Skip to main content

Ecotoxicology of Deep Ocean Spills

  • Chapter
  • First Online:
Deep Oil Spills

Abstract

Central issues in the ecotoxicology of oil spills in the subsea are the unknown sensitivity of deep ocean species and the complexity and diversity of habitats that may be affected in subsea, offshore, and coastal environments. This chapter reviews and discusses the unique aspects of assessing spill risks and impacts to deep ocean species and approaches for toxicity extrapolation across a diversity of ecological communities and environments. The focus of this chapter is on aquatic species, based primarily on the Gulf of Mexico (GoM) with information and experiences drawn from the Deepwater Horizon (DWH) oil spill.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Awkerman JS, Raimondo S, Jackson CR, Barron MG (2014) Augmenting aquatic species sensitivity distributions with interspecies toxicity estimation models. Environ Toxicol Chem 33:688–695

    Article  CAS  Google Scholar 

  • Baker MC, Steinhoff MA, Fricano GF (2017) Integrated effects of the Deepwater Horizon oil spill on nearshore ecosystems. Mar Ecol Prog Ser 576:219–234

    Article  Google Scholar 

  • Barron MG (2017) Photoenhanced toxicity of petroleum to aquatic invertebrates and fish. Arch Environ Contam Toxicol 73:40–46

    Article  CAS  Google Scholar 

  • Barron MG (2012) Ecological impacts of the Deepwater Horizon oil spill: implications for immunotoxicity. Toxicol Pathol 40:315–320

    Article  CAS  Google Scholar 

  • Bejarano AC, Barron MG (2014) Development and practical application of petroleum and dispersant interspecies correlation models for aquatic species. Environ Sci Technol 48(8):4564–4572

    Article  CAS  Google Scholar 

  • Bejarano AC, Barron MG (2016) Aqueous and tissue residue-based interspecies correlation estimation models provide conservative hazard estimates for aromatic compounds. Environ Toxicol Chem 35(1):56–64

    Article  CAS  Google Scholar 

  • Bejarano AC, Farr JK, Jenne P, Chu V, Hielscher A (2016) The chemical aquatic fate and effects database (CAFE), a tool that supports assessments of chemical spills in aquatic environments. Environ Toxicol Chem 35(6):1576–1586

    Article  CAS  Google Scholar 

  • Bejarano AC, Gardiner WW, Barron MG, Word JQ (2017) Relative sensitivity of Arctic species to physically and chemically dispersed oil determined from three hydrocarbon measures of aquatic toxicity. Mar Pollut Bull 122:316–322

    Article  CAS  Google Scholar 

  • Bejarano AC (2018) Critical review and analysis of aquatic toxicity data on oil spill dispersants. Environ Toxicol Chem 9999:1–13

    Google Scholar 

  • Beyer J, Trannum HC, Bakke T, Hodson PV, Collier TK (2016) Environmental effects of the Deepwater Horizon oil spill: a review. Mar Pollut Bull 110:28–51

    Article  CAS  Google Scholar 

  • Bock M, Robinson H, Wenning R, French-McCay D, Rowe J, Hayward Walker A (2018) Comparative risk assessment of oil spill response options for a Deepwater oil well blowout: part II. Relative risk methodology. Mar Pollut Bull 133:984–1000

    Article  CAS  Google Scholar 

  • Brown A, Thatje S, Hauton C (2017) The effects of temperature and hydrostatic pressure on metal toxicity: insights into toxicity in the deep sea. Environ Sci Technol 51:10222–10231

    Article  CAS  Google Scholar 

  • Camilli R, Reddy CM, Yoerger DR, Van Mooy BAS, Jakuba MV, Kinsey JC, McIntyre CP, Sylva SP, Maloney JV (2010) Tracking hydrocarbon plume transport and biodegradation at Deepwater Horizon. Science 330:201–204

    Article  CAS  Google Scholar 

  • Carney RS (1994) Consideration of the oasis analogy for chemosynthetic communities at Gulf of Mexico hydrocarbon vents. Geo-Mar Lett 14:149–159

    Article  Google Scholar 

  • Carriger JF, Barron MG (2011) Minimizing risks from spilled oil to ecosystem services using influence diagrams: the Deepwater Horizon spill response. Environ Sci Technol 45:7631–7639

    Article  CAS  Google Scholar 

  • CERC (1984) Shore protection manual. Vol. 1. Coastal Engineering Research Center, Department of Army. Vicksburg, MS

    Google Scholar 

  • Chiasson SC, Taylor CM (2017) Effects of crude oil and oil/dispersant mixture on growth and expression of vitellogenin and heat shock protein 90 in blue crab, Callinectes sapidus, juveniles. Mar Pollut Bull 119:128–132

    Article  CAS  Google Scholar 

  • Echols BS, Smith AJ, Gardinali PR, Rand GM (2015) Acute aquatic toxicity studies of Gulf of Mexico water samples collected following the Deepwater Horizon incident (May 12, 2010 to December 11, 2010). Chemosphere 120:131–137

