Skip to main content

Scanning Capacitance Microscopy for Two-Dimensional Carrier Profiling of Semiconductor Devices

  • Chapter
  • First Online:
Electrical Atomic Force Microscopy for Nanoelectronics

Part of the book series: NanoScience and Technology ((NANO))

  • 2149 Accesses

Abstract

As the semiconductor technology matures from research to development and eventually entering manufacturing, there is a consistent focus on reducing defects and yield detractors. This results in engineers utilizing the Failure Mode and Effects Analysis (FMEA) duplicate of integrated circuits. In failure analysis (FA) of integrated circuits, Scanning Capacitance Microscopy (SCM) has been used to identify failure mechanisms, such as regions of incorrect doping and electrical shorts, thereby indicating the appropriate corrective actions required to remedy the device. Because sample preparation and data interpretation are relatively straightforward, FA applications of SCM can be performed with quick turnaround and with few ambiguities that can arise in quantitative applications. In this chapter, we will focus on SCM applications, highlighting work performed at the state-of-the-art chip manufacturing facility of GLOBALFOUNDRIES.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. J.R. Matey, J. Blanc, J. Appl. Phys. 57(5), 1437 (1985). https://doi.org/10.1063/1.334506

    Article  ADS  Google Scholar 

  2. C.D. Bugg, P.J. King, J. Phys. E: Sci. Instrum. 21(2), 147 (1988)

    Article  ADS  Google Scholar 

  3. Y. Martin, D.W. Abraham, H.K. Wickramasinghe, Appl. Phys. Lett. 52(13), 1103 (1988). https://doi.org/10.1063/1.99224

    Article  ADS  Google Scholar 

  4. C.C. Williams, W.P. Hough, S.A. Rishton, Appl. Phys. Lett. 55(2), 203 (1989). https://doi.org/10.1063/1.102096

    Article  ADS  Google Scholar 

  5. C.C. Williams, J. Slinkman, W.P. Hough, H.K. Wickramasinghe, Appl. Phys. Lett. 55(16), 1662 (1989). https://doi.org/10.1063/1.102312

    Article  ADS  Google Scholar 

  6. R.J. Hamers, D.G. Cahill, Appl. Phys. Lett. 57(19), 2031 (1990). https://doi.org/10.1063/1.103997

    Article  ADS  Google Scholar 

  7. J. Slinkman, C. Williams, D. Abraham, H. Wickramasinghe, in Electron Devices Meeting, 1990. IEDM ’90. Technical Digest., International (San Francisco, CA, 1990), pp. 73–76. https://doi.org/10.1109/IEDM.1990.237223

  8. C.C. Williams, J. Slinkman, W.P. Hough, H.K. Wickramasinghe, J. Vac. Sci. Technol. A Vac. Surf. Films 8(2), 895 (1990). https://doi.org/10.1116/1.576936

    Article  ADS  Google Scholar 

  9. D.W. Abraham, J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 9(2), 703 (1991). https://doi.org/10.1116/1.585536

    Article  ADS  MathSciNet  Google Scholar 

  10. D. Boudreaux, F. Williams, A. Nozik, J. Appl. Phys. 51(4), 2158 (1980)

    Article  ADS  Google Scholar 

  11. C. Hu, S.C. Tam, F.C. Hsu, P.K. Ko, T.Y. Chan, K.W. Terrill, IEEE Trans. Electron Devices 32(2), 375 (1985)

    Article  ADS  Google Scholar 

  12. K. Cheng, J. Lee, Z. Chen, S. Shah, K. Hess, J.W. Lyding, Y.K. Kim, Y.W. Kim, K.P. Suh, Microelectron. Eng. 56(3–4), 353 (2001)

    Article  Google Scholar 

  13. P.K. Gopi, G. Li, G. Sonek, J. Dunkley, D. Hannaman, J. Patterson, S. Willard, Appl. Phys. Lett. 63(9), 1237 (1993)

    Article  ADS  Google Scholar 

  14. D. Quon, P.K. Gopi, G.J. Sonek, G. Li, IEEE Trans. Electron Devices 41(10), 1824 (1994)

    Article  ADS  Google Scholar 

  15. M. Panchore, J. Singh, S.P. Mohanty, IEEE Trans. Electron Devices 63(12), 5068 (2016)

    Article  ADS  Google Scholar 

  16. Y.Y. Wang, J. Nxumalo, D.P. Ioannou, A. Katnani, J. Brown, K. Bandy, M. Macdonald, R. Krishnasamy, J. Bruley, Appl. Phys. Lett. 112(23), 233502 (2018). https://doi.org/10.1063/1.5009243

    Article  ADS  Google Scholar 

  17. D. Cooper, C. Ailliot, J.P. Barnes, J.M. Hartmann, P. Salles, G. Benassayag, R.E. Dunin-Borkowski, Ultramicroscopy 110(5), 383 (2010)

