Skip to main content

Microalgal Biotechnology Application Towards Environmental Sustainability

  • Chapter
  • First Online:
Application of Microalgae in Wastewater Treatment

Abstract

Many researches have been conducted to investigate the alternative source of energy from renewable sources and utilization of waste materials. Among which, microalgae, having wide range of environmental adaptability, represents a diverse group of microorganisms; hence, its application in biotechnology is among the scholars’ interest. Microalgae have the ability to store lipids and preserve the nutrients presented in the wastewater, which help in wastewater treatments. Besides, the algal biofuel production gained research interest in recent years. Among few important factors for the microalgal growth, proper presence of light and sufficient nutrients such as nitrogen and phosphorus are essential. Developing algae production would help to mitigate greenhouse gas emissions by capturing CO2, and producing an alternative option for fossil fuels which could be valuable and sustainable. Hence, with growing interest and several analyses, this review discusses the key points in developing microalgal biotechnology toward sustainable development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ă…gren GI (2004) The C: N: P stoichiometry of autotrophs–theory and observations. Ecol Lett 7(3):185–191

    Article  Google Scholar 

  • Aslan S, Kapdan IK (2006) Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol Eng 28(1):64–70

    Article  Google Scholar 

  • Atta M, Idris A, Bukhari A, Wahidin S (2013) Intensity of blue LED light: a potential stimulus for biomass and lipid content in fresh water microalgae Chlorella vulgaris. Bioresour Technol 148:373–378

    Article  CAS  Google Scholar 

  • Barros AI, Gonçalves AL, Simões M, Pires JC (2015) Harvesting techniques applied to microalgae: a review. Renew Sust Energ Rev 41:1489–1500

    Article  Google Scholar 

  • Bosma R, van Spronsen WA, Tramper J, Wijffels RH (2003) Ultrasound, a new separation technique to harvest microalgae. J Appl Phycol 15(2–3):143–153

    Article  Google Scholar 

  • ChacĂłn-Lee TL, González-Mariño GE (2010) Microalgae for “healthy” foods—possibilities and challenges. Compr Rev Food Sci Food Saf 9(6):655–675

    Article  Google Scholar 

  • Chen F, Zhang Y, Guo S (1996) Growth and phycocyanin formation of Spirulina platensis in photoheterotrophic culture. Biotechnol Lett 18(5):603–608

    Article  CAS  Google Scholar 

  • Chinnasamy S, Bhatnagar A, Hunt RW, Das KC (2010) Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol 101(9):3097–3105

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnology Advances 25:294–306. Google Scholar

    Article  CAS  Google Scholar 

  • Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process Process Intensif 48(6):1146–1151

    Article  CAS  Google Scholar 

  • Eloka-Eboka AC, Inambao FL (2017) Effects of CO2 sequestration on lipid and biomass productivity in microalgal biomass production. Appl Energy 195:1100–1111

    Article  CAS  Google Scholar 

  • Fahy E, Cotter D, Sud M, Subramaniam S (2011) Lipid classification, structures and tools. Biochim Biophys Acta 1811(11):637–647

    Article  CAS  Google Scholar 

  • Feng D, Chen Z, Xue S, Zhang W (2011) Increased lipid production of the marine oleaginous microalgae Isochrysis zhangjiangensis (Chrysophyta) by nitrogen supplement. Bioresour Technol 102(12):6710–6716

    Article  CAS  Google Scholar 

  • Fogg GE (1959) Nitrogen nutrition and metabolic patterns in algae. Symp Soc Exp Biol 13:106–125

    Google Scholar 

  • Golueke CG, Oswald WJ, Gotaas HB (1957) Anaerobic digestion of algae. Appl Microbiol 5(1):47

    CAS  Google Scholar 

  • Gouveia L, Oliveira AC (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36(2):269–274

    Article  CAS  Google Scholar 

  • Grima EM, Belarbi EH, Fernández FA, Medina AR, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20(7–8):491–515

