Skip to main content
Log in

Thermodynamic characterization of human carbonic anhydrase VB stability and intrinsic binding of compounds

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermodynamics of low molecular weight synthetic sulfonamide inhibitor binding to carbonic anhydrase (CA) VB was determined by the isothermal titration calorimetry (ITC) and the fluorescent thermal shift assay (FTSA). ITC provided the enthalpic and entropic contributions to the binding affinity of ethoxzolamide to CA VB. FTSA is a high-throughput assay that measures protein thermal stabilization by added ligands. FTSA enabled determination of extremely high affinity of several compounds binding to CA VB. CA VB is one of two isoforms that are expressed in mitochondria, participate in carbon metabolism and pH homeostasis and are implicated in diseases such as obesity. Therefore CA VB is a drug target. Here a series of para-substituted tetrafluoro benzenesulfonamides were investigated as high affinity inhibitors of CA VB. Thermodynamic equilibrium binding measurements such as ITC and FTSA provide only the observed parameters. Dissection of binding-linked reactions is necessary to obtain the intrinsic parameters that in turn could be correlated with the chemical structure of the inhibitors. Intrinsic dissociation constants of the inhibitors were estimated and they reached 1 pM, one of the strongest binding reactions observed between any protein–ligand binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pantoliano MW, Petrella EC, Kwasnoski JD, Lobanov VS, Myslik J, Graf E, et al. High-density miniaturized thermal shift assays as a general strategy for drug discovery. J Biomol Screen. 2001;6:429–40.

    Article  CAS  Google Scholar 

  2. Niesen FH, Berglund H, Vedadi M. The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc. 2007;2:2212–21.

    Article  CAS  Google Scholar 

  3. Malik K, Matejtschuk P, Thelwell C, Burns CJ. Differential scanning fluorimetry: rapid screening of formulations that promote the stability of reference preparations. J Pharm Biomed Anal. 2013;77:163–6.

    Article  CAS  Google Scholar 

  4. Sekiguchi M, Kobashigawa Y, Moriguchi H, Kawasaki M, Yuda M, Teramura T, et al. High-throughput evaluation method for drug association with pregnane X receptor (PXR) using differential scanning fluorometry. J Biomol Screen. 2013;18:1084–91.

    Article  Google Scholar 

  5. Seo D-H, Jung J-H, Kim H-Y, Park C-S. Direct and simple detection of recombinant proteins from cell lysates using differential scanning fluorimetry. Anal Biochem. 2014;444:75–80.

    Article  CAS  Google Scholar 

  6. Cimmperman P, Baranauskienė L, Jachimovičiūtė S, Jachno J, Torresan J, Michailovienė V, et al. A quantitative model of thermal stabilization and destabilization of proteins by ligands. Biophys J. 2008;95:3222–31.

    Article  CAS  Google Scholar 

  7. Cimmperman P, Matulis D. Protein thermal denaturation measurements via a fluorescent dye. In: Podjarny A, Dejaegere A, Kiefer B, editors. Cambridge: Biophysical approaches determining ligand binding to biomolecular targets. RSC Publishing; 2011. p. 247–74.

  8. Matulis D, Kranz JK, Salemme FR, Todd MJ. Thermodynamic stability of carbonic anhydrase: measurements of binding affinity and stoichiometry using ThermoFluor. Biochemistry. 2005;44:5258–66.

    Article  CAS  Google Scholar 

  9. Matulis D, Baumann CG, Bloomfield VA, Lovrien RE. 1-anilino-8-naphthalene sulfonate as a protein conformational tightening agent. Biopolymers. 1999;49:451–8.

    Article  CAS  Google Scholar 

  10. Matulis D, Lovrien R. 1-Anilino-8-naphthalene sulfonate anion-protein binding depends primarily on ion pair formation. Biophys J. 1998;74:422–9.

    Article  CAS  Google Scholar 

  11. DeSantis K, Reed A, Rahhal R, Reinking J. Use of differential scanning fluorimetry as a high-throughput assay to identify nuclear receptor ligands. Nucl Recept Signal. 2012;10:e002.

    CAS  Google Scholar 

  12. Layton CJ, Hellinga HW. Thermodynamic analysis of ligand-induced changes in protein thermal unfolding applied to high-throughput determination of ligand affinities with extrinsic fluorescent dyes. Biochemistry. 2010;49:10831–41.