    Article  CAS  Google Scholar 

  • Fisher CR, Demopoulos AWJ, Cordes EE, Baums IB, White HK, Bourque JR (2014) Coral communities as indicators of ecosystem-level impacts of the Deepwater Horizon spill. Bioscience 64:796–807

    Article  Google Scholar 

  • French-McCay DP, Crowley D, Rowe JJ, Bock M, Robinson H, Wenning R, Hayward Walker A, Joeckel J, Nedwed TJ, Parkerton TF (2018a) Comparative risk assessment of oil spill response options for a Deepwater oil well blowout: part 1. Oil spill modeling. Mar Pollut Bull 133:1001–1015

    Article  CAS  Google Scholar 

  • French-McCay DP, Horn M, Li Z, Jayko K, Spaulding ML, Crowley D, Mendelsohn D (2018b) Modeling distribution, fate, and concentrations of Deepwater Horizon oil in subsurface waters of the Gulf of Mexico. Chapter 31. In: Oil spill Environmental forensics case studies. Elsevier, pp 638–635

    Google Scholar 

  • Frometa J, DeLorenzo ME, Pisarski EC, Etnoyer PJ (2017) Toxicity of oil and dispersant on the deep water gorgonian octocoral Swiftia exserta, with implications for the effects of the Deepwater Horizon oil spill. Mar Pollut Bull 122:91–99

    Article  CAS  Google Scholar 

  • Gallaway BJ, Cole JG, Martin LR (2001) The deep sea Gulf of Mexico: an overview and guide. U.S. Department of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 2001-065. 27 pp.

    Google Scholar 

  • Gerard F, Fisher CR (2018) Long-term impact of the Deepwater Horizon oil spill on deep-sea corals detected after seven years of monitoring. Biol Conserv 225:117–127

    Article  Google Scholar 

  • Gerard F, Shea K, Fisher CR (2018) Projecting the recovery of a long-lived deep-sea coral species after the Deepwater Horizon oil spill using state-structured models. J Appl Ecol 2018:1–11

    Google Scholar 

  • Gower JFR, King SA (2011) Distribution of floating Sargassum in the Gulf of Mexico and the Atlantic Ocean mapped using MERIS. Int J Remote Sens 32:1917–1929

    Article  Google Scholar 

  • Incardona JP, Gardner LD, Linbo TL, Brown TL, Esbaugh AJ, Mager EM, Stieglitz JD, French BL, JS Labenia JS, Laetz CA, Tagal M, Sloan CA, Elizur A, Benetti DD, Grosell M, Block BA, Scholz NL (2014) Deepwater Horizon impacts the developing hearts of large predatory pelagic fish. Proc Natl Acad Sci 111:E1510–E1518

    Article  CAS  Google Scholar 

  • Jewett SC, Dean TA, Woodin BR, Hoberg MK, Stegeman JJ (2003) Exposure to hydrocarbons 10 years after the Exxon Valdez oi spill: evidence from cytochrome P4501A expression and biliary FACs in nearshore demersal fishes. Mar Environ Res 54:21–48

    Article  Google Scholar 

  • Knap A, Turner NR, Bera G, Renegar DA, Frank T, Sericano J, Riegl BM (2017) Short-term toxicity of 1-methylnaphthalene to Americamysis bahia and 5 deep-sea crustaceans. Environ Toxicol Chem 36:3415–3423

    Article  CAS  Google Scholar 

  • McConville MM, Roberts JP, Boulais M, Woodall B, Butler JD, Redma AD, Parkerton TF, Arnold WR, Guyomarch J, LeFloch S, Bytingsvik J, Camus L, Volety A, Brander SM (2018) The sensitivity of a deep-sea fish species (Anoplopoma fimbria) to oil-associated aromatic compounds, dispersant, and Alaskan North Slope crude oil. Environ Toxicol Chem 37:2210–2221

    Article  CAS  Google Scholar 

  • Michel J, Owens EH, Zengel S, Graham A, Nixon Z, Owens EH, Zengel S, Graham A, Nixon Z, Allard T, Holton W, Reimer PD, Lamarche A, White M, Rutherford N, Childs C, Mauseth G, Challenger G, Taylor E (2013) Extent and degree of shoreline oiling: Deepwater Horizon oil spill, Gulf of Mexico, USA. PLoS One 8(6):e65087

    Article  CAS  Google Scholar 

  • Mitchelmore C, Bejarano AC, Wetzel D (2020) A synthesis of DWH oil and dispersant aquatic standard laboratory acute and chronic toxicity studies (Chap. 28). In: Deep oil spills: facts, fate, effects, vol 1. Springer, Cham

    Google Scholar 

  • MMS (2000) Gulf of Mexico Deepwater Operations and Activities. Environmental Assessment. OCS EIS/EA MMS 2000-001. Minerals management Service. New Orleans, May 2000. www.boem.gov/BOEM-Newsroom/Library/Publications/2000/2000-001.aspx

  • NOAA (2015) Deepwater Horizon Oil Spill Natural Resource Damage Assessment Comprehensive Toxicity Testing Program: Overview, Methods, and Results. National Oceanic and Atmospheric Administration. Seattle Washington. 805 pp. www.fws.gov/doiddata/dwh-ar-documents/952/DWH-AR0293761.pdf

  • NOAA/ERD (2015) Chemical Aquatic Fate and Effects (CAFE) Database. Version 1.1 [Computer Software]. National Oceanic and Atmospheric Administration, Emergency Response Division, Office of Response and Restoration, Seattle, WA. p. 40 + Appendices https://response.restoration.noaa.gov/oil-and-chemical-spills/chemical-spills/response-tools/cafe.html. [Internet]

  • North EW, Adams EE, Schlag Z, Sherwood CR, He R, Hoon Hyun K, Socolofsky SA (2011) Simulating oil droplet dispersal from the Deepwater Horizon spill with a Lagrangian approach. In: Monitoring and modeling the Deepwater Horizon oil spill: a record-breaking enterprise, Geophysical Monograph Series 195, vol 195. American Geophysical Union, pp 217–226

    Google Scholar 

  • Portnoy D, Fields A, Greer J, Schlenk D (2020) Genetic and oil: transcriptomics, epigenetics and genomics as tools to understand animal responses to exposure across different time scales (Chap. 30). In: Deep oil spills: facts, fate, effects, vol 1. Springer, Cham

    Google Scholar 

  • Powers SP, Hernandez FJ, Condon RH, Drymon JM, Free CM (2013) Novel pathways for injury from offshore oil spills: direct, sublethal and indirect effects of the Deepwater Horizon oil spill on pelagic Sargassum communities. PLoS One 8(9):e74802

    Article  CAS  Google Scholar 

  • Raimondo S, Jackson CR, Barron MG (2017) Web-based Interspecies Correlation Estimation (Web-ICE) for acute toxicity: user manual, Version 3.3. EPA/600/R-15/192; Office of Research and Development, U.S. Environmental Protection Agency: Gulf Breeze, FL. https://www3.epa.gov/ceampubl/fchain/webice/index.html. [Internet]

  • Reddy CM, Arey JS, Seewald JS, Sylva SP, Lemkau KL, Nelson RK, Carmichael CA, McIntyre CP, Fenwick J, Ventura GT, Van Mooy BAS, Camilli R (2011) Composition and fate of gas and pol released to the water column during the Deepwater Horizon oil spill. Proc Natl Acad Sci 109:20229–20234

    Article  Google Scholar 

  • Robinson H, Wenning R, Hayward Walker AH, Joeckel J, Nedwed TJ, Parkerton TF (2018) Comparative risk assessment of oil spill response options for a Deepwater oil well blowout: part 1. Oil spill modeling. Mar Pollut Bull 133:1001–1015

    Article  Google Scholar 

  • Rowe GT (2017) Offshore plankton and benthos of the Gulf of Mexico. Chapter 7. In: Ward CH (ed) Habitats and Biota of the Gulf of Mexico: before the Deepwater Horizon oil spill, New York, NY, pp 641–767

    Google Scholar 

  • Short S, Yang G, Guler Y, Green Etxabe A, Kille P, Ford AT (2014) Crustacean intersexuality is feminization without demasculinization: implications for environmental toxicology. Environ Sci Technol 48:13520–13529

    Article  CAS  Google Scholar 

  • Smith CR, Rowles TK, Hart LB, Townsend FI, Wells RS, Zolman ES, Balmer BC, Quigley B, Ivancic M, McKercher W, Tumlin MC, Mullin KD, Adams JD, Wu Q, McFee W, Collier TK, Schwacke LH (2017) Slow recovery of Barataria Bay dolphin health following the Deepwater Horizon oil spill (2013−2014), with evidence of persistent lung disease and impaired stress response. Endanger Species Res 33:127–142

    Article  Google Scholar 

  • Valentine DL, Kessler JD, Redmond MC, Mendes SD, Heintz MB, Farwell C, Hu L, Kinnaman FS, Yvon-Lewis S, Du M, Chan EW, Garcia Tigreros F, Villanueva CJ (2010) Propane Respiration Jump-Starts Microbial Response to a Deep Oil Spill. Science 330:208–211

    Article  CAS  Google Scholar 

  • Whitehead A, Dubansky B, Bodinier C, Garcia TI, Miles S, Pilley C, Raghunathan V, Roach JL, Walker N, Ealter RB, Rice CD, Galvez F (2011) Genomic and physiological footprint of the Deepwater Horizon oil spill on resident marsh fishes. Proc Natl Acad Sci 109:20298–20302

    Article  Google Scholar 

  • Willming MM, Lilavois CR, Barron MG, Raimondo S (2016) Acute toxicity prediction to threatened and endangered species using Interspecies Correlation Estimation (ICE) models. Environ Sci Technol 50:10700–10707

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mace G. Barron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 This is a U.S. Government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barron, M.G., Chiasson, S.C., Bejarano, A.C. (2020). Ecotoxicology of Deep Ocean Spills. In: Murawski, S., et al. Deep Oil Spills. Springer, Cham. https://doi.org/10.1007/978-3-030-11605-7_27

Download citation

Publish with us

Policies and ethics