    Article  Google Scholar 

  • Heasman M, Diemar J, O’connor W, Sushames T, Foulkes L (2000) Development of extended shelf-life microalgae concentrate diets harvested by centrifugation for bivalve molluscs–a summary. Aquac Res 31(8–9):637–659

    Article  Google Scholar 

  • Hemschemeier A, Melis A, Happe T (2009) Analytical approaches to photobiological hydrogen production in unicellular green algae. Photosynth Res 102(2–3):523–540

    Article  CAS  Google Scholar 

  • Huang G, Chen F, Wei D, Zhang X, Chen G (2010) Biodiesel production by microalgal biotechnology. Appl Energy 87(1):38–46

    Article  CAS  Google Scholar 

  • Illman AM, Scragg AH, Shales SW (2000) Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzym Microb Technol 27(8):631–635

    Article  CAS  Google Scholar 

  • Kamyab H, Tin Lee C, Md Din MF, Ponraj M, Mohamad SE, Sohrabi M (2014) Effects of nitrogen source on enhancing growth conditions of green algae to produce higher lipid. Desalin Water Treat 52(19–21):3579–3584

    Article  CAS  Google Scholar 

  • Kamyab H, Din MFM, Keyvanfar A, Majid MA, Talaiekhozani A, Shafaghat A, Ismail HH (2015) Efficiency of microalgae Chlamydomonas on the removal of pollutants from palm oil mill effluent (POME). Energy Procedia 75:2400–2408

    Article  CAS  Google Scholar 

  • Kamyab H, Din MFM, Hosseini SE, Ghoshal SK, Ashokkumar V, Keyvanfar A, Majid MZA (2016a) Optimum lipid production using agro-industrial wastewater treated microalgae as biofuel substrate. Clean Techn Environ Policy 18(8):2513–2523

    Article  CAS  Google Scholar 

  • Kamyab H, Din MFM, Ghoshal SK, Lee CT, Keyvanfar A, Bavafa AA, Lim JS (2016b) Chlorella pyrenoidosa mediated lipid production using Malaysian agricultural wastewater: effects of photon and carbon. Waste Biomass Valoriz 7(4):779–788

    Article  CAS  Google Scholar 

  • Kamyab H, Md Din MF, Ponraj M, Keyvanfar A, Rezania S, Taib SM, Abd Majid MZ (2016c) Isolation and screening of microalgae from agro-industrial wastewater (POME) for biomass and biodiesel sources. Desalin Water Treat 57(60):29118–29125

    Article  CAS  Google Scholar 

  • Kamyab H, Chelliapan S, Din MFM, Shahbazian-Yassar R, Rezania S, Khademi T, Azimi M (2017) Evaluation of Lemna minor and Chlamydomonas to treat palm oil mill effluent and fertilizer production. J Water Process Eng 17:229–236

    Article  Google Scholar 

  • Kayombo S, Mbwette TSA, Katima JH, Jorgensen SE (2003) Effects of substrate concentrations on the growth of heterotrophic bacteria and algae in secondary facultative ponds. Water Res 37(12):2937–2943

    Article  CAS  Google Scholar 

  • Kessler JO (1985) Hydrodynamic focusing of motile algal cells. Nature 313(5999):218

    Article  Google Scholar 

  • Khan SA, Hussain MZ, Prasad S, Banerjee UC (2009) Prospects of biodiesel production from microalgae in India. Renew Sust Energ Rev 13(9):2361–2372

    Article  CAS  Google Scholar 

  • Lam MK, Lee KT (2011) Renewable and sustainable bioenergies production from palm oil mill effluent (POME): win–win strategies toward better environmental protection. Biotechnol Adv 29(1):124–141

    Article  CAS  Google Scholar 

  • Liang Y, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31(7):1043–1049

    Article  CAS  Google Scholar 

  • Mallick N (2002) Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. Biometals 15(4):377–390

    Article  CAS  Google Scholar 

  • Markou G, Vandamme D, Muylaert K (2014) Microalgal and cyanobacterial cultivation: the supply of nutrients. Water Res 65:186–202

    Article  CAS  Google Scholar 

  • Martinez ME, Jimenez JM, El Yousfi F (1999) Influence of phosphorus concentration and temperature on growth and phosphorus uptake by the microalga Scenedesmus obliquus. Bioresour Technol 67(3):233–240

    Article  CAS  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14(1):217–232

    Article  CAS  Google Scholar 

  • McHugh DJ (2003) A guide to the seaweed industry FAO Fisheries Technical Paper 441. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Milano J, Ong HC, Masjuki HH, Chong WT, Lam MK, Loh PK, Vellayan V (2016) Microalgae biofuels as an alternative to fossil fuel for power generation. Renew Sust Energ Rev 58:180–197

    Article  Google Scholar 

  • Mohn FH (1980) Experiences and strategies in the recovery of biomass from mass cultures of microalgae. Algae biomass: production and use/[sponsored by the National Council for Research and Development, Israel and the Gesellschaft fur Strahlen-und Umweltforschung (GSF), Munich, Germany]; editors, Gedaliah Shelef, Carl J. Soeder

    Google Scholar 

  • Mondal M, Goswami S, Ghosh A, Oinam G, Tiwari ON, Das P, Gayen K, Mandal MK, Halder GN (2017) Production of biodiesel from microalgae through biological carbon capture: a review. 3. Biotech 7(2):1–21

    CAS  Google Scholar 

  • Monod J (1949) The growth of bacterial cultures. Annu Rev Microbiol 3(1):371–394

    Article  CAS  Google Scholar 

  • Morita M, Watanabe Y, Okawa T, Saiki H (2001) Photosynthetic productivity of conical helical tubular photobioreactors incorporating Chlorella sp. under various culture medium flow conditions. Biotechnol Bioeng 74(2):136–144

    Article  CAS  Google Scholar 

  • Munoz R, Guieysse B (2006) Algal–bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40(15):2799–2815

    Article  CAS  Google Scholar 

  • Nesamma AA, Shaikh KM, Jutur PP (2015) Genetic engineering of microalgae for production of value-added ingredients. In: Handbook of Marine Microalgae. Elsevier, UK, England, pp 405–414

    Chapter  Google Scholar 

  • Nurdogan Y, Oswald WJ (1996) Tube settling of high-rate pond algae. Water Sci Technol 33(7):229–241

    Article  CAS  Google Scholar 

  • Olaizola M (2003) Commercial development of microalgal biotechnology: from the test tube to the marketplace. Biomol Eng 20(4–6):459–466

    Article  CAS  Google Scholar 

  • Pavlik D, Zhong Y, Daiek C, Liao W, Morgan R, Clary W, Liu Y (2017) Microalgae cultivation for carbon dioxide sequestration and protein production using a high-efficiency photobioreactor system. Algal Res 25:413–420

    Article  Google Scholar 

  • Perez-Garcia O, Escalante FM, de Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45(1):11–36

    Article  CAS  Google Scholar 

  • Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102(1):17–25

    Article  CAS  Google Scholar 

  • Plaza M, Herrero M, Cifuentes A, Ibáñez E (2009) Innovative natural functional ingredients from microalgae. J Agric Food Chem 57(16):7159–7170

    Article  CAS  Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65(6):635–648

    Article  CAS  Google Scholar 

  • Raven JA, Evans MC, Korb RE (1999) The role of trace metals in photosynthetic electron transport in O2-evolving organisms. Photosynth Res 60(2–3):111–150

    Article  CAS  Google Scholar 

  • Ren HY, Liu BF, Kong F, Zhao L, Xie GJ, Ren NQ (2014) Enhanced lipid accumulation of green microalga Scenedesmus sp. by metal ions and EDTA addition. Bioresour Technol 169:763–767

    Article  CAS  Google Scholar 

  • Resdi R, Lim JS, Kamyab H, Lee CT, Hashim H, Mohamad N, Ho WS (2016) Review of microalgae growth in palm oil mill effluent for lipid production. Clean Techn Environ Policy 18(8):2347–2361

