Skip to main content

Assessing Shifts of Mediterranean and Arid Climates Under RCP4.5 and RCP8.5 Climate Projections in Europe

  • Chapter
  • First Online:
Meteorology and Climatology of the Mediterranean and Black Seas

Abstract

The Mediterranean basin is the richest biodiversity region in Europe and a global hotspot of biological diversity. In spite of that, anthropogenic climate change is one of the most serious concerns for nature conservation in this region. One of the climatic threats is represented by shifts of the Mediterranean climate and expansion of the arid climate. In this paper, we present an assessment of changes in the spatial range of the Mediterranean climate in Europe and the conversion into arid climate under different greenhouse gas forcings, namely RCP4.5 and RCP8.5. We used 11 simulations in two future 30-year periods of state-of-the-art regional climate models from EURO-CORDEX. Our results indicate that by the end of the century under RCP8.5 the present Mediterranean climate zone is projected to contract by 16%, i.e. an area (~ 157,000 km2) equivalent to half the size of Italy. This compares with the less severe scenario RCP4.5 that projected only a 3% reduction. In addition, the Mediterranean climate zone is projected to expand to other zones by an area equivalent to 24 and 50% of its present extent under RCP4.5 and RCP8.5, respectively. Our study indicates that expansion of the arid zone is almost always the cause for contraction of the Mediterranean zone. Under RCP8.5 the arid zone is projected to increase by more than twice its present extent, equivalent to three times the size of Greece. Results of this study are useful for identifying (1) priority zones for biodiversity conservation, i.e. stable Mediterranean climate zones, (2) zones requiring assisted adaptation, such as establishment of new protected areas, implementation of buffer zones around protected areas and creating ecological corridors connecting stable Mediterranean zones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., et al. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259(4), 660–684. https://doi.org/10.1016/j.foreco.2009.09.001.

    Article  Google Scholar 

  • Aschmann, H. (1973). Distribution and peculiarity of Mediterranean ecosystems. In F. di Castri & H. A. Mooney (Eds.), Mediterranean type ecosystems, Ecological Studies (Vol. 7, pp. 11–19). Berlin: Springer.

    Google Scholar 

  • Barredo, J. I., Caudullo, G., & Dosio, A. (2016). Mediterranean habitat loss under future climate conditions: Assessing impacts on the Natura 2000 protected area network. Applied Geography, 75, 83–92. https://doi.org/10.1016/j.apgeog.2016.08.003.

    Article  Google Scholar 

  • Barredo, J. I., Strona, G., de Rigo, D., Caudullo, G., Stancanelli, G., & San-Miguel-Ayanz, J. (2015). Assessing the potential distribution of insect pests: case studies on large pine weevil (Hylobius abietis L) and horse-chestnut leaf miner (Cameraria ohridella) under present and future climate conditions in European forests. EPPO Bulletin, 45(2), 273–281. https://doi.org/10.1111/epp.12208.

    Article  Google Scholar 

  • Benito GarzĂłn, M., Sánchez de Dios, R., & Sainz Ollero, H. (2008). Effects of climate change on the distribution of Iberian tree species. Applied Vegetation Science, 11(2), 169–178.

    Article  Google Scholar 

  • Blois, J. L., Zarnetske, P. L., Fitzpatrick, M. C., & Finnegan, S. (2013). Climate change and the past, present, and future of biotic interactions. Science, 341(6145), 499–504. https://doi.org/10.1126/science.1237184.

    Article  Google Scholar 

  • Bohn, U., Gollub, G., Hettwer, C., Neuhäuslová, Z., Raus, T., SchlĂĽter, H., et al. (2004). Map of the Natural Vegetation of Europe, Scale 1:2,500,000, Interactive CD-ROM. MĂĽnster: Landwirtschaftsverlag.

    Google Scholar 

  • Camia, A., & Amatulli, G. (2009). Weather factors and fire danger in the Mediterranean. In E. Chuvieco (Ed.), Earth observation of wildland fires in Mediterranean ecosystems (pp. 71–82). Berlin: Springer.

    Chapter  Google Scholar 

  • Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1), 37–46. https://doi.org/10.1177/001316446002000104.