    Article  CAS  Google Scholar 

  13. Doyle ML, Louie G, Dal Monte PR, Sokoloski TD. Tight binding affinities determined from thermodynamic linkage to protons by titration calorimetry. Methods Enzymol. 1995;259:183–94.

    Article  CAS  Google Scholar 

  14. Shriver JW, Edmondson SP. Ligand-binding interactions and stability. Methods Mol Biol. 2009;490:135–64.

    Article  CAS  Google Scholar 

  15. Baker BM, Murphy KP. Evaluation of linked protonation effects in protein binding reactions using isothermal titration calorimetry. Biophys J. 1996;71(4):2049–55.

    Article  CAS  Google Scholar 

  16. Krishnamurthy VM, Kaufman GK, Urbach AR, Gitlin I, Gudiksen KL, Weibel DB, et al. Carbonic anhydrase as a model for biophysical and physical-organic studies of proteins and protein-ligand binding. Chem Rev. 2008;108:946–1051.

    Article  CAS  Google Scholar 

  17. Aggarwal M, Boone CD, Kondeti B, McKenna R. Structural annotation of human carbonic anhydrases. J Enzyme Inhib Med Chem. 2013;28:267–77.

    Article  Google Scholar 

  18. Kanamori K, Roberts JD. Nitrogen-15 nuclear magnetic resonance study of benzenesulfonamide and cyanate binding to carbonic anhydrase. Biochemistry. 1983;22:2658–64.

    Article  CAS  Google Scholar 

  19. Supuran CT, Scozzafava A. Carbonic anhydrase inhibitors. Curr Med Chem Immunol Endoc Metab Agents. 2001;1:61–97.

    Article  CAS  Google Scholar 

  20. Supuran CT, Scozzafava A. Carbonic anhydrases as targets for medicinal chemistry. Bioorg Med Chem. 2007;15:4336–50.

    Article  CAS  Google Scholar 

  21. Shah GN, Hewett-Emmett D, Grubb JH, Migas MC, Fleming RE, Waheed A, et al. Mitochondrial carbonic anhydrase CA VB: differences in tissue distribution and pattern of evolution from those of CA VA suggest distinct physiological roles. Proc Natl Acad Sci U S A. 2000;97:1677–82.

    Article  CAS  Google Scholar 

  22. Fujikawa-Adachi K, Nishimori I, Taguchi T, Onishi S. Human mitochondrial carbonic anhydrase VB. cDNA cloning, mRNA expression, subcellular localization, and mapping to chromosome x. J Biol Chem. 1999;274:21228–33.

    Article  CAS  Google Scholar 

  23. Dodgson SJ, Forster R 2nd, Storey BT. The role of carbonic anhydrase in hepatocyte metabolism. Ann N Y Acad Sci. 1984;429:516–24.

    Article  CAS  Google Scholar 

  24. Forster R 2nd, Dodgson SJ, Storey BT, Lin L. Measurement of carbonic anhydrase activity inside cells and subcellular particles. Ann N Y Acad Sci. 1984;429:415–29.

    Article  CAS  Google Scholar 

  25. Shah GN, Rubbelke TS, Hendin J, Nguyen H, Waheed A, Shoemaker JD, et al. Targeted mutagenesis of mitochondrial carbonic anhydrases VA and VB implicates both enzymes in ammonia detoxification and glucose metabolism. Proc Natl Acad Sci U S A. 2013;110:7423–8.

    Article  CAS  Google Scholar 

  26. Dodgson SJ, Forster R 2nd. Inhibition of CA V decreases glucose synthesis from pyruvate. Arch Biochem Biophys. 1986;251:198–204.

    Article  CAS  Google Scholar 

  27. Hazen SA, Waheed A, Sly WS, LaNoue KF, Lynch CJ. Differentiation-dependent expression of CA V and the role of carbonic anhydrase isozymes in pyruvate carboxylation in adipocytes. FASEB J. 1996;10:481–90.

    CAS  Google Scholar 

  28. Parkkila AK, Scarim AL, Parkkila S, Waheed A, Corbett JA, Sly WS. Expression of carbonic anhydrase V in pancreatic beta cells suggests role for mitochondrial carbonic anhydrase in insulin secretion. J Biol Chem. 1998;273:24620–3.

    Article  CAS  Google Scholar 

  29. Dodgson SJ. Inhibition of mitochondrial carbonic anhydrase and ureagenesis: a discrepancy examined. J Appl Physiol. 1987;63:2134–41.

    CAS  Google Scholar 

  30. Mokdad AH, Bowman BA, Ford ES, Vinicor F, Marks JS, Koplan JP. The continuing epidemics of obesity and diabetes in the United States. JAMA. 2001;286:1195–200.

    Article  CAS  Google Scholar 

  31. Pi-Sunyer FX. The obesity epidemic: pathophysiology and consequences of obesity. Obes Res. 2002;10(Suppl 2):97S–104S.

    Article  Google Scholar 

  32. Montani J-P, Antic V, Yang Z, Dulloo A. Pathways from obesity to hypertension: from the perspective of a vicious triangle. Int J Obes Relat Metab Disord. 2002;26(Suppl 2):S28–38.

    Article  CAS  Google Scholar 

  33. Scozzafava A, Supuran CT, Carta F. Antiobesity carbonic anhydrase inhibitors: a literature and patent review. Expert Opin Ther Pat. 2013;23:725–35.

    Article  CAS  Google Scholar 

  34. Shah GN, Morofuji Y, Banks WA, Price TO. High glucose-induced mitochondrial respiration and reactive oxygen species in mouse cerebral pericytes is reversed by pharmacological inhibition of mitochondrial carbonic anhydrases: implications for cerebral microvascular disease in diabetes. Biochem Biophys Res Commun. 2013;440:354–8.

    Article  CAS  Google Scholar 

  35. Güzel-Akdemir O, Biswas S, Lastra K, McKenna R, Supuran CT. Structural study of the location of the phenyl tail of benzene sulfonamides and the effect on human carbonic anhydrase inhibition. Bioorg Med Chem. 2013;21:6674–80.

    Article  Google Scholar 

  36. Durdagi S, Vullo D, Pan P, Kähkönen N, Määttä JA, Hytönen VP, et al. Protein-protein interactions: inhibition of mammalian carbonic anhydrases I-XV by the murine inhibitor of carbonic anhydrase and other members of the transferrin family. J Med Chem. 2012;55:5529–35.

    Article  CAS  Google Scholar 

  37. Marini AM, Maresca A, Aggarwal M, Orlandini E, Nencetti S, Da Settimo F, et al. Tricyclic sulfonamides incorporating benzothiopyrano[4,3-c]pyrazole and pyridothiopyrano[4,3-c]pyrazole effectively inhibit α- and β-carbonic anhydrase: x-ray crystallography and solution investigations on 15 isoforms. J Med Chem. 2012;55:9619–29.

    Article  CAS  Google Scholar 

  38. Riafrecha LE, Rodríguez OM, Vullo D, Supuran CT, Colinas PA. Synthesis of C-cinnamoyl glycosides and their inhibitory activity against mammalian carbonic anhydrases. Bioorg Med Chem. 2013;21:1489–94.

    Article  CAS  Google Scholar 

  39. Balboni G, Congiu C, Onnis V, Maresca A, Scozzafava A, Winum J-Y, et al. Flavones and structurally related 4-chromenones inhibit carbonic anhydrases by a different mechanism of action compared to coumarins. Bioorg Med Chem Lett. 2012;22:3063–6.

    Article  CAS  Google Scholar 

  40. Guzel O, Innocenti A, Scozzafava A, Salman A, Parkkila S, Hilvo M, et al. Carbonic anhydrase inhibitors: synthesis and inhibition studies against mammalian isoforms I-XV with a series of 2-(hydrazinocarbonyl)-3-substituted-phenyl-1H-indole-5-sulfonamides. Bioorg Med Chem. 2008;16:9113–20.

    Article  Google Scholar 

  41. Parkkila S, Vullo D, Maresca A, Carta F, Scozzafava A, Supuran CT. Serendipitous fragment-based drug discovery: ketogenic diet metabolites and statins effectively inhibit several carbonic anhydrases. Chem Commun. 2012;48:3551–3.

    Article  CAS  Google Scholar 

  42. Carta F, Vullo D, Maresca A, Scozzafava A, Supuran CT. New chemotypes acting as isozyme-selective carbonic anhydrase inhibitors with low affinity for the offtarget cytosolic isoform II. Bioorg Med Chem Lett. 2012;22:2182–5.

    Article  CAS  Google Scholar 

  43. Guzel O, Innocenti A, Scozzafava A, Salman A, Supuran CT. Carbonic anhydrase inhibitors. Aromatic/heterocyclic sulfonamides incorporating phenacetyl, pyridylacetyl and thienylacetyl tails act as potent inhibitors of human mitochondrial isoforms VA and VB. Bioorg Med Chem. 2009;17:4894–9.

    Article  Google Scholar 

  44. Maresca A, Supuran CT. (R)-/(S)-10-camphorsulfonyl-substituted aromatic/heterocyclic sulfonamides selectively inhibit mitochondrial over cytosolic carbonic anhydrases. Bioorg Med Chem Lett. 2011;21:1334–7.

    Article  CAS  Google Scholar 

  45. Parkkila S, Innocenti A, Kallio H, Hilvo M, Scozzafava A, Supuran CT. The protein tyrosine kinase inhibitors imatinib and nilotinib strongly inhibit several mammalian alpha-carbonic anhydrase isoforms. Bioorg Med Chem Lett. 2009;19:4102–6.

    Article  CAS  Google Scholar 

  46. Arechederra RL, Waheed A, Sly WS, Supuran CT, Minteer SD. Effect of sulfonamides as carbonic anhydrase VA and VB inhibitors on mitochondrial metabolic energy conversion. Bioorg Med Chem. 2013;21:1544–8.

    Article  CAS  Google Scholar 

  47. Dudutienė V, Zubrienė A, Smirnov A, Gylytė J, Timm D, Manakova E, et al. 4-Substituted-2,3,5,6-tetrafluorobenzenesulfonamides as inhibitors of carbonic anhydrases I, II, VII, XII, and XIII. Bioorg Med Chem. 2013;21:2093–106.

    Article  Google Scholar 

  48. Dudutienė V, Matulienė J, Smirnov A, Timm DD, Zubrienė A, Baranauskienė L, et al. Discovery and characterization of novel selective inhibitors of carbonic anhydrase IX. J Med Chem. 2014;57:9435–46.

    Article  Google Scholar 

  49. Baranauskienė L, Hilvo M, Matulienė J, Golovenko D, Manakova E, Dudutienė V, et al. Inhibition and binding studies of carbonic anhydrase isozymes I, II and IX with benzimidazo[1,2-c][1–3]thiadiazole-7-sulphonamides. J Enzyme Inhib Med Chem. 2010;25:863–70.

    Article  Google Scholar 

  50. Baranauskienė L, Matulis D. Intrinsic thermodynamics of ethoxzolamide inhibitor binding to human carbonic anhydrase XIII. BMC Biophys. 2012;5:12.

    Article  Google Scholar 

  51. Jogaitė V, Zubrienė A, Michailovienė V, Gylytė J, Morkūnaitė V, Matulis D. Characterization of human carbonic anhydrase XII stability and inhibitor binding. Bioorg Med Chem. 2013;21:1431–6.

    Article  Google Scholar 

  52. Kazokaitė J, Milinaviciūtė G, Smirnovienė J, Matulienė J, Matulis D. Intrinsic binding of 4-substituted-2,3,5,6-tetrafluorobenezenesulfonamides to native and recombinant human carbonic anhydrase VI. FEBS J. 2015;282:972–83.

    Article  Google Scholar 

  53. Morkunaitė V, Gylytė J, Zubrienė A, Baranauskienė L, Kisonaitė M, Michailovienė V, et al. Intrinsic thermodynamics of sulfonamide inhibitor binding to human carbonic anhydrases I and II. J Enzyme Inhib Med Chem. 2015;30:204–11.

    Article  Google Scholar 

  54. Pilipuitytė V, Matulis D. Intrinsic thermodynamics of trifluoromethanesulfonamide and ethoxzolamide binding to human carbonic anhydrase VII. J Mol Recognit. 2015;28:166–72.

    Article  Google Scholar 

  55. Khalifah RG. Carbon dioxide hydration activity of carbonic anhydrase: paradoxical consequences of the unusually rapid catalysis. Proc Natl Acad Sci U S A. 1973;70:1986–9.

    Article  CAS  Google Scholar 

  56. Supuran CT. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov. 2008;7:168–81.

    Article  CAS  Google Scholar 

  57. Supuran CT. Carbonic anhydrases–an overview. Curr Pharm Des. 2008;14:603–14.

    Article  CAS  Google Scholar 

  58. Copeland RA. Evaluation of enzyme inhibitors in drug discovery a guide for medicinal chemists and pharmacologists. Hoboken: Wiley; 2013.

    Book  Google Scholar 

  59. Brandts JF, Lin LN. Study of strong to ultratight protein interactions using differential scanning calorimetry. Biochemistry. 1990;29:6927–40.

    Article  CAS  Google Scholar 

  60. Baker BM, Murphy KP. Dissecting the energetics of a protein–protein interaction: the binding of ovomucoid third domain to elastase. J Mol Biol. 1997;268:557–69.

    Article  CAS  Google Scholar 

  61. Bruylants G, Wintjens R, Looze Y, Redfield C, Bartik K. Protonation linked equilibria and apparent affinity constants: the thermodynamic profile of the alpha-chymotrypsin-proflavin interaction. Eur Biophys J. 2007;37:11–8.

    Article  CAS  Google Scholar 

  62. Lobo BA, Koe GS, Koe JG, Middaugh CR. Thermodynamic analysis of binding and protonation in DOTAP/DOPE (1:1): DNA complexes using isothermal titration calorimetry. Biophys Chem. 2003;104:67–78.

    Article  CAS  Google Scholar 

  63. Luque I, Freire E. Structural parameterization of the binding enthalpy of small ligands. Proteins. 2002;49:181–90.

    Article  CAS  Google Scholar 

  64. Luque I, Leavitt SA, Freire E. The linkage between protein folding and functional cooperativity: two sides of the same coin? Annual review of biophysics and biomolecular structure. Annu Rev. 2002;31:235–56.

    CAS  Google Scholar 

  65. McCrary BS, Bedell J, Edmondson SP, Shriver JW. Linkage of protonation and anion binding to the folding of Sac7d. J Mol Biol. 1998;276:203–24.

    Article  CAS  Google Scholar 

  66. Zubrienė A, Gutkowska M, Matulienė J, Chaleckis R, Michailovienė V, Voroncova A, et al. Thermodynamics of radicicol binding to human Hsp90 alpha and beta isoforms. Biophys Chem. 2010;152:153–63.

    Article  Google Scholar 

  67. Baum B, Muley L, Smolinski M, Heine A, Hangauer D, Klebe G. Non-additivity of functional group contributions in protein-ligand binding: a comprehensive study by crystallography and isothermal titration calorimetry. J Mol Biol. 2010;397:1042–54.

    Article  CAS  Google Scholar 

  68. Klebe G. Applying thermodynamic profiling in lead finding and optimization. Nat Rev Drug Discov. 2015;14:95–110.

    Article  CAS  Google Scholar 

  69. Krishnamurthy VM, Bohall BR, Kim C-Y, Moustakas DT, Christianson DW, Whitesides GM. Thermodynamic parameters for the association of fluorinated benzenesulfonamides with bovine carbonic anhydrase II. Chem Asian J. 2007;2:94–105.

    Article  CAS  Google Scholar 

  70. Whitesides GM, Krishnamurthy VM. Designing ligands to bind proteins. Q Rev Biophys. 2005;38:385–95.

    Article  CAS  Google Scholar 

  71. Velazquez-Campoy A. Geometric features of the Wiseman isotherm in isothermal titration calorimetry. J Therm Anal Calorim 2015;1–7. doi:10.1007/s10973-015-4775-x.

Download references

Acknowledgements

This research was funded by the European Social Fund under the Global Grant measure (No. VP1-3.1.-SMM-07-K-02-009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daumantas Matulis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasiliauskaitė, A., Časaitė, V., Juozapaitienė, V. et al. Thermodynamic characterization of human carbonic anhydrase VB stability and intrinsic binding of compounds. J Therm Anal Calorim 123, 2191–2200 (2016). https://doi.org/10.1007/s10973-015-5073-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-5073-3

Keywords

Navigation