    Article  CAS  Google Scholar 

  • Roden M, Price TB, Perseghin G, Petersen KF, Rothman DL, Cline GW, Shulman GI (1996) Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Invest 97(12):2859–2865

    Article  CAS  Google Scholar 

  • Ruiz-Marin A, Mendoza-Espinosa LG, Stephenson T (2010) Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresour Technol 101(1):58–64

    Article  CAS  Google Scholar 

  • Ryu BG, Kim EJ, Kim HS, Kim J, Choi YE, Yang JW (2014) Simultaneous treatment of municipal wastewater and biodiesel production by cultivation of Chlorella vulgaris with indigenous wastewater bacteria. Biotechnol Bioprocess Eng 19(2):201–210

    Article  CAS  Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1(1):20–43

    Article  Google Scholar 

  • Shirvani T (2012) The environmental feasibility of algae biodiesel production. Appl Petrochem Res 2:93–95

    Article  CAS  Google Scholar 

  • Shuler ML, Kargi F (2002) How cells grow. In: Bioprocess Engineering Basic Concepts. Prentice Hall, Upper Saddle River, NJ, pp 162–164

    Google Scholar 

  • Singh SP, Singh P (2015) Effect of temperature and light on the growth of algae species: a review. Renew Sust Energ Rev 50:431–444

    Article  CAS  Google Scholar 

  • Suzuki T, Suzuki M, Furusaki A, Matsumoto T, Kato A, Imanaka Y, Kurosawa E (1985) Teurilene and thyrsiferyl 23-acetate, meso and remarkably cytotoxic compounds from the marine red alga Laurencia obtusa (Hudson) Lamouroux. Tetrahedron Lett 26(10):1329–1332

    Article  CAS  Google Scholar 

  • Venkatesan J, Manivasagan P, Kim SK (2015) Marine microalgae biotechnology: present trends and future advances. In: Handbook of Marine Microalgae. Elsevier, UK, England, pp 1–9

    Google Scholar 

  • Wang L, Li Y, Chen P, Min M, Chen Y, Zhu J, Ruan RR (2010) Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresour Technol 101(8):2623–2628

    Article  CAS  Google Scholar 

  • Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126(4):499–507

    Article  CAS  Google Scholar 

  • Yeh KL, Chang JS (2012) Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Bioresour Technol 105:120–127

    Article  CAS  Google Scholar 

  • Yoo C, Jun SY, Lee JY, Ahn CY, Oh HM (2010) Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour Technol 101(1):S71–S74

    Article  CAS  Google Scholar 

  • Zhang H, Sun S, Mai K, Liang Y (2000) Advances in the studies on heterotrophic culture of microalgae [J]. Trans Oceanol Limnol 3:010

    Google Scholar 

  • Zhao BT, Su YX (2014) Process effect of microalgal-carbon dioxide fixation and biomass production: a review. Renew Sustain Energy Rev 31:121–132

    Article  CAS  Google Scholar 

  • Zheng Y, Li T, Yu X, Bates PD, Dong T, Chen S (2013) High-density fed-batch culture of a thermotolerant microalga Chlorella sorokiniana for biofuel production. Appl Energy 108:281–287

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Ministry of Education Malaysia and Universiti Teknologi Malaysia for funding this study under the Fundamental Research Grant Scheme (FRGS) Vote Number R.K130000.7856.5F049. The first author is a researcher of Universiti Teknologi Malaysia (UTM) under the Post-Doctoral Fellowship Scheme (PDRU Grant) for the project: “Enhancing the Lipid Growth in Algae Cultivation for Biodiesel Production” (Vot No. Q. JJJ130000.21A2.03E95).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shreeshivadasan Chelliapan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kamyab, H. et al. (2019). Microalgal Biotechnology Application Towards Environmental Sustainability. In: Gupta, S., Bux, F. (eds) Application of Microalgae in Wastewater Treatment. Springer, Cham. https://doi.org/10.1007/978-3-030-13909-4_19

Download citation

Publish with us

Policies and ethics