podoloff DA, Hortobagyi GN, Ueno NT (2004) Bone imaging in metastatic breast Cancer. J Clin Oncol 22:2942–2953

    Article  PubMed  Google Scholar 

  20. Shah LM, Salzman KL (2011) Imaging of spinal metastatic disease. Int J Surg Oncol 2011:1–12

    Article  Google Scholar 

  21. Nakai T, Okuyama C, Kubota T et al (2005) Pitfalls of FDG-PET for the diagnosis of osteoblastic bone metastases in patients with breast cancer. Eur J Nucl Med Mol Imaging 32:1253–1258

    Article  PubMed  Google Scholar 

  22. Taylor B, Paschali A, Pant V, Sen IB, Cook G (2017) The role of PET/CT in prostate cancer management. In: PET/CT in prostate Cancer. Springer International Publishing, Cham, pp 33–50

    Chapter  Google Scholar 

  23. Scher HI, Morris MJ, Stadler WM et al (2016) Trial design and objectives for castration-resistant prostate cancer: updated recommendations from the Prostate Cancer Clinical Trials Working Group 3. J Clin Oncol 34:1402–1418

    Article  PubMed  PubMed Central  Google Scholar 

  24. Brady D, Parker CC, O’Sullivan JM (2013) Bone-targeting radiopharmaceuticals including radium-223. Cancer J 19:71–78

    Article  CAS  PubMed  Google Scholar 

  25. Parker C, Nilsson S, Heinrich D et al (2013) Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med 369:213–223

    Article  CAS  PubMed  Google Scholar 

  26. Lipton A, Theriault RL, Hortobagyi GN et al (2000) Pamidronate prevents skeletal complications and is effective palliative treatment in women with breast carcinoma and osteolytic bone metastases: long term follow-up of two randomized, placebo-controlled trials. Cancer 88:1082–1090

    Article  CAS  PubMed  Google Scholar 

  27. Rosen LS, Gordon D, Kaminski M et al (2003) Long-term efficacy and safety of zoledronic acid compared with pamidronate disodium in the treatment of skeletal complications in patients with advanced multiple myeloma or breast carcinoma: a randomized, double-blind, multicenter, comparative trial. Cancer 98:1735–1744

    Article  CAS  PubMed  Google Scholar 

  28. Rosen LS, Gordon D, Tchekmedyian S et al (2003) Zoledronic acid versus placebo in the treatment of skeletal metastases in patients with lung cancer and other solid tumors: a phase III, double-blind, randomized trial--the Zoledronic Acid Lung Cancer and Other Solid Tumors Study Group. J Clin Oncol 21:3150–3157

    Article  CAS  PubMed  Google Scholar 

  29. Saad F, Gleason DM, Murray R et al (2002) A randomized, placebo-controlled trial of zoledronic acid in patients with hormone-refractory metastatic prostate carcinoma. J Natl Cancer Inst 94:1458–1468

    Article  CAS  PubMed  Google Scholar 

  30. Barrett-Lee P, Casbard A, Abraham J et al (2014) Oral ibandronic acid versus intravenous zoledronic acid in treatment of bone metastases from breast cancer: a randomised, open label, non-inferiority phase 3 trial. Lancet Oncol 15:114–122

    Article  CAS  PubMed  Google Scholar 

  31. Stopeck AT, Lipton A, Body J-J et al (2010) Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study. J Clin Oncol 28:5132–5139

    Article  CAS  PubMed  Google Scholar 

  32. Fizazi K, Carducci M, Smith M et al (2011) Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet 377:813–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Henry DH, Costa L, Goldwasser F et al (2011) Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. J Clin Oncol 29:1125–1132

    Article  CAS  PubMed  Google Scholar 

  34. Sun L, Yu S (2013) Efficacy and safety of denosumab versus zoledronic acid in patients with bone metastases. Am J Clin Oncol 36:399–403

    Article  CAS  PubMed  Google Scholar 

  35. Van Poznak C, Somerfield MR, Barlow WE et al (2017) Role of bone-modifying agents in metastatic breast Cancer: an American Society of Clinical Oncology–Cancer Care Ontario focused guideline update. J Clin Oncol 35:3978–3986

    Article  CAS  PubMed  Google Scholar 

  36. Coleman R, Body JJ, Aapro M, Hadji P, Herrstedt J (2014) Bone health in cancer patients: ESMO clinical practice guidelines. Ann Oncol 25(Suppl 3):1–14

    Article  Google Scholar 

  37. Ibrahim MFK, Mazzarello S, Shorr R et al (2015) Should de-escalation of bone-targeting agents be standard of care for patients with bone metastases from breast cancer? A systematic review and meta-analysis. Ann Oncol 26:2205–2213