    Article  Google Scholar 

  • Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T., Friedlingstein, P., et al. (2013). Long-term climate change: projections, commitments and irreversibility. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, et al. (Eds.). Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1029–1136). Cambridge: Cambridge University Press.

    Google Scholar 

  • Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37(1), 35–46. https://doi.org/10.1016/0034-4257(91)90048-B.

    Article  Google Scholar 

  • Council of the European Communities (1992). Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora (Vol. 206, pp. 1–66). Official Journal of the European Communities.

    Google Scholar 

  • Dosio, A. (2016). Projections of climate change indices of temperature and precipitation from an ensemble of bias-adjusted high-resolution EURO-CORDEX regional climate models. Journal of Geophysical Research: Atmospheres, 121(10), 5488–5511. https://doi.org/10.1002/2015JD024411.

    Google Scholar 

  • Dosio, A. (2017). PESETA III—Task 1: Climate change projections, bias-adjustment, and selection of model runs (p. 25). Ispra: European Commission (in press).

    Google Scholar 

  • Dosio, A., & Paruolo, P. (2011). Bias correction of the ENSEMBLES high-resolution climate change projections for use by impact models: Evaluation on the present climate. Journal of Geophysical Research: Atmospheres, 116(D16), D16106. https://doi.org/10.1029/2011jd015934.

  • Dosio, A., Paruolo, P., & Rojas, R. (2012). Bias correction of the ENSEMBLES high resolution climate change projections for use by impact models: Analysis of the climate change signal. Journal of Geophysical Research: Atmospheres, 117(D17), D17110. https://doi.org/10.1029/2012jd017968.

    Article  Google Scholar 

  • EEA. (2002). Europe’s biodiversity—biogeographical regions in Europe. Copenhagen: European Environment Agency.

    Google Scholar 

  • Ekström, M., Grose, M. R., & Whetton, P. H. (2015). An appraisal of downscaling methods used in climate change research. Wiley Interdisciplinary Reviews: Climate Change, 6(3), 301–319. https://doi.org/10.1002/wcc.339.

    Google Scholar 

  • Elguindi, N., Grundstein, A., Bernardes, S., Turuncoglu, U., & Feddema, J. (2014). Assessment of CMIP5 global model simulations and climate change projections for the 21st century using a modified Thornthwaite climate classification. Climatic Change, 122(4), 523–538. https://doi.org/10.1007/s10584-013-1020-0.

    Article  Google Scholar 

  • European Commission (2017a). Green Infrastructure. http://ec.europa.eu/environment/nature/ecosystems/. Accessed 21 July 2017.

  • European Commission (2017b). Natura 2000 network. http://ec.europa.eu/environment/nature/natura2000/. Accessed 06 Aug 2017.

  • European Commission (2017c). Peseta III. https://ec.europa.eu/jrc/en/peseta. Accessed 30 Aug 2017.

  • FAO. (2012). Global ecological zones for FAO forest reporting: 2010 update (p. 42). Rome: Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Gallardo, C., Gil, V., Hagel, E., Tejeda, C., & de Castro, M. (2013). Assessment of climate change in Europe from an ensemble of regional climate models by the use of Köppen–Trewartha classification. International Journal of Climatology, 33(9), 2157–2166. https://doi.org/10.1002/joc.3580.

    Article  Google Scholar 

  • Gao, X., & Giorgi, F. (2008). Increased aridity in the Mediterranean region under greenhouse gas forcing estimated from high resolution simulations with a regional climate model. Global and Planetary Change, 62(3), 195–209. https://doi.org/10.1016/j.gloplacha.2008.02.002.

    Article  Google Scholar 

  • Garcia, R. A., Cabeza, M., Rahbek, C., & AraĂşjo, M. B. (2014). Multiple dimensions of climate change and their implications for biodiversity. Science, 344(6183), 1247579. https://doi.org/10.1126/science.1247579.

    Article  Google Scholar 

  • Giorgi, F. (2006). Climate change hot-spots. Geophysical Research Letters, 33(8), L08707. https://doi.org/10.1029/2006GL025734.

