Skip to main content

Latency Differences Between Mental Workload Measures in Detecting Workload Changes

  • Conference paper
  • First Online:
Human Mental Workload: Models and Applications (H-WORKLOAD 2018)

Abstract

Mental workload has traditionally been measured by three different methods corresponding to its primary reflections: performance, subjective and physiological measures. Although we would expect a certain degree of convergence, research has shown that the emergence of disassociations and insensitivities between measures is very frequent. One possible explanation could be related to the differing latencies between each workload assessment method. We tested this explanation by manipulating task complexity through time spent performing a simulated air-traffic control task. In the experimental session, we collected physiological (pupil size), performance and subjective data. Our results showed two periods of bad performance caused by high traffic density and aircraft configurations. Those periods corresponded to higher mental workload as detected by subjective and physiological measures. However, subjective mental workload reacted sooner than physiological mental workload to task demands. These results suggest that the differences in latency could partially explain mental workload dissociations and insensitivities between measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crevits, I., Debernard, S., Denecker, P.: Model building for air-traffic controllers’ workload regulation. Eur. J. Oper. Res. 136(2), 324–332 (2002). https://doi.org/10.1016/S0377-2217(01)00119-9

    Article  MATH  Google Scholar 

  2. Moray, N.: Mental Workload: Its Theory and Measurement. Plenum Press, New York (1979). https://doi.org/10.1007/978-1-4757-0884-4_2

    Book  Google Scholar 

  3. Wickens, C.D.: Mental workload: assessment, prediction and consequences. In: Longo, L., Leva, M. (eds.) H-WORKLOAD 2017. CCIS, vol. 726, pp. 18–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61061-0_2

    Chapter  Google Scholar 

  4. De Alwis Edirisinghe, V.: Estimating mental workload of university students using eye parameters, Master’s thesis, NTNU (2017)

    Google Scholar 

  5. Murai, K., Hayashi, Y., Okazaki, T., Stone, L.C.: Evaluation of ship navigator’s mental workload using nasal temperature and heart rate variability. In: 2008 IEEE International Conference on Systems, Man and Cybernetics, pp. 1528–1533. IEEE, New York (2008). https://doi.org/10.1109/icsmc.2008.4811503

  6. Hancock, P.A.: Whither workload? Mapping a path for its future development. In: Longo, L., Leva, M. (eds.) H-WORKLOAD 2017. CCIS, vol. 726, pp. 3–17. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61061-0_1

    Chapter  Google Scholar 

  7. Yeh, Y.H., Wickens, C.D.: The dissociation of subjective measures of mental workload and performance (final report). (No. NASA-CR-176609; NAS 1.26:176609; EPL-84-2/NASA-84-2) (1984)

    Google Scholar 

  8. Casper, P.A.: Dissociations among measures of mental workload: effects of experimenter-induced inadequacy (1988)

    Google Scholar 

  9. Moray, N.: Mental Workload: Its Theory and Measurement, vol. 8. Springer, Heidelberg (2013). https://doi.org/10.1007/978-1-4757-0884-4

    Book  Google Scholar 

  10. Longo, L., Leva, M.C. (eds.): H-WORKLOAD 2017. CCIS, vol. 726. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61061-0

    Book  Google Scholar 

  11. Dawson, D., Ian Noy, Y., Härmä, M., Åkerstedt, T., Belenky, G.: Modelling fatigue and the use of fatigue models in work settings. Accid. Anal. Prev. 43(2), 549–564 (2011). https://doi.org/10.1016/j.aap.2009.12.030

    Article  Google Scholar 

  12. Jorna, P.G.: Spectral analysis of heart rate and psychological state: a review of its validity as a workload index. Biol. Psychol. 34(2), 237–257 (1992). https://doi.org/10.1016/0301-0511(92)90017-O

    Article  Google Scholar 

  13. Endsley, M.: From here to autonomy: lessons learned from human–automation research. Hum. Factors 59(1), 5–27 (2017). https://doi.org/10.1177/0018720816681350

    Article  Google Scholar 

  14. Josten, E.J., Ng-A-Tham, J.E., Thierry, H.: The effects of extended workdays on fatigue, health, performance and satisfaction in nursing. J. Adv. Nurs. 44(6), 643–652 (2003). https://doi.org/10.1046/j.0309-2402.2003.02854.x

    Article  Google Scholar 

  15. Taylor, A.H., Dorn, L.: Stress, fatigue, health, and risk of road traffic accidents among professional drivers: the contribution of physical inactivity. Ann. Rev. Publ. Health 27, 371–391 (2006). https://doi.org/10.1146/annurev.publhealth.27.021405.102117

    Article  Google Scholar 

  16. Fan, J., Smith, A.: The impact of workload and fatigue on performance. In: Longo, L., Leva, M. (eds.) H-WORKLOAD 2017. CCIS, vol. 726, pp. 90–105. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61061-0_6