    Article  CAS  PubMed  Google Scholar 

  38. Hortobagyi GN, Van Poznak C, Harker WG et al (2017) Continued treatment effect of zoledronic acid dosing every 12 vs 4 weeks in women with breast cancer metastatic to bone: the OPTIMIZE-2 randomized clinical trial. JAMA Oncol 26:192–196

    Google Scholar 

  39. Shapiro CL, Moriarty JP, Dusetzina S et al (2017) Cost-effectiveness analysis of monthly zoledronic acid, zoledronic acid every 3 months, and monthly denosumab in women with breast cancer and skeletal metastases: CALGB 70604 (Alliance). J Clin Oncol 35:3949–3955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Saad F, Brown JE, Van Poznak C et al (2012) Incidence, risk factors, and outcomes of osteonecrosis of the jaw: integrated analysis from three blinded active-controlled phase III trials in cancer patients with bone metastases. Ann Oncol 23:1341–1347

    Article  CAS  PubMed  Google Scholar 

  41. Advisory Task Force on Bisphosphonate-Related Ostenonecrosis of the Jaws AA of O and MS (2007) American Association of Oral and Maxillofacial Surgeons position paper on bisphosphonate-related osteonecrosis of the jaws. J Oral Maxillofac Surg 65:369–376

    Article  Google Scholar 

  42. Laufer I, Rubin DG, Lis E et al (2013) The NOMS framework: approach to the treatment of spinal metastatic tumors. Oncologist 18:744–751

    Article  PubMed  PubMed Central  Google Scholar 

  43. Van der Linden YM, Dijkstra PD, Kroon HM et al (2004) Comparative analysis of risk factors for pathological fracture with femoral metastases. J Bone Jt Surg Br 86:566–573

    Article  Google Scholar 

  44. Hartsell WF, Yajnik S (2014) Palliation of bone metastases. In: Halperin EC, Brady LW, Perez CA, Wazer DE (eds) Perez and Brady’s principles and practice of radiation oncology, 6th edn

    Google Scholar 

  45. Linden Y, van der Rades D (2013) Bone metastases. In: Lutz S, Chow E, Hoskin P (eds) Radiation oncology in palliative Cancer care, 1st edn. Wiley-Blackwell, Oxford, pp 241–256

    Google Scholar 

  46. Vassiliou V, Bruland JN, Lutz S, Kardamakis D, Hoskin P (2009) Combining systemic bisphosphonates with palliative external beam radiotherapy or bone-targeted radionuclide therapy: interactions and effectiveness. Clin Oncol 21:665–667

    Article  CAS  Google Scholar 

  47. van der Linden Y, Rades D (2013) Bone Metastases. In: Radiation oncology in palliative cancer care. Wiley, Chichester, pp 239–256

    Chapter  Google Scholar 

  48. Lutz S, Balboni T, Jones J et al (2017) Palliative radiation therapy for bone metastases: update of an ASTRO evidence-based guideline. Pract Radiat Oncol 7:4–12

    Article  PubMed  Google Scholar 

  49. Cheon PM, Wong E, Thavarajah N et al (2015) A definition of ‘uncomplicated bone metastases’ based on previous bone metastases radiation trials comparing single-fraction and multi-fraction radiation therapy. J Bone Oncol 4:13–17

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hartsell WF, Konski AA, Lo SS, Hayman JA (2009) Single fraction radiotherapy for bone metastases: clinically effective, time efficient, cost conscious and still underutilized in the United States? Clin Oncol (R Coll Radiol) 21:652–654

    Article  CAS  Google Scholar 

  51. Chow E, Zeng L, Salvo N, Dennis K, Tsao M, Lutz S (2012) Update on the systematic review of palliative radiotherapy trials for bone metastases. Clin Oncol (R Coll Radiol) 24:112–124

    Article  CAS  Google Scholar 

  52. Chow R, Hoskin P, Chan S et al (2017) Efficacy of multiple fraction conventional radiation therapy for painful uncomplicated bone metastases: a systematic review. Radiother Oncol 122:323–331

    Article  PubMed  Google Scholar 

  53. Huisman M, van den Bosch MA, Wijlemans JW, van Vulpen M, van der Linden YM, Verkooijen HM (2012) Effectiveness of reirradiation for painful bone metastases: a systematic review and meta-analysis. Int J Radiat Oncol Biol Phys 84:8–14

    Article  PubMed  Google Scholar 

  54. Chow E, van der Linden YM, Roos D et al (2014) Single versus multiple fractions of repeat radiation for painful bone metastases: a randomised, controlled, non-inferiority trial. Lancet Oncol 15:164–171

    Article  PubMed  Google Scholar 

  55. Backonja M, Glanzman RL (2003) Gabapentin dosing for neuropathic pain: evidence from randomized, placebo-controlled clinical trials. Clin Ther 25:81–104