  • Giorgi, F., Jones, C., & Asrar, G. R. (2009). Addressing climate information needs at the regional level: The CORDEX framework. Bulletin of the World Meteorological Organization, 58(3), 175–183.

    Google Scholar 

  • Giorgi, F., & Lionello, P. (2008). Climate change projections for the Mediterranean region. Global and Planetary Change, 63(2–3), 90–104. https://doi.org/10.1016/j.gloplacha.2007.09.005.

    Article  Google Scholar 

  • Guiot, J., & Cramer, W. (2016). Climate change: The 2015 Paris Agreement thresholds and Mediterranean basin ecosystems. Science, 354(6311), 465–468. https://doi.org/10.1126/science.aah5015.

    Article  Google Scholar 

  • Hantel, M. (1989). 13.4.2 The Köppen climate classification. In G. Fischer (Ed.), Climatology. Part 2 (Vol. 4c2, pp. 462–465, Landolt-Bo¨rnstein—Group V Geophysics). Springer, Berlin.

    Google Scholar 

  • Hellmann, J. J., Byers, J. E., Bierwagen, B. G., & Dukes, J. S. (2008). Five potential consequences of climate change for invasive species. Conservation Biology, 22(3), 534–543. https://doi.org/10.1111/j.1523-1739.2008.00951.x.

    Article  Google Scholar 

  • Hoerling, M., Eischeid, J., Perlwitz, J., Quan, X., Zhang, T., & Pegion, P. (2011). On the increased frequency of Mediterranean drought. Journal of Climate, 25(6), 2146–2161. https://doi.org/10.1175/jcli-d-11-00296.1.

    Article  Google Scholar 

  • Hudson, W. D., & Ramm, C. V. (1987). Correct formulation of the Kappa coefficient of agreement. Photogrammetric Engineering and Remote Sensing, 53, 421–422.

    Google Scholar 

  • IPCC (2013). Summary for Policymakers. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, et al. (Eds.). Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (p. 29). Cambridge: Cambridge University Press.

    Google Scholar 

  • IPCC (2014). Climate change 2014: impacts, adaptation, and vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer, L. M., et al. (2014). EURO-CORDEX: new high-resolution climate change projections for European impact research. Regional Environmental Change, 14(2), 563–578. https://doi.org/10.1007/s10113-013-0499-2.

    Article  Google Scholar 

  • Jylhä, K., Tuomenvirta, H., Ruosteenoja, K., Niemi-Hugaerts, H., Keisu, K., & Karhu, J. A. (2010). Observed and projected future shifts of climatic zones in Europe and their use to visualize climate change information. Weather, Climate, and Society, 2(2), 148–167. https://doi.org/10.1175/2010wcas1010.1.

    Article  Google Scholar 

  • Keenan, T., Maria Serra, J., Lloret, F., Ninyerola, M., & Sabate, S. (2011). Predicting the future of forests in the Mediterranean under climate change, with niche- and process-based models: CO2 matters! Global Change Biology, 17(1), 565–579. https://doi.org/10.1111/j.1365-2486.2010.02254.x.

    Article  Google Scholar 

  • Klausmeyer, K. R., & Shaw, M. R. (2009). Climate change, habitat loss, protected areas and the climate adaptation potential of species in mediterranean ecosystems worldwide. PLoS One, 4(7), e6392.

    Article  Google Scholar 

  • Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World Map of the Köppen–Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 259–263. https://doi.org/10.1127/0941-2948/2006/0130.

    Article  Google Scholar 

  • Lindner, M., Maroschek, M., Netherer, S., Kremer, A., Barbati, A., Garcia-Gonzalo, J., et al. (2010). Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management, 259(4), 698–709. https://doi.org/10.1016/j.foreco.2009.09.023.

    Article  Google Scholar 

  • Maiorano, L., Amori, G., Capula, M., Falcucci, A., Masi, M., Montemaggiori, A., et al. (2013). Threats from climate change to terrestrial vertebrate hotspots in Europe. PLoS One, 8(9), e74989. https://doi.org/10.1371/journal.pone.0074989.