    Chapter  Google Scholar 

  17. Sawaragi, T., Horiguchi, Y., Hina, A.: Safety analysis of systemic accidents triggered by performance deviation. 제어로봇시스템학회 국제학술대회 논문집, pp. 1778–1781 (2006). https://doi.org/10.1109/sice.2006.315635

  18. Edwards, T.E., Martin, L., Bienert, N., Mercer, J.: Workload and performance in air traffic control: exploring the influence of levels of automation and variation in task demand (2017). https://doi.org/10.1007/978-3-319-61061-0_8

    Google Scholar 

  19. Brookhuis, K.A., de Waard, D.: Monitoring drivers’ mental workload in driving simulators using physiological measures. Accid. Anal. Prev. 42(3), 898–903 (2010). https://doi.org/10.1016/j.aap.2009.06.001

    Article  Google Scholar 

  20. da Silva, F.P.: Mental workload, task demand and driving performance: what relation? Proc.-Soc. Behav. Sci. 162, 310–319 (2014). https://doi.org/10.1016/j.sbspro.2014.12.212

    Article  Google Scholar 

  21. Paxion, J., Galy, E., Berthelon, C.: Mental workload and driving. Front. Psychol. 5, 1344 (2014). https://doi.org/10.3389/fpsyg.2014.01344

    Article  Google Scholar 

  22. Wickens, C.D.: Multiple resources and performance prediction. Theor. Issues Ergon. Sci. 3(2), 159–177 (2002). https://doi.org/10.1518/001872008X288394.200850:449

    Article  Google Scholar 

  23. Munoz-de-Escalon, E., Canas, J.: Online measuring of available resources. In: H-Workload 2017 The First International Symposiumon Human Mental Workload, Dublin Institute of Technology, Dublin, Ireland, 28–30 June (2017). https://doi.org/10.21427/d7dk96

  24. Cañas, J.J., Ferreira, P.N.P., Puntero, E., López, P., López, E., Gomez-Comendador V.F.: An air traffic controller psychological model with automation. In: 7th EASN International Conference “Innovation in European Aeronautics Research”, Warsaw, Poland (2017). https://doi.org/10.3390/s180515864

  25. Majumdar, A., Ochieng, W.: Factors affecting air traffic controller workload: multivariate analysis based on simulation modeling of controller workload. Transp. Res. Rec. 1788, 58–69 (2002). https://doi.org/10.3141/1788-08

    Article  Google Scholar 

  26. Wu, C., Liu, Y.: Queuing network modeling of driver workload and performance. IEEE Trans. Intell. Transp. Syst. 8(3), 528–537 (2007). https://doi.org/10.1109/TITS.2007.903443

    Article  Google Scholar 

  27. Sozou, P.D., Lane, P.C., Addis, M., Gobet, F.: Computational scientific discovery. In: Magnani, L., Bertolotti, T. (eds.) Springer Handbook of Model-Based Science. SH, pp. 719–734. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-30526-4_33

    Chapter  Google Scholar 

  28. Moustafa, K., Luz, S., Longo, L.: Assessment of mental workload: a comparison of machine learning methods and subjective assessment techniques. In: Longo, L., Leva, M. (eds.) H-WORKLOAD 2017. CCIS, vol. 726, pp. 30–50. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61061-0_3

    Chapter  Google Scholar 

  29. Rizzo, L., Longo, L.: Representing and inferring mental workload via defeasible reasoning: a comparison with the NASA task load index and the workload profile. In: 2017 1st Workshop on Advances in Argumentation in Artificial Intelligence, Bari, Italy (2017)

    Google Scholar 

  30. Rizzo, L., Dondio, P., Delany, S., Longo, L.: Modeling mental workload via rule-based expert system: a comparison with NASA-TLX and workload profile. In: Iliadis, L., Maglogiannis, I. (eds.) AIAI 2016. IAICT, vol. 475, pp. 215–229. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44944-9_19

    Chapter  Google Scholar 

  31. Marinescu, A.C., Sharples, S., Ritchie, A.C., Sánchez López, T., McDowell, M., Morvan, H.P.: Physiological parameter response to variation of mental workload. Hum. Factors 60(1), 31–56 (2018). https://doi.org/10.1177/0018720817733101

    Article  Google Scholar 

  32. Fothergill, S., Loft, S., Neal, A.: ATC-labAdvanced: an air traffic control simulator with realism and control. Behav. Res. Methods 41(1), 118–127 (2009). https://doi.org/10.3758/BRM.41.1.118

    Article  Google Scholar 

  33. Brennan, S.D.: An experimental report on rating scale descriptor sets for the instantaneous self-assessment (ISA) recorder. DRA Technical Memorandum (CAD5) 92017, DRA Maritime Command and Control Division, Portsmouth (1992)