    Article  CAS  PubMed  Google Scholar 

  56. Lechner B, Chow S, Chow R et al (2016) The incidence of neuropathic pain in bone metastases patients referred for palliative radiotherapy. Radiother Oncol 118:557–561

    Article  PubMed  Google Scholar 

  57. Pollicino CA, Turner SL, Roos DE, O’Brien PC (2005) Costing the components of pain management: analysis of Trans-Tasman Radiation Oncology Group trial (TROG 96.05): one versus five fractions for neuropathic bone pain. Radiother Oncol 76:264–269

    Article  PubMed  Google Scholar 

  58. Katsoulakis E, Kumar K, Laufer I, Yamada Y (2017) Stereotactic body radiotherapy in the treatment of spinal metastases. Semin Radiat Oncol 27:209–217

    Article  PubMed  Google Scholar 

  59. Gralow JR, Biermann JS, Farooki A et al (2013) NCCN Task Force report: bone health in cancer care. J Natl Compr Cancer Netw 11:S-1–S-50

    Article  Google Scholar 

  60. Patchell RA, Tibbs PA, Regine WF et al (2005) Direct decompressive surgical resection in the treatment of spinal cord compression caused by metastatic cancer: a randomised trial. Lancet 366:643–648

    Article  PubMed  Google Scholar 

  61. Loblaw DA, Mitera G, Ford M, Laperriere NJ (2012) A 2011 updated systematic review and clinical practice guideline for the management of malignant extradural spinal cord compression. Int J Radiat Oncol Biol Phys 84:312–317

    Article  PubMed  Google Scholar 

  62. Koswig S, Buchali A, Bohmer D, Schlenger L, Budach V (1999) Palliative radiotherapy of bone metastases. A retrospective analysis of 176 patients. Strahlentherapie Und Onkol 175:509–514

    Article  CAS  Google Scholar 

  63. Willeumier JJ, van der Linden YM, Dijkstra PDS (2016) Lack of clinical evidence for postoperative radiotherapy after surgical fixation of impending or actual pathologic fractures in the long bones in patients with cancer; a systematic review. Radiother Oncol 121:138–142

    Article  PubMed  Google Scholar 

  64. Turriziani A, Mattiucci GC, Montoro C et al (2005) Radiotherapy-related fatigue: incidence and predictive factors. Rays 30:197–203

    PubMed  Google Scholar 

  65. Hird A, Chow E, Zhang L et al (2009) Determining the incidence of pain flare following palliative radiotherapy for symptomatic bone metastases: results from three Canadian cancer centers. Int J Radiat Oncol Biol Phys 75:193–197

    Article  PubMed  Google Scholar 

  66. Bashir FA, Parry JM, Windsor PM (2008) Use of a modified hemi-body irradiation technique for metastatic carcinoma of the prostate: report of a 10-year experience. Clin Oncol (R Coll Radiol) 20:591–598

    Article  CAS  Google Scholar 

  67. Dijstra S, Wiggers T, van Geel BN, Boxma H (1994) Impending and actual pathological fractures in patients with bone metastases of the long bones. A retrospective study of 233 surgically treated fractures. Eur J Surg 160:535–542

    CAS  PubMed  Google Scholar 

  68. Marks LB, Yorke ED, Jackson A et al (2010) Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol 76:S10–S19

    Article  Google Scholar 

  69. Ward WG, Holsenbeck S, Dorey FJ, Spang J, Howe D (2003) Metastatic disease of the femur: surgical treatment. Clin Orthop Relat Res 415:S230–S244

    Article  Google Scholar 

  70. Malviya a, Gerrand C (2012) Evidence for orthopaedic surgery in the treatment of metastatic bone disease of the extremities: a review article. Palliat Med 26:788–796

    Article  PubMed  Google Scholar 

  71. Cox BW, Spratt DE, Lovelock M et al (2012) International spine radiosurgery consortium consensus guidelines for target volume definition in spinal stereotactic radiosurgery. Int J Radiat Oncol 83:e597–e605

    Article  Google Scholar 

  72. Redmond KJ, Lo SS, Soltys SG et al (2017) Consensus guidelines for postoperative stereotactic body radiation therapy for spinal metastases: results of an international survey. J Neurosurg Spine 26:299–306

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arlindo R. Ferreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ferreira, A.R., Abrunhosa-Branquinho, A.N., Jorge, M., Costa, L. (2019). Bone Metastasis. In: De Mello, R., Mountzios, G., Tavares, Á. (eds) International Manual of Oncology Practice. Springer, Cham. https://doi.org/10.1007/978-3-030-16245-0_49

Download citation

Publish with us

Policies and ethics