    Article  Google Scholar 

  • Mastrandrea, M. D., Field, C. B., Stocker, T. F., Edenhofer, O., Ebi, K. L., Frame, D. J., et al. (2010). Guidance note for lead authors of the IPCC Fifth assessment report on consistent treatment of uncertainties. Intergovernmental Panel on Climate Change (IPCC).

    Google Scholar 

  • MĂ©dail, F., & QuĂ©zel, P. (1997). Hot-spots analysis for conservation of plant biodiversity in the Mediterranean Basin. Annals of the Missouri Botanical Garden, 84(1), 112–127. https://doi.org/10.1046/j.1523-1739.1999.98467.x.

    Article  Google Scholar 

  • MĂ©dail, F., & QuĂ©zel, P. (1999). Biodiversity hotspots in the Mediterranean Basin: Setting global conservation priorities. Conservation Biology, 13(6), 1510–1513. https://doi.org/10.1046/j.1523-1739.1999.98467.x.

    Article  Google Scholar 

  • Migliavacca, M., Dosio, A., Camia, A., Hobourg, R., Houston-Durrant, T., Kaiser, J. W., et al. (2013a). Modeling biomass burning and related carbon emissions during the 21st century in Europe. Journal of Geophysical Research: Biogeosciences, 118(4), 2013JG002444. https://doi.org/10.1002/2013jg002444.

    Google Scholar 

  • Migliavacca, M., Dosio, A., Kloster, S., Ward, D. S., Camia, A., Houborg, R., et al. (2013b). Modeling burned area in Europe with the Community Land Model. Journal of Geophysical Research: Biogeosciences, 118(1), 265–279. https://doi.org/10.1002/jgrg.20026.

    Google Scholar 

  • Moriondo, M., Good, P., Durao, R., Bindi, M., Giannakopoulos, C., & Corte-Real, J. (2006). Potential impact of climate change on fire risk in the Mediterranean area. Climate Research, 31(1), 85–95. https://doi.org/10.3354/cr031085.

    Article  Google Scholar 

  • Moritz, C., & Agudo, R. (2013). The future of species under climate change: Resilience or decline? Science, 341(6145), 504–508. https://doi.org/10.1126/science.1237190.

    Article  Google Scholar 

  • Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van Vuuren, D. P., et al. (2010). The next generation of scenarios for climate change research and assessment. Nature, 463(7282), 747–756. https://doi.org/10.1038/nature08823.

    Article  Google Scholar 

  • Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853–858. https://doi.org/10.1038/35002501.

    Article  Google Scholar 

  • Nakicenovic, N., & Swart, R. (2000). Special report on emissions scenarios. Cambridge: Cambridge University Press.

    Google Scholar 

  • Netherer, S., & Schopf, A. (2010). Potential effects of climate change on insect herbivores in European forests—general aspects and the pine processionary moth as specific example. Forest Ecology and Management, 259(4), 831–838. https://doi.org/10.1016/j.foreco.2009.07.034.

    Article  Google Scholar 

  • Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., et al. (2001). Terrestrial ecoregions of the world: A new map of life on Earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience, 51(11), 933–938. https://doi.org/10.1641/0006-3568(2001)051[0933:teotwa]2.0.co;2.

    Article  Google Scholar 

  • Ă–nol, B., Bozkurt, D., Turuncoglu, U. U., Sen, O. L., & Dalfes, H. N. (2014). Evaluation of the twenty-first century RCM simulations driven by multiple GCMs over the Eastern Mediterranean-Black Sea region. Climate Dynamics, 42(7), 1949–1965. https://doi.org/10.1007/s00382-013-1966-7.

    Article  Google Scholar 

  • Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen–Geiger climate classification. Hydrology and Earth System Sciences, 4(2), 439–473. https://doi.org/10.5194/hessd-4-439-2007.

    Article  Google Scholar 

  • Phillips, T. J., & Bonfils, C. J. W. (2015). Köppen bioclimatic evaluation of CMIP historical climate simulations. Environmental Research Letters, 10(6), 064005.

    Article  Google Scholar 

  • Rajaud, A., & Noblet-DucoudrĂ©, N. (2017). Tropical semi-arid regions expanding over temperate latitudes under climate change. Climatic Change, 144(4), 703–719. https://doi.org/10.1007/s10584-017-2052-7.

