Skip to main content

Applications of Green Nanomaterials in Environmental Remediation

  • Living reference work entry
  • First Online:
Handbook of Green and Sustainable Nanotechnology
  • 49 Accesses

Abstract

Environmental pollution has become a major global challenge for the humanity. People are becoming more concern about the ill effects of polluted environment. Out of the different contaminations, water pollution is one of the major challenges. Nanomaterials particularly green nanomaterials in various shapes/morphologies, like tubes, wires, fibers, and polymer nanocomposites, work as adsorbents and photocatalysts for the detection and removal of various types of pollutants from water. Nanomaterials show a better performance in environmental remediation than other conventional techniques because of their high surface area (surface-to-volume ratio) and their associated high reactivity. In this chapter synthesis of different types of nanomaterials and nanocomposites using different green approaches and their application for the removal of inorganic, dye, organic, and biological pollutants from water will be discussed at length.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Akpotu SO, Moodley B (2018) MCM-48 encapsulated with reduced graphene oxide/graphene oxide and as-synthesised MCM-48 application in remediation of pharmaceuticals from aqueous system. J Mol Liq 261:540–549

    Article  CAS  Google Scholar 

  • Alkaykh S, Mbarek A, Ali-Shattle EE (2018) Photocatalytic degradation of methylene blue dye in aqueous solution by MnTiO3 nanoparticles under sunlight irradiation. Heliyon 6:e03663

    Article  Google Scholar 

  • Amooaghaie R, Saeri MR, Azizi M (2015) Synthesis, characterization and biocompatibility of silver nanoparticles synthesized from Nigella sativa leaf extract in comparison with chemical silver nanoparticles. Ecotoxicol Environ Saf 120:400–408. https://doi.org/10.1016/j.ecoenv.2015.06.025

    Article  CAS  Google Scholar 

  • Awfa D, Ateia M, Fujii M, Johnson MS, Yoshimura C (2018) Photodegradation of pharmaceuticals and personal care products in water treatment using carbonaceous-TiO2 composites: a critical review of recent literature. Water Res 142:26–45

    Article  CAS  Google Scholar 

  • Baby R, Saifullah B, Hussein MZ (2019) Carbon nanomaterials for the treatment of heavy metal-contaminated water and environmental remediation. Nanoscale Res Lett 14:341. https://doi.org/10.1186/s11671-019-3167-8

    Article  CAS  Google Scholar 

  • Badruddoza AZM, Shawon ZBZ, Rahman MT, Hao KW, Hidajat K, Uddin MS (2013) Ionically modified magnetic nanomaterials for arsenic and chromium removal from water. Chem Eng J 225:607–615

    Article  CAS  Google Scholar 

  • Bagbi Y, Sarswat A, Tiwari S, Mohan D, Pandey A, Solanki PR (2017) Synthesis of l-cysteine stabilized zero-valent iron (nZVI) nanoparticles for lead remediation from water. Environ Nanotechnol Monit Manag 7:34–45

    Google Scholar 

  • Bolade OP, Williams AB, Benson NU (2020) Green synthesis of iron-based nanomaterials for environmental remediation: a review. Environ Nanotechnol Monitor Manage 13:100279

    Article  Google Scholar 

  • Bora T, Dutta J (2014) Applications of nanotechnology in wastewater treatment-a review. J Nanosci Nanotechnol 14:613–626

    Article  CAS  Google Scholar 

  • Brasili E, Bavasso I, Petruccelli V, Vilardi G, Valletta A, Dal Bosco C, Di Palma L (2020) Remediation of hexavalent chromium contaminated water through zero-valent iron nanoparticles and effects on tomato plant growth performance. Sci Rep 10:1–11

    Article  CAS  Google Scholar 

  • De A, Kumari A, Jain P, Manna AK, Bhattacharjee G (2020) Plasmonic sensing of Hg (II), Cr (III), and Pb (II) ions from aqueous solution by biogenic silver and gold nanoparticles. Inorganic and Nano-Metal Chemistry, 1–12. https://doi.org/10.1080/24701556.2020.1826523

  • Demon SZN, Kamisan AI, Abdullah N, Noor SAM, Khim OK, Kasim NAM, Yahya MZA, Manaf NAA, Azmi AFM, and Halim NA (2020) Graphene-based materials in gas sensor applications: a review. Sens Mater 32:759–777

    Google Scholar 

  • Dey A (2018) Semiconductor metal oxide gas sensors: a review. Mater Sci Eng B 229:206–217. https://doi.org/10.1016/j.mseb.2017.12.036

    Article  CAS  Google Scholar 

  • Dongjie C, Yanling C, Nan Z, Paul C, Yunpu W, Kun L, Shuhao H, Pengfei C, Peng P, Renchuang Z, Wang L, Hui L, Ruan LY, Roger (2020) Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: a review. J Clean Prod 268:121725

    Article  CAS  Google Scholar 

  • Duan H, Wang D, Li Y (2015) Green chemistry for nanoparticle synthesis. Chem Soc Rev 44:5778–5792

    Article  CAS  Google Scholar 

  • Dutta D, Das BM (2021) Scope of green nanotechnology towards amalgamation of green chemistry for cleaner environment: a review on synthesis and applications of green nanoparticles. Environ Nanotechnol Monitor Manage 15:100418

    Article  CAS  Google Scholar 

  • Dutta T, Kim KH, Deep A, Szulejko JE, Vellingiri K, Kumar S, Kwon EE, Yun ST (2018) Recovery of nanomaterials from battery and electronic wastes: a new paradigm of environmental waste management. Renew Sust Energ Rev 82:3694–3704. https://doi.org/10.1016/j.rser.2017.10.094

    Article  CAS  Google Scholar 

  • Feng Y, Jiao T, Yin J, Zhang L, Zhang L, Zhou J, Peng Q (2019) Facile preparation of carbon nanotube-Cu2O nanocomposites as new catalyst materials for reduction of p-nitrophenol. Nanoscale Res Lett 14:78

    Article  CAS  Google Scholar 

  • Fugetsu B, Satoh S, Shiba T, Mizutani T, Lin YB, Terui N, Shindoh M (2004) Caged multiwalled carbon nanotubes as the adsorbents for affinity-based elimination of ionic dyes. Environ Sci Technol 38:6890–6896

    Article  CAS  Google Scholar 

  • Gallo A, Bianco C, Tosco T, Tiraferri A, Sethi R (2019) Synthesis of eco-compatible bimetallic silver/iron nanoparticles for water remediation and reactivity assessment on bromophenol blue. J Clean Prod 211:1367–1374

    Article  CAS  Google Scholar 

  • Gora SL, Andrews SA (2017) Adsorption of natural organic matter and disinfection byproduct precursors from surface water onto TiO2 nanoparticles: pH effects, isotherm modelling and implications for using TiO2 for drinking water treatment. Chemosphere 174:363–370

    Article  CAS  Google Scholar 

  • Goutam SP, Saxena G, Singh V, Yadav AK, Bharagava RN, Thapa KB (2018) Green synthesis of TiO2 nanoparticles using leaf extract of Jatropha curcas L. for photocatalytic degradation of tannery wastewater. Chem Eng J 336:386–396. https://doi.org/10.1016/j.cej.2017.12.029

    Article  CAS  Google Scholar 

  • Govardhan K, Grace NA (2016) Metal/Metal oxide doped semiconductor based metal oxide gas sensors – a review. Sens Lett 14:741–750. https://doi.org/10.1166/sl.2016.3710

    Article  Google Scholar 

  • Gregis G, Schaefer S, Sanchez JB, Fierro V, Berger F, Bezverkhyy I, Weber G, Bellat JP, Celzard A (2017) Characterization of materials toward toluene traces detection for air quality monitoring and lung cancer diagnosis. Mater Chem Phys 192:374. https://doi.org/10.1016/j.matchemphys.2017.02.015

    Article  CAS  Google Scholar 

  • Henam SD, Ahmad F, Shah MA, Parveen S, Wani AH (2019) Microwave synthesis of nanoparticles and their antifungal activities. Spectrochim Acta A Mol Biomol Spectrosc 213:337–341. https://doi.org/10.1016/j.saa.2019.01.071

    Article  CAS  Google Scholar 

  • Jain A, Vaya D (2017) Photocatalytic activity of TiO2 nanomaterial. J Chil Chem Soc 62:3683–3690

    Article  CAS  Google Scholar 

  • Khin MM, Nair AS, Babu VJ, Murugan R, Ramakrishna S (2012) A review on nanomaterials for environmental remediation. Energy Environ Sci 5:8075

    Article  CAS  Google Scholar 

  • Khodadadi B, Maryam B, Mahmoud N (2017) Green synthesis of Pd nanoparticles at Apricot kernel shell substrate using Salvia hydrangea extract: catalytic activity for reduction of organic dyes. J Colloid Interface Sci 490:1–10. https://doi.org/10.1016/j.jcis.2016.11.032

    Article  CAS  Google Scholar 

  • Kim TH, Lee J, Hong S (2009) Highly selective environmental nanosensors based on anomalous response of carbon nanotube conductance to mercury ions. J Phys Chem C 113:19393. https://doi.org/10.1021/jp908902k

    Article  CAS  Google Scholar 

  • Korotcenkov G, Cho BK (2017) Metal oxide composites in conductometric gas sensors: achievements and challenges. Sensors Actuators B Chem 244:182–210. https://doi.org/10.1016/j.snb.2016.12.117

    Article  CAS  Google Scholar 

  • Kumar KY, Muralidhara HB, Nayaka YA, Balasubramanyam J, Hanumanthappa H (2013) Low-cost synthesis of metal oxide nanoparticles and their Application in adsorption of commercial dye and heavy metal ion in aqueous solution. Powder Technol 246:125–136. https://doi.org/10.1016/j.powtec.2013.05.017

    Article  CAS  Google Scholar 

  • Kumar PV, Kala SMJ, Prakash KS (2019) Green synthesis derived Pt-nanoparticles using Xanthium strumarium leaf extract and their biological studies. J Environ Chem Eng 7(3):103146. https://doi.org/10.1016/j.jece.2019.103146

    Article  CAS  Google Scholar 

  • Kumeria T, Rahman MM, Santos A, Ferre-Borrull J, Marsal LF, Losic D (2014) Nanoporous anodic alumina rugate filters for sensing of ionic mercury: Toward environmental point-of-analysis systems. ACS Appl Mater Interfaces 6:12971–12978. https://doi.org/10.1021/am502882d

    Article  CAS  Google Scholar 

  • Laishram D, Shejale KP, Gupta R, Sharma RK (2018) Heterostructured HfO2/TiO2 spherical nanoparticles for visible photocatalytic water remediation. Mater Lett 231:225–228

    Article  CAS  Google Scholar 

  • Lee IL, Sung YM, Wu SP (2014) Colorimetric detection of Al(iii) in vermicelli samples based on ionic liquid group coated gold nanoparticles. RSC Adv 4:25251. https://doi.org/10.1039/C5RA09099G

    Article  CAS  Google Scholar 

  • Lee KM, Wong CPP, Tan TL, Lai CW (2018) Functionalized carbon nanotubes for adsorptive removal of water pollutants. Mater Sci Eng B 236:61–69

    Google Scholar 

  • Li M, Zhou X, Guo S, Wu N (2013) Detection of lead (II) with a “turn-on” fluorescent biosensor based on energy transfer from CdSe/ZnS quantum dots to graphene oxide. Biosens Bioelectron 43:69–74. https://doi.org/10.1016/j.bios.2012.11.039

    Article  CAS  Google Scholar 

  • Li JF, Rupa EJ, Hurh J, Huo Y, Chen L, Han Y, Yang DC (2019) Cordyceps militaris fungus mediated Zinc Oxide nanoparticles for the photocatalytic degradation of Methylene blue dye. Optik 183:691–697

    Article  CAS  Google Scholar 

  • Liu L, Liu J, Sun DD (2012) Graphene oxide enwrapped Ag3PO4 composite: towards a highly efficient and stable visible-light-induced photocatalyst for water purification. Cat Sci Technol 2:2525–2532

    Article  CAS  Google Scholar 

  • Lv M, Yan L, Liu C, Su C, Zhou Q, Zhang X, Ye Z (2018) Non-covalent functionalized graphene oxide (GO) adsorbent with an organic gelator for co-adsorption of dye, endocrine-disruptor, pharmaceutical and metal ion. Chem Eng J 349:791–799

    Google Scholar 

  • Madler L, Roessler A, Pratsinis SE, Sahm T, Gurlo A, Barsan N, Weimar U (2006) Direct formation of highly porous gas sensing films by in situ thermophoretic deposition of flame-made pt/SnO2 nanoparticles. Sensors Actuators B Chem 114:283–295. https://doi.org/10.1016/j.snb.2005.05.014

    Article  CAS  Google Scholar 

  • Madrakian T, Afkhami A, Ahmadi M, Bagheri H (2011) Removal of some cationic dyes from aqueous solutions using magnetic-modified multi-walled carbon nanotubes. J Hazard Mater 196:109–114

    Article  CAS  Google Scholar 

  • Malwal D, Gopinath P (2017) Efficient adsorption and antibacterial properties of electrospun CuO-ZnO composite nanofibers for water remediation. J Hazard Mater 321:611–621

    Article  CAS  Google Scholar 

  • Mao S, Cui S, Lu G, Yu K, Wen Z, Chen J (2012) Tuning gas-sensing properties of reduced graphene oxide using tin oxide nanocrystals. J Mater Chem 22:11009–11013. https://doi.org/10.1039/C2JM30378G

    Article  CAS  Google Scholar 

  • Maysoon M, Ahmed K, Amera H, Duread E (2019) Treatment of contaminated water with industrial dyes by using nano zero valent iron (NZVI) and supported on pillared clay. Adv Anal Chem 9:1–7

    Google Scholar 

  • Mazari SA, Ali E, Abro R, Khan FS, Ahmed I, Ahmed M, Nizamuddin S, Siddiqui TH, Hossain N, Mubarak NM, Shah A (2021) Nanomaterials: applications, waste-handling, environmental toxicities, and future challenges – a review. J Environ Chem Engg 9:105028

    Article  CAS  Google Scholar 

  • Mohammadi MR, Fray DJ (2009) Development of nanocrystalline TiO2–Er2O3, and TiO2–Ta2O5, thin film gas sensors: Controlling the physical and sensing properties. Sensors Actuators B Chem 141:76–84

    Article  CAS  Google Scholar 

  • Mondal P, Anweshan A, Purkait MK (2020) Green synthesis and environmental application of iron-based nanomaterials and nanocomposite: a review. Chemosphere 28:127509

    Article  CAS  Google Scholar 

  • Moradi F, Ganji MD, Sarrafi Y (2018) Remediation of phenol-contaminated water by pristine and functionalized SWCNTs: Ab initio van der Waals DFT investigation. Diam Relat Mater 82:7–18

    Article  CAS  Google Scholar 

  • Mubarak NM, Sahu JN, Abdullah EC, Jayakumar NS, Ganesan P (2016) Microwave-assisted synthesis of multi-walled carbon nanotubes for enhanced removal of Zn (II) from wastewater. Res Chem Intermed 42:3257–3281

    Article  CAS  Google Scholar 

  • Murcia MJ, Shaw DL, Woodruff H, Naumann CA, Young BA, Long EC (2006) Facile sonochemical synthesis of highly luminescent ZnS− shelled CdSe quantum dots. Chem Mater 18(9):2219–2225. https://doi.org/10.1021/cm0505547

    Article  CAS  Google Scholar 

  • Narendhran S, Sivaraj R (2016) Biogenic ZnO nanoparticles synthesized using L. aculeata leaf extract and their antifungal activity against plant fungal pathogens. Bull Mat Sci 39(1):1–5

    Google Scholar 

  • Padalia H, Moteriya P, Chanda S (2015) Green synthesis of silver nanoparticles from marigold flower and its synergistic antimicrobial potential. Arab J Chem 8(5):732–741. https://doi.org/10.1016/j.arabjc.2014.11.015

    Article  CAS  Google Scholar 

  • Prasad AK, Kubinskib DJ, Gouma PI (2003) Comparison of sol-gel and ion beam deposited MoO3 thin film gas sensors for selective ammonia detection. Sensors Actuators B Chem 93:25–30. https://doi.org/10.1016/S0925-4005(03)00336-8

    Article  CAS  Google Scholar 

  • Praveen R, Chandreshia CB, Ramaraj R (2018) Silicate sol–gel matrix stabilized ZnO–Ag nanocomposites materials and their environmental remediation applications. J Environ Chem Eng 6:3702–3708

    Article  CAS  Google Scholar 

  • Punia P, Bharti MK, Chalia S, Dhar R, Ravelo B, Thakur P, Thakur A (2021) Recent advances in synthesis, characterization, and applications of nanoparticles for contaminated water treatment- a review. Ceram Int 47(2):1526–1550

    Article  CAS  Google Scholar 

  • Punjabi K, Choudhary P, Samant L, Mukherjee S, Vaidya S, Chowdhary A (2015) Biosynthesis of nanoparticles: a review. Int J Pharm Sci Rev Res 30(1):219–216

    Google Scholar 

  • Rajiv P, Sivaraj R, Rajendran V (2013) Bio-Fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens. Spectrochim Acta A Mol Biomol Spectrosc 112:384–387. https://doi.org/10.1016/j.saa.2013.04.072

    Article  CAS  Google Scholar 

  • Rajiv P, Bavadharani B, Kumar MN, Vanathi P (2017) Synthesis and characterization of biogenic iron oxide nanoparticles using green chemistry approach and evaluating their biological activities. Biocatal Agric Biotechnol 12:45–49. https://doi.org/10.1016/j.bcab.2017.08.015

    Article  Google Scholar 

  • Ren J, Yao M, Woo YC, Tijing LD, Kim JH, Shon HK (2019) Recyclable nanoscale zerovalent iron (nZVI)-immobilized electrospun nanofiber composites with improved mechanical strength for groundwater remediation. Compos Part B Eng 171:339–346

    Article  CAS  Google Scholar 

  • Sadollahkhani A, Hatamie A, Nur O, Willander M, Zargar B, Kazeminezhad I (2014) Colorimetric disposable paper coated with ZnO@ZnS core–shell nanoparticles for detection of copper ions in aqueous solutions. ACS Appl Mater Interfaces 6:17694–17701. https://doi.org/10.1021/am505480y

    Article  CAS  Google Scholar 

  • Saleh TA (2020) Nanomaterials: classification, properties, and environmental toxicities. Environ Technol Innov 20:101067

    Article  CAS  Google Scholar 

  • Salehi R, Arami M, Mahmoodi NM, Bahrami H, Khorramfar S (2010) Novel biocompatible composite (chitosan–zinc oxide nanoparticle): preparation, characterization and dye adsorption properties. Colloids Surf B: Biointerfaces 80:86–93

    Article  CAS  Google Scholar 

  • Schedin F, Novoselov KS (2006) Detection of individual gas molecules by graphene sensors. Nat Mater 6:652–655. https://doi.org/10.1038/nmat1967

    Article  CAS  Google Scholar 

  • Shaik MR, Ali ZJQ, Khan M, Kuniyil M, Assal ME, Alkhathlan HZ, Al-Warthan A, Siddiqui MRH, Khan M, Adil SF (2017) Green synthesis and characterization of palladium nanoparticles using Origanum vulgare L. extract and their catalytic activity. Molecules 22(1):165. https://doi.org/10.3390/molecules22010165

  • Shim HE, Yang JE, Jeong SW, Lee CH, Song L, Mushtaq S, Jeon J (2018) Silver nanomaterial-immobilized desalination systems for efficient removal of radioactive iodine species in water. Nano 8:660

    Google Scholar 

  • Singh J, Kumar V, Jolly SS, Kim KH, Rawat M, Kukkar D, Tsang YF (2019) Biogenic synthesis of silver nanoparticles and its photocatalytic applications for removal of organic pollutants in water. J Ind Eng Chem 80:247–257

    Article  CAS  Google Scholar 

  • Umbreen N, Sohni S, Ahmad I, Khattak NU, Gul K (2018) Self-assembled three dimensional reduced graphene oxide-based hydrogel for highly efficient and facile removal of pharmaceutical compounds from aqueous solution. J Colloid Interface Sci 527:356–367

    Article  CAS  Google Scholar 

  • Van HT, Nguyen TMP, Thao VT, Vu XH, Nguyen TV, Nguyen LH (2018) Applying activated carbon derived from coconut shell loaded by silver nanoparticles to remove methylene blue in aqueous solution. Water Air Soil Pollut 229:393

    Article  CAS  Google Scholar 

  • Venu R, Ramulu TS, Anandakumar S, Rani VS, Kim CG (2011) Bio-directed synthesis of platinum nanoparticles using aqueous honey solutions and their catalytic applications. Colloids Surf A Physicochem Eng Asp 384(1–3):733–738. https://doi.org/10.1016/j.colsurfa.2011.05.045

    Article  CAS  Google Scholar 

  • Vijayaraghavan K, Ashokkumar T (2017) Plant-mediated biosynthesis of metallic nanoparticles: a review of literature, factors affecting synthesis, characterization techniques and applications. Journal of environmental chemical engineering 5(5):4866–4883. https://doi.org/10.1016/j.jece.2017.09.026

  • Wang T, Wei J, Shi H, Zhou M, Zhang Y, Chen Q, Zhang Z (2017) Preparation of electrospun Ag/TiO2 nanotubes with enhanced photocatalytic activity based on water/oil phase separation. Phys E Low-Dimens Syst Nano Struct 86:103–110

    Article  CAS  Google Scholar 

  • Wu J, Feng S (2016) Facile synthesis of 3D graphene flowers for ultrasensitive and highly reversible gas sensing. Adv Funct Mater 26:7462–7469. https://doi.org/10.1002/adfm.201603598

    Article  CAS  Google Scholar 

  • Xu J, Cao Z, Zhang Y, Yuan Z, Lou Z, Xu X, Wang X (2018) A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: preparation, application, and mechanism. Chemosphere 195:351–364

    Google Scholar 

  • Yasmin A, Ramesh K, Rajeshkumar S (2014) Optimization and stabilization of gold nanoparticles by using herbal plant extract with microwave heating. Nano Convergence 1(1):1–7. https://doi.org/10.1186/s40580-014-0012-8

    Article  CAS  Google Scholar 

  • Yavari F, Castillo E (2012) High sensitivity detection of NO2 and NH3 in air using chemical vapor deposition grown graphene. Appl Phys Lett 100:203120

    Article  CAS  Google Scholar 

  • Yu K, Wang P (2011) Patterning vertically oriented graphene sheets for nanodevice applications. J Phys Chem Lett 2:537–542. https://doi.org/10.1021/jz200087w

    Article  CAS  Google Scholar 

  • Yu S, Wang X, Liu Y, Chen Z, Wu Y, Liu Y, Song G, Chen J, Wang X (2019) Efficient removal of uranium (VI) by layered double hydroxides supported nanoscale zero-valent iron: A combined experimental and spectroscopic studies. Chem Eng J 365:51–59

    Article  CAS  Google Scholar 

  • Yuasa M, Masaki T, Kida T, Shimanoe K, Yamazoe N (2009) Nanosized PdO loaded SnO2 nanoparticles by reverse micelle method for highly sensitive CO gas sensor. Sensors Actuators B Chem 136:99–104. https://doi.org/10.1016/j.snb.2008.11.022

    Article  CAS  Google Scholar 

  • Zahid M, Abd-Elsalam KA (2021) Applications of nanomaterials in water remediation: a note from the Editors. Aqua Nanotechnol. https://doi.org/10.1016/B978-0-12-821141-0.00021-5

  • Zhang N, Ishag A, Li Y, Wang H, Guo H, Mei P, Meng Q, Sun Y (2020) Recent investigations and progress in environmental remediation by using covalent organic framework-based adsorption method: a review. J Clean Prod 277:123360

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Singh, N.B., De, A., Guin, M., Tomar, R. (2022). Applications of Green Nanomaterials in Environmental Remediation. In: Shanker, U., Hussain, C.M., Rani, M. (eds) Handbook of Green and Sustainable Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-69023-6_65-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69023-6_65-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69023-6

  • Online ISBN: 978-3-030-69023-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics