Skip to main content

Abstract

Future environmental applications require the integration of green and sustainable nanomaterials. Hence, this chapter highlights the basics of nanotechnology and summarizes the synthesis of green nanomaterials compared to the conventional routes of nanomaterials. Nano-characterization techniques have been classified to identify/confirm the synthesized nanomaterials. A comprehensive overview about zerovalent metal nanomaterials, metal-based nanomaterials, carbonaceous nanomaterials, and nanocomposites is explored. The optimum parameters and conditions are studied. Furthermore, green synthesis mechanisms of some nanomaterials are discussed. Subsequent to an overview of various green nanomaterials, their integration for various pollutants’ removal is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Inshakova E, Inshakov O (2017) World market for nanomaterials: structure and trends. In: MATEC web of conferences, EDP Sciences, pp 02013

    Google Scholar 

  2. Mahmoud AED, Stolle A, Stelter M (2018) Sustainable synthesis of high-surface-area graphite oxide via dry ball milling. ACS Sustain Chem Eng 6:6358–6369

    Google Scholar 

  3. Mahmoud AED, Franke M, Stelter M, Braeutigam P (2018) Evaluation of bisphenol a removal from water bodies using eco-friendly technique. In: 4th international congress on water, waste and energy management, Spain

    Google Scholar 

  4. Mahmoud AED, Franke M, Stelter M, Braeutigam P (2020) Mechanochemical versus chemical routes for graphitic precursors and their performance in micropollutants removal in water. Powder Technol 366:629–640

    CAS  Google Scholar 

  5. Zhang S, Zeng X, Matthews DTA, Igartua A, Rodriguez-Vidal E, Fortes JC, De Viteri VS, Pagano F, Wadman B, Wiklund E (2016) Selection of micro-fabrication techniques on stainless steel sheet for skin friction. Friction 4:89–104

    CAS  Google Scholar 

  6. Jamkhande PG, Ghule NW, Bamer AH, Kalaskar MG (2019) Metal nanoparticles synthesis: an overview on methods of preparation, advantages and disadvantages, and applications. J Drug Delivery Sci Technol 101174

    Google Scholar 

  7. Nikam A, Prasad B, Kulkarni A (2018) Wet chemical synthesis of metal oxide nanoparticles: a review. CrystEngComm 20:5091–5107

    CAS  Google Scholar 

  8. Rane AV, Kanny K, Abitha V, Thomas S (2018) Methods for synthesis of nanoparticles and fabrication of nanocomposites, synthesis of inorganic nanomaterials. Woodhead Publishing, pp 121–139

    Google Scholar 

  9. Roy SK, Prasad K (2018) Hydrothermal nanotechnology: putting the last first. In: Prasad R, Jha AK, Prasad K (eds) Exploring the realms of nature for nanosynthesis. Springer International Publishing, Cham, pp 291–317

    Google Scholar 

  10. Chen L, Hernandez Y, Feng X, Müllen K (2012) From nanographene and graphene nanoribbons to graphene sheets: chemical synthesis. Angew Chem Int Ed 51:7640–7654

    CAS  Google Scholar 

  11. Mohaghegh S, Osouli-Bostanabad K, Nazemiyeh H, Javadzadeh Y, Parvizpur A, Barzegar-Jalali M, Adibkia K (2020) A comparative study of eco-friendly silver nanoparticles synthesis using Prunus domestica plum extract and sodium citrate reducing agents. Adv Powder Technol 31:1169

    CAS  Google Scholar 

  12. Ranoszek-Soliwoda K, Tomaszewska E, Socha E, Krzyczmonik P, Ignaczak A, Orlowski P, Krzyzowska M, Celichowski G, Grobelny J (2017) The role of tannic acid and sodium citrate in the synthesis of silver nanoparticles. J Nanopart Res 19:273

    Google Scholar 

  13. He X, Deng H, Hwang H-m (2019) The current application of nanotechnology in food and agriculture. J Food Drug Anal 27:1–21

    Google Scholar 

  14. Madhura L, Singh S, Kanchi S, Sabela M, Bisetty K (2019) Nanotechnology-based water quality management for wastewater treatment. Environ Chem Lett 17:65–121

    CAS  Google Scholar 

  15. Sarkar B, Mandal S, Tsang YF, Kumar P, Kim K-H, Ok YS (2018) Designer carbon nanotubes for contaminant removal in water and wastewater: a critical review. Sci Total Environ 612:561–581

    CAS  Google Scholar 

  16. Mahmoud, A.E.D., 2020. Eco-friendly reduction of graphene oxide via agricultural byproducts or aquatic macrophytes. Mater Chem and Phys

    Google Scholar 

  17. Vijayaraghavan K, Balasubramanian R (2015) Is biosorption suitable for decontamination of metal-bearing wastewaters? A critical review on the state-of-the-art of biosorption processes and future directions. J Environ Manag 160:283–296

    CAS  Google Scholar 

  18. Khan M, Tahir MN, Adil SF, Khan HU, Siddiqui MRH, Al-warthan AA, Tremel W (2015) Graphene based metal and metal oxide nanocomposites: synthesis, properties and their applications. J Mater Chem A 3:18753–18808

    CAS  Google Scholar 

  19. Qasim S, Zafar A, Saif MS, Ali Z, Nazar M, Waqas M, Haq AU, Tariq T, Hassan SG, Iqbal F, Shu X-G, Hasan M (2020) Biology, Green synthesis of iron oxide nanorods using Withania Coagulans extract improved photocatalytic degradation and antimicrobial activity. J Photochem Photobiol B Biol 204:111784

    CAS  Google Scholar 

  20. Devi HS, Boda MA, Shah MA, Parveen S, Wani AH (2019) Green synthesis of iron oxide nanoparticles using Platanus orientalis leaf extract for antifungal activity. Green Processing Synthesis 8:38–45

    CAS  Google Scholar 

  21. Wang T, Jin X, Chen Z, Megharaj M, Naidu R (2014) Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater. Sci Total Environ 466:210–213

    Google Scholar 

  22. Subhapriya S, Gomathipriya P (2018) Green synthesis of titanium dioxide (TiO2) nanoparticles by Trigonella foenum-graecum extract and its antimicrobial properties. J Microbial pathogenesis 116:215–220

    CAS  Google Scholar 

  23. Solano RA, Herrera AP, Maestre D, Cremades A (2019) Fe-TiO2 nanoparticles synthesized by green chemistry for potential application in waste water photocatalytic treatment. J Nanotechnol 2019

    Google Scholar 

  24. Machado S, Stawiński W, Slonina P, Pinto AR, Grosso JP, Nouws HPA, Albergaria JT, Delerue-Matos C (2013) Application of green zero-valent iron nanoparticles to the remediation of soils contaminated with ibuprofen. Sci Total Environ 461–462:323–329

    Google Scholar 

  25. Ramesh P, Rajendran A, Meenakshisundaram M (2014) Green syntheis of zinc oxide nanoparticles using flower extract cassia auriculata. J Nanosci Nanotechnol 2:41–45

    Google Scholar 

  26. Sangeetha G, Rajeshwari S, Venckatesh R (2011) Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: structure and optical properties. Mater Res Bull 46:2560–2566

    CAS  Google Scholar 

  27. Kumar D, Kumar G, Agrawal V (2018) Green synthesis of silver nanoparticles using Holarrhena antidysenterica (L.) Wall. bark extract and their larvicidal activity against dengue and filariasis vectors. Parasitol Res 117:377–389

    Google Scholar 

  28. Sadeghi B, Gholamhoseinpoor F (2015) A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature. Spectrochim Acta Part A Mol Biomol Spectrosc 134:310–315

    CAS  Google Scholar 

  29. Yaragalla S, Rajendran R, Jose J, AlMaadeed MA, Kalarikkal N, Thomas S (2016) Preparation and characterization of green graphene using grape seed extract for bioapplications. Mater Sci Eng C 65:345–353

    CAS  Google Scholar 

  30. Malik P, Shankar R, Malik V, Sharma N, Mukherjee TK (2014) Green chemistry based benign routes for nanoparticle synthesis. J Nanopart 2014

    Google Scholar 

  31. Shepherd N (2019) Making sense of “day zero”: slow catastrophes, Anthropocene futures, and the story of Cape Town’s water crisis. Water 11:1744

    Google Scholar 

  32. Mahmoud AED, Fawzy M, Radwan A (2016) Optimization of Cadmium (CD2+) removal from aqueous solutions by novel biosorbent. Int J Phytoremediation 18:619–625

    Google Scholar 

  33. El Din Mahmoud A, Fawzy M (2016) Bio-based methods for wastewater treatment: green sorbents. In: Ansari AA, Gill SS, Gill R, Lanza GR, Newman L (eds) Phytoremediation: management of environmental contaminants, vol 3. Springer International Publishing, Cham, pp 209–238

    Google Scholar 

  34. Mahmoud AED, Fawzy M (2015) Statistical methodology for Cadmium (Cd (II)) removal from wastewater by different plant biomasses. J Bioremediat Biodeg 6:1–7

    Google Scholar 

  35. Mahmoud AED, Stolle A, Stelter M, Braeutigam P (2018) Adsorption technique for organic pollutants using different carbon materials, Abstracts of Papers of The American Chemical Society, Amer Chemical Soc 1155, Washington, DC

    Google Scholar 

  36. Scopus (2020) https://www.scopus.com

  37. Singh S, Kumar V, Romero R, Sharma K, Singh J (2019) Applications of nanoparticles in wastewater treatment, nanobiotechnology in bioformulations. Springer, Cham, pp 395–418

    Google Scholar 

  38. Wang T, Lin J, Chen Z, Megharaj M, Naidu R (2014) Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution. J Clean Prod 83:413–419

    CAS  Google Scholar 

  39. Fazlzadeh M, Rahmani K, Zarei A, Abdoallahzadeh H, Nasiri F, Khosravi R (2017) A novel green synthesis of zero valent iron nanoparticles (NZVI) using three plant extracts and their efficient application for removal of Cr (VI) from aqueous solutions. Adv Powder Technol 28:122–130

    CAS  Google Scholar 

  40. Somchaidee P, Tedsree K (2018) Green synthesis of high dispersion and narrow size distribution of zero-valent iron nanoparticles using guava leaf (Psidium guajava L) extract. Adv Nat Sci Nanosci Nanotechnol 9:035006

    Google Scholar 

  41. Lee C, Lee C (2015) Oxidation of organic contaminants in water by iron-induced oxygen activation: a short review. J Environ Eng Res 20:205–211

    Google Scholar 

  42. Zhu X, Pathakoti K, Hwang H-M (2019) Green synthesis of titanium dioxide and zinc oxide nanoparticles and their usage for antimicrobial applications and environmental remediation. In: Green synthesis, characterization and applications of nanoparticles. Elsevier, Amsterdam, pp 223–263

    Google Scholar 

  43. Bogusz K, Cardillo D, Tehei M, Boutard T, Barker PJ, Devers T, Rosenfeld A, Dou SX, Liu HK, Konstantinov K (2018) Biocompatible Bi(OH)3 nanoparticles with reduced photocatalytic activity as possible ultraviolet filter in sunscreens. Mater Res Bull 108:130–141

    CAS  Google Scholar 

  44. Goutam SP, Saxena G, Singh V, Yadav AK, Bharagava RN, Thapa KB (2018) Green synthesis of TiO2 nanoparticles using leaf extract of Jatropha curcas L. for photocatalytic degradation of tannery wastewater. Chem Eng J 336:386–396

    CAS  Google Scholar 

  45. Balaji S, Guda R, Mandal BK, Kasula M, Ubba E, Khan F-RN (2019) Green synthesis of nano-titania (TiO2 NPs) utilizing aqueous Eucalyptus globulus leaf extract: applications in the synthesis of 4H-pyran derivatives. J Res Chem Intermediates 1–13

    Google Scholar 

  46. Haq ANU, Nadhman A, Ullah I, Mustafa G, Yasinzai M, Khan I (2017) Synthesis approaches of zinc oxide nanoparticles: the dilemma of ecotoxicity. J Nanomater 2017

    Google Scholar 

  47. Yedurkar S, Maurya C, Mahanwar P (2016) Biosynthesis of zinc oxide nanoparticles using ixora coccinea leaf extract – a green approach. Open J Synthesis Theory Appl 5:1–14

    CAS  Google Scholar 

  48. Ezealisiji KM, Siwe-Noundou X, Maduelosi B, Nwachukwu N, Krause RWM (2019) Green synthesis of zinc oxide nanoparticles using Solanum torvum (L) leaf extract and evaluation of the toxicological profile of the ZnO nanoparticles–hydrogel composite in Wistar albino rats. J Inter Nano Lett 9:99–107

    CAS  Google Scholar 

  49. Golmohammadi M, Honarmand M, Ghanbari S (2020) A green approach to synthesis of ZnO nanoparticles using jujube fruit extract and their application in photocatalytic degradation of organic dyes. Spectrochim Acta Part A Mol Biomol Spectrosc 229:117961

    CAS  Google Scholar 

  50. Hansen SF, Michelson ES, Kamper A, Borling P, Stuer-Lauridsen F, Baun A (2008) Categorization framework to aid exposure assessment of nanomaterials in consumer products. J Ecotoxicology 17:438–447

    CAS  Google Scholar 

  51. Adam F, Chew T-S, Andas J (2011) A simple template-free sol–gel synthesis of spherical nanosilica from agricultural biomass. J Sol-Gel Sci Technol 59:580–583

    CAS  Google Scholar 

  52. Imoisili PE, Ukoba KO, Jen T-C (2020) Green technology extraction and characterisation of silica nanoparticles from palm kernel shell ash via sol–gel. J Mater Res Technol 9:307–313

    CAS  Google Scholar 

  53. Flagship G (2018) http://graphene-flagship.eu/material/graphene/Pages/What-is-graphene.aspx

  54. Ji L, Chen W, Xu Z, Zheng S, Zhu D (2013) Graphene nanosheets and graphite oxide as promising adsorbents for removal of organic contaminants from aqueous solution. J Environ Qual 42:191–198

    CAS  Google Scholar 

  55. Apul OG, Wang Q, Zhou Y, Karanfil T (2013) Adsorption of aromatic organic contaminants by graphene nanosheets: comparison with carbon nanotubes and activated carbon. Water Res 47:1648–1654

    CAS  Google Scholar 

  56. Konicki W, Aleksandrzak M, Moszyński D, Mijowska E (2017) Adsorption of anionic azo-dyes from aqueous solutions onto graphene oxide: equilibrium, kinetic and thermodynamic studies. J Colloid Interface Sci 496:188–200

    CAS  Google Scholar 

  57. Phatthanakittiphong T, Seo GT (2016) Characteristic evaluation of graphene oxide for bisphenol A adsorption in aqueous solution. Nano 6:128

    Google Scholar 

  58. Hur J, Shin J, Yoo J, Seo Y-S (2015) Competitive adsorption of metals onto magnetic graphene oxide: comparison with other carbonaceous adsorbents. Sci World J

    Google Scholar 

  59. Golmohammadi M, Honarmand M, Ghanbari S (2020) A green approach to synthesis of ZnO nanoparticles using jujube fruit extract and their application in photocatalytic degradation of organic dyes. Spectrochim Acta A Mol Biomol Spectrosc 229:117961

    CAS  Google Scholar 

  60. Ismail M, Gul S, Khan MI, Khan Murad A, Asiri Abdullah M, Sher BK (2019) Green synthesis of zerovalent copper nanoparticles for efficient reduction of toxic azo dyes congo red and methyl orange. Green Proces Synth 8:135–143

    Google Scholar 

  61. Kumar BP, Arthanareeswari M, Devikala S, Sridharan M, Selvi JA, Malini TP (2019) Green synthesis of zinc oxide nanoparticles using typha latifolia. L leaf extract for photocatalytic applications. Mater Today Proc 14:332–337

    CAS  Google Scholar 

  62. Gan L, Li B, Chen Y, Yu B, Chen Z (2019) Green synthesis of reduced graphene oxide using bagasse and its application in dye removal: a waste-to-resource supply chain. Chemosphere 219:148–154

    CAS  Google Scholar 

  63. Upadhyay RK, Soin N, Bhattacharya G, Saha S, Barman A, Roy SS (2015) Grape extract assisted green synthesis of reduced graphene oxide for water treatment application. Mater Lett 160:355–358

    CAS  Google Scholar 

  64. Padhi DK, Panigrahi TK, Parida K, Singh S, Mishra P (2017) Green synthesis of Fe3O4/RGO nanocomposite with enhanced photocatalytic performance for Cr (VI) reduction, phenol degradation, and antibacterial activity. ACS Sustain Chem Eng 5:10551–10562

    CAS  Google Scholar 

  65. Mondal P, Purkait MK (2019) Preparation and characterization of novel green synthesized iron–aluminum nanocomposite and studying its efficiency in fluoride removal. Chemosphere 235:391–402

    CAS  Google Scholar 

  66. Ravikumar KVG, Sudakaran SV, Ravichandran K, Pulimi M, Natarajan C, Mukherjee A (2019) Green synthesis of NiFe nano particles using Punica granatum peel extract for tetracycline removal. J Clean Prod 210:767–776

    CAS  Google Scholar 

  67. Mahmoud, A.E.D., 2020. Graphene-based nanomaterials for the removal of organic pollutants: Insights into linear versus nonlinear mathematical models. J Env Manag

    Google Scholar 

Download references

Acknowledgments

The author would like to acknowledge the “Green Technology Group”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaa El Din Mahmoud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mahmoud, A.E.D. (2020). Nanomaterials: Green Synthesis for Water Applications. In: Kharissova, O., Martínez, L., Kharisov, B. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-11155-7_67-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11155-7_67-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11155-7

  • Online ISBN: 978-3-030-11155-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Nanomaterials: Green Synthesis for Water Applications
    Published:
    05 September 2020

    DOI: https://doi.org/10.1007/978-3-030-11155-7_67-2

  2. Original

    Nanomaterials: Green Synthesis for Water Applications
    Published:
    27 May 2020

    DOI: https://doi.org/10.1007/978-3-030-11155-7_67-1