    Article  Google Scholar 

  18. K.J. Chang, D. Chadi, Phys. Rev. Lett. 60(14), 1422 (1988)

    Article  ADS  Google Scholar 

  19. D. Belfennache, D. Madi, N. Brihi (2016)

    Google Scholar 

  20. K. Bergman, M. Stavola, S. Pearton, J. Lopata, Phys. Rev. B 37(5), 2770 (1988)

    Article  ADS  Google Scholar 

  21. N. Johnson, C. Herring, D. Chadi, Phys. Rev. Lett. 56(7), 769 (1986)

    Article  ADS  Google Scholar 

  22. N. Fukata, S. Sato, H. Morihiro, K. Murakami, K. Ishioka, M. Kitajima, S. Hishita, Dopant dependence on passivation and reactivation of carrier after hydrogenation (2007)

    Google Scholar 

  23. A. Chatterjee, A. Verma, B. Bhuva, E.D. Jansen, W.C. Lin, in 2001 IEEE International Reliability Physics Symposium, 2001. Proceedings. 39th Annual (IEEE, 2001), pp. 200–205

    Google Scholar 

  24. M. De la Bardonnie, D. Jiang, S.E. Kerns, D.V. Kerns, P. Mialhe, J.P. Charles, A. Hoffman, IEEE Trans. Electron Devices 46(6), 1234 (1999)

    Article  ADS  Google Scholar 

  25. J. Lyding, K. Hess, I.C. Kizilyalli, Appl. Phys. Lett. 68(18), 2526 (1996)

    Article  ADS  Google Scholar 

  26. K. Hess, I.C. Kizilyalli, J.W. Lyding, IEEE Trans. Electron Devices 45(2), 406 (1998)

    Article  ADS  Google Scholar 

  27. K. Cooper, S. Schwartz, in ISTFA 1992—International Symposium for Testing and Failure Analysis (ASM International, 1992), pp. 219–219

    Google Scholar 

  28. N. Khurana, C.L. Chiang, in 24th International Reliability Physics Symposium (IEEE, Anaheim, CA, USA, 1986), pp. 189–194. https://doi.org/10.1109/IRPS.1986.362132. http://ieeexplore.ieee.org/document/4208663/

  29. K. Nikawa, in Proceedings of International Symposium for Testing and Failure Analysis, vol. 303 (ASM International, 1993)

    Google Scholar 

  30. E.J. Cole, P. Tangyunyong, D.L. Barton, in 1998 IEEE International Reliability Physics Symposium Proceedings, 1998. 36th Annual (IEEE, 1998), pp. 129–136

    Google Scholar 

  31. R.A. Falk, in ISTFA 2001—International Symposium for Testing and Failure Analysis (ASM International, 2001), pp. 59–68

    Google Scholar 

  32. Z. Song, J. Nxumalo, M. Villalobos, S. Pendyala, in ISTFA 2016—International Symposium for Testing and Failure Analysis (ASM International, 2016)

    Google Scholar 

  33. L. Liu, F. Lin, M. Heinrich, A. Aberle, B. Hoex, ECS J. Solid State Sci. Technol. 2(9), P380 (2013)

    Article  Google Scholar 

  34. N. Valckx, D. Cuypers, R. Vos, H. Philipsen, J. Rip, G. Doumen, P.W. Mertens, M.M. Heyns, S. De Gendt, in Solid State Phenomena, vol. 187 (Trans Tech Publications, 2012), pp. 41–44

    Google Scholar 

  35. S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, et al., in 2012 IEEE International Electron Devices Meeting (IEDM) (IEEE, 2012), pp. 33–38

    Google Scholar 

  36. N. Feilchenfeld, F. Anderson, T. Barwicz, S. Chilstedt, Y. Ding, J. Ellis-Monaghan, D. Gill, C. Hedges, J. Hofrichter, F. Horst, et al., in 2015 IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), pp. 25–27

    Google Scholar 

  37. W. Bogaerts, M. Fiers, P. Dumon, IEEE J. Sel. Top. Quantum Electron. 20(4), 1 (2014)

    Article  Google Scholar 

  38. J.N. Nxumalo, Y.Y. Wang, M. Iwatake, C. Molella, A. Katnani, J. Orcutt, J. Ayala, K. Nummy, in 2018 18th International Workshop on Junction Technology (IWJT) (2018), pp. 1–4. https://doi.org/10.1109/IWJT.2018.8330282

  39. H. Lichte, M. Lehmann, Rep. Prog. Phys. 71(1), 016102 (2008)

    Article  ADS  Google Scholar 

  40. U. Shaislamov, J.M. Yang, J.H. Yoo, H.S. Seo, K.J. Park, C.J. Choi, T.E. Hong, B. Yang, Microelectron. Reliab. 48(10), 1734 (2008). https://doi.org/10.1016/j.microrel.2008.06.002

    Article  Google Scholar 

  41. G. Johnson, J. Nxumalo, A. Arya, J. Johnson, Q. Gao, B. Greene, in SEMI Advanced Semiconductor Manufacturing Conference (ASMC), 2018 29th Annual (IEEE, 2018), pp. 370–373

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge K. Barton, T. Su and C. Molella for their skillful sample preparation, Justin Clements and Danielle Clements for proof-reading and Globalfoundries for providing the support with this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay Mody .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mody, J., Nxumalo, J. (2019). Scanning Capacitance Microscopy for Two-Dimensional Carrier Profiling of Semiconductor Devices. In: Celano, U. (eds) Electrical Atomic Force Microscopy for Nanoelectronics. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-15612-1_4

Download citation

Publish with us

Policies and ethics