    Google Scholar 

  34. Jordan, C.S.: Experimental study of the effect of an instantaneous self-assessment workload recorder on task performance. DRA Technical Memorandum (CAD5) 92011, DRA Maritime Command Control Division, Portsmouth (1992)

    Google Scholar 

  35. Prandini, M., Piroddi, L., Puechmorel, S., Brázdilová, S.L.: Toward air traffic complexity assessment in new generation air traffic management systems. IEEE Trans. Intell. Transp. Syst. 12(3), 809–818 (2011). https://doi.org/10.1109/TITS.2011.2113175

    Article  Google Scholar 

  36. Matthews, G., Middleton, W., Gilmartin, B.Y., Bullimore, M.A.: Pupillary diameter and cognitive and cognitive load. J. Psychophysiol. 5, 265–271 (1991)

    Google Scholar 

  37. Backs, R.W., Walrath, L.C.: Eye movement and pupillary response indices of mental workload during visual search of symbolic displays. Appl. Ergon. 23, 243–254 (1992). https://doi.org/10.1016/0003-6870(92)90152-l

    Article  Google Scholar 

  38. Hyönä, J., Tommola, J., Alaja, A.: Pupil dilation as a measure of processing load in simultaneous interpreting and other language tasks. Q. J. Exp. Psychol. 48, 598–612 (1995). https://doi.org/10.1080/14640749508401407

    Article  Google Scholar 

  39. Granholm, E., Asarnow, R.F., Sarkin, A.J., Dykes, K.L.: Pupillary responses index cognitive resource limitations. Psychophysiology 33, 457–461 (1996). https://doi.org/10.1111/j.1469-8986.1996.tb01071.x

    Article  Google Scholar 

  40. Iqbal, S.T., Zheng, X.S., Bailey, B.P.: Task evoked pupillary response to mental workload in human-computer interaction. In: Proceedings of the ACM Conference on Human Factors in Computing Systems, pp. 1477–1480. ACM, New York (2004). https://doi.org/10.1145/985921.986094

  41. Verney, S.P., Granholm, E., Marshall, S.P.: Pupillary responses on the visual backward masking task reflect general cognitive ability. Int. J. Psychophysiol. 52, 23–36 (2004). https://doi.org/10.1016/j.ijpsycho.2003.12.003

    Article  Google Scholar 

  42. Porter, G., Troscianko, T., Gilchrist, I.D.: Effort during visual search and counting: insights from pupillometry. Q. J. Exp. Psychol. 60, 211–229 (2007). https://doi.org/10.1080/17470210600673818

    Article  Google Scholar 

  43. Privitera, C.M., Renninger, L.W., Carney, T., Klein, S., Aguilar, M.: Pupil dilation during visual target detection. J. Vis. 10, 1–14 (2010). https://doi.org/10.1167/10.10.3

    Article  Google Scholar 

  44. Reiner, M., Gelfeld, T.M.: Estimating mental workload through event-related fluctuations of pupil area during a task in a virtual world. Int. J. Psychophysiol. 93(1), 38–44 (2014). https://doi.org/10.1016/j.ijpsycho.2013.11.002

    Article  Google Scholar 

  45. Mathôt, S., Fabius, J., Van Heusden, E., Van der Stigchel, S.: Safe and sensible preprocessing and baseline correction of pupil-size data. Behav. Res. Methods 50(1), 94–106 (2018). https://doi.org/10.3758/s13428-017-1007-2

    Article  Google Scholar 

  46. Mogford, R.H., Guttman, J.A., Morrow, S.L., Kopardekar, P.: The complexity construct in air traffic control: a review and synthesis of the literature. CTA INC., McKee City, NJ (1995)

    Google Scholar 

  47. Athènes, S., Averty, P., Puechmorel, S., Delahaye, D., Collet, C.: ATC complexity and controller workload: trying to bridge the gap. In: Proceedings of the International Conference on HCI in Aeronautics, pp. 56–60. AAAI Press, Cambridge (2002)

    Google Scholar 

  48. Foroughi, C.K., Sibley, C., Coyne, J.T.: Pupil size as a measure of within-task learning. Psychophysiology 54(10), 1436–1443 (2017). https://doi.org/10.1111/psyp.12896

    Article  Google Scholar 

  49. Sweller, J.: Cognitive load theory, learning difficulty, and instructional design. Learn. Instr. 4(4), 295–312 (1994). https://doi.org/10.1016/0959-4752(94)90003-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Muñoz-de-Escalona .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Muñoz-de-Escalona, E., Cañas, J.J. (2019). Latency Differences Between Mental Workload Measures in Detecting Workload Changes. In: Longo, L., Leva, M. (eds) Human Mental Workload: Models and Applications. H-WORKLOAD 2018. Communications in Computer and Information Science, vol 1012. Springer, Cham. https://doi.org/10.1007/978-3-030-14273-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14273-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14272-8

  • Online ISBN: 978-3-030-14273-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics