Skip to main content

Characterization of Carbonic Anhydrase Thermal Stability

  • Chapter
  • First Online:
Carbonic Anhydrase as Drug Target

Abstract

Proteins have different stabilities in various media. The twelve carbonic anhydrase (CA) isoforms have been recombinantly prepared and used in the search of high-affinity ligands. It was important to characterize their thermal stability and determine solution conditions where the biochemical inhibition and biophysical interaction experiments could be optimally performed. Optimal conditions for the thermal stability experiments were determined and used in the search of inhibitors as described in further chapters. The stability of the CAs could be enhanced by the presence of inhibitors depending on the affinity and compound concentration. The main method used to determine the affinities of compounds in this book was the thermal shift assay, based on the increased stability of the protein by the binding ligand as described in Chap. 5. Here we describe the stabilities of all 12 CA isoforms in various buffers, salts, pH, osmolytes, organic solvents, and other excipients that are not specific binders and inhibitors of CAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baranauskienė, L., Matulis, D.: Intrinsic thermodynamics of ethoxzolamide inhibitor binding to human carbonic anhydrase XIII. BMC Biophys. 5, 12 (2012)

    Article  Google Scholar 

  2. Zubrienė, A., et al.: Measurement of nanomolar dissociation constants by titration calorimetry and thermal shift assay—radicicol binding to Hsp90 and ethoxzolamide binding to CAII. Int. J. Mol. Sci. 10, 2662–2680 (2009)

    Article  Google Scholar 

  3. Krishnamurthy, V. M., et al.: Carbonic anhydrase as a model for biophysical and physical-organic studies of proteins and protein-ligand binding. Chem. Rev. 108, 946–1051 (2008)

    Article  CAS  Google Scholar 

  4. Aggarwal, M., Boone, C. D., Kondeti, B., McKenna, R.: Structural annotation of human carbonic anhydrases. J. Enzyme Inhib. Med. Chem. 28, 267–277 (2013)

    Article  Google Scholar 

  5. Boone, C.D., Habibzadegan, A., Tu, C., Silverman, D.N., McKenna, R.: Structural and catalytic characterization of a thermally stable and acid-stable variant of human carbonic anhydrase II containing an engineered disulfide bond. Acta Crystallogr. D Biol. Crystallogr. 69, 1414–1422 (2013)

    Article  CAS  Google Scholar 

  6. Boone, C.D., Gill, S., Tu, C., Silverman, D.N., McKenna, R.: Structural, catalytic and stabilizing consequences of aromatic cluster variants in human carbonic anhydrase II. Arch. Biochem. Biophys. 539, 31–37 (2013)

    Article  CAS  Google Scholar 

  7. Boone, C.D., Rasi, V., Tu, C., McKenna, R.: Structural and catalytic effects of proline substitution and surface loop deletion in the extended active site of human carbonic anhydrase II. FEBS J 282, 1445–1457 (2015)

    Article  CAS  Google Scholar 

  8. Mikulski, R., et al.: Structure and catalysis by carbonic anhydrase II: role of active-site tryptophan 5. Arch. Biochem. Biophys. 516, 97–102 (2011)

    Article  CAS  Google Scholar 

  9. Durdagi, S., et al.: Protein–protein interactions: inhibition of mammalian carbonic anhydrases I–XV by the murine inhibitor of carbonic anhydrase and other members of the transferrin family. J. Med. Chem. 55, 5529–5535 (2012)

    Article  CAS  Google Scholar 

  10. Mahon, B.P., et al.: The structure of carbonic anhydrase IX is adapted for low-pH catalysis. Biochemistry 55, 4642–4653 (2016)

    Article  CAS  Google Scholar 

  11. Linkuvienė, V., et al.: Thermodynamic, kinetic, and structural parameterization of human carbonic anhydrase interactions toward enhanced inhibitor design. Q. Rev. Biol. 51, e10 (2018)

    Google Scholar 

  12. Mickevičiūtė, A., et al.: Intrinsic thermodynamics of high affinity inhibitor binding to recombinant human carbonic anhydrase IV. Eur. Biophys. J. 7, 271–290 (2018)

    Article  Google Scholar 

  13. Kasiliauskaitė, A., et al.: Thermodynamic characterization of human carbonic anhydrase VB stability and intrinsic binding of compounds. J. Therm. Anal. Calorim. 123, 2191–2200 (2016)

    Article  Google Scholar 

  14. Kazokaitė, J., Milinavičiūtė, G., Smirnovienė, J., Matulienė, J., Matulis, D.: Intrinsic binding of 4-substituted-2,3,5,6-tetrafluorobenezenesulfonamides to native and recombinant human carbonic anhydrase VI. FEBS J. 282, 972–983 (2015)

    Article  Google Scholar 

  15. Linkuvienė, V., et al.: Intrinsic thermodynamics of inhibitor binding to human carbonic anhydrase IX. Biochim. Biophys. Acta Gen. Subj. 1860, 708–718 (2016)

    Article  Google Scholar 

  16. Jogaitė, V., et al.: Characterization of human carbonic anhydrase XII stability and inhibitor binding. Bioorg. Med. Chem. 21, 1431–1436 (2013)

    Article  Google Scholar 

  17. Waheed, A., Okuyama, T., Heyduk, T., Sly, W.S.: Carbonic anhydrase IV: purification of a secretory form of the recombinant human enzyme and identification of the positions and importance of its disulfide bonds. Arch. Biochem. Biophys. 333, 432–438 (1996)

    Article  CAS  Google Scholar 

  18. Waheed, A., Sly, W.S.: Membrane associated carbonic anhydrase IV (CA IV): a personal and historical perspective. Subcell. Biochem. 75, 157–179 (2014)

    Article  CAS  Google Scholar 

  19. Alterio, V., et al.: Crystal structure of the catalytic domain of the tumor-associated human carbonic anhydrase IX. Proc. Natl. Acad. Sci. U.S.A. 106, 16233–16238 (2009)

    Article  CAS  Google Scholar 

  20. Alterio, V., et al.: The structural comparison between membrane-associated human carbonic anhydrases provides insights into drug design of selective inhibitors. Biopolymers 101, 769–778 (2014)

    Article  CAS  Google Scholar 

  21. Pilka, E.S., Kochan, G., Oppermann, U., Yue, W.W.: Crystal structure of the secretory isozyme of mammalian carbonic anhydrases CA VI: implications for biological assembly and inhibitor development. Biochem. Biophys. Res. Commun. 419, 485–489 (2012)

    Article  CAS  Google Scholar 

  22. Whittington, D.A., et al.: Crystal structure of the dimeric extracellular domain of human carbonic anhydrase XII, a bitopic membrane protein overexpressed in certain cancer tumor cells. Proc. Natl. Acad. Sci. U.S.A. 98, 9545–9550 (2001)

    Article  CAS  Google Scholar 

  23. Carlsson, U., Henderson, L.E., Lindskog, S.: Denaturation and reactivation of human carbonic anhydrases in guanidine hydrochloride and urea. Biochim. Biophys. Acta Protein Struct.310, 376–387 (1973)

    Article  CAS  Google Scholar 

  24. Edsall, J.T.: Multiple molecular forms of carbonic anhydrase in erythrocytes. Ann. N.Y. Acad. Sci. 151, 41–63 (1968)

    Article  CAS  Google Scholar 

  25. Borén, K., Grankvist, H., Hammarström, P., Carlsson, U.: Reshaping the folding energy landscape by chloride salt: impact on molten-globule formation and aggregation behavior of carbonic anhydrase. FEBS Lett. 566, 95–99 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daumantas Matulis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zubrienė, A., Matulis, D. (2019). Characterization of Carbonic Anhydrase Thermal Stability. In: Matulis, D. (eds) Carbonic Anhydrase as Drug Target. Springer, Cham. https://doi.org/10.1007/978-3-030-12780-0_4

Download citation

Publish with us

Policies and ethics