    Article  Google Scholar 

  • Rohli, R. V., Andrew Joyner, T., Reynolds, S. J., Shaw, C., & Vázquez, J. R. (2015a). Globally extended Köppen–Geiger climate classification and temporal shifts in terrestrial climatic types. Physical Geography, 36(2), 142–157. https://doi.org/10.1080/02723646.2015.1016382.

    Article  Google Scholar 

  • Rohli, R. V., Joyner, T. A., Reynolds, S. J., & Ballinger, T. J. (2015b). Overlap of global Köppen–Geiger climates, biomes, and soil orders. Physical Geography, 36(2), 158–175. https://doi.org/10.1080/02723646.2015.1016384.

    Article  Google Scholar 

  • Rubel, F., & Kottek, M. (2010). Observed and projected climate shifts 1901–2100 depicted by world maps of the Köppen–Geiger climate classification. Meteorologische Zeitschrift, 19(2), 135–141. https://doi.org/10.1127/0941-2948/2010/0430.

    Article  Google Scholar 

  • Russell, R. J. (1931). Dry climates of the United States: I climatic map. University of California, Publications in Geography, 5, 1–41.

    Google Scholar 

  • Sillmann, J., Kharin, V. V., Zwiers, F. W., Zhang, X., & Bronaugh, D. (2013). Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. Journal of Geophysical Research: Atmospheres, 118(6), 2473–2493. https://doi.org/10.1002/jgrd.50188.

    Google Scholar 

  • Spangenberg, J. H., Bondeau, A., Carter, T. R., Fronzek, S., Jaeger, J., Jylhä, K., et al. (2012). Scenarios for investigating risks to biodiversity. Global Ecology and Biogeography, 21(1), 5–18. https://doi.org/10.1111/j.1466-8238.2010.00620.x.

    Article  Google Scholar 

  • Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93(4), 485–498. https://doi.org/10.1175/BAMS-D-11-00094.1.

    Article  Google Scholar 

  • Thuiller, W., Lavorel, S., & AraĂşjo, M. B. (2005). Niche properties and geographical extent as predictors of species sensitivity to climate change. Global Ecology and Biogeography, 14(4), 347–357. https://doi.org/10.1111/j.1466-822X.2005.00162.x.

    Article  Google Scholar 

  • Urban, M. C., Bocedi, G., Hendry, A. P., Mihoub, J.-B., Pe’er, G., Singer, A., et al. (2016). Improving the forecast for biodiversity under climate change. Science, 353(6304), aad8466. https://doi.org/10.1126/science.aad8466.

    Article  Google Scholar 

  • Urban, M., Tewksbury, J., & Sheldon, K. (2012). On a collision course: competition and dispersal differences create no-analogue communities and cause extinctions during climate change. Proceedings of the Royal Society B: Biological Sciences, 282, 1–9. https://doi.org/10.1098/rspb.2011.2367.

    Article  Google Scholar 

  • van der Linden, P., & Mitchell, J. F. B. (Eds.). (2009). ENSEMBLES: Climate change and its impacts: Summary of research and results from the ENSEMBLES project. FitzRoy Road, Exeter EX1 3PB. UK: Met Office Hadley Centre.

    Google Scholar 

  • van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., et al. (2011). The representative concentration pathways: an overview. Climatic Change, 109(1), 5. https://doi.org/10.1007/s10584-011-0148-z.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the PESETA III Project (Projection of Economic impacts of climate change in Sectors of the European Union based on bottom-up Analysis). The study uses climate data from the EURO-CORDEX project. We would like to thank two anonymous reviewers who have provided helpful comments on the refinement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José I. Barredo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barredo, J.I., Mauri, A., Caudullo, G., Dosio, A. (2019). Assessing Shifts of Mediterranean and Arid Climates Under RCP4.5 and RCP8.5 Climate Projections in Europe. In: Vilibić, I., Horvath, K., Palau, J. (eds) Meteorology and Climatology of the Mediterranean and Black Seas. Pageoph Topical Volumes. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-11958-4_14

Download citation

Publish with us

Policies and ethics