Skip to main content

Neuroimmunoendocrinology

  • Chapter
  • First Online:
Nijkamp and Parnham's Principles of Immunopharmacology

Abstract

The classical description of the nervous, the immune, and the endocrine systems as independent components has been challenged by studies investigating the relationship among them. A growing body of evidence points to the bidirectional communication between neuroendocrine and immune systems through different routes. In this regard, not only central nervous system (CNS) conditions (e.g., stress) can influence the immune system through endocrine communication, but also immune changes (e.g., due to infection) might affect CNS functions, resulting, for instance, in depressive-like behaviors. In this chapter, we present basic and clinical evidence of the crosstalk between immune, endocrine, and nervous systems.

Final manuscript submitted on December 7, 2016.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Selected Readings

  • Dantzer R. Cytokine-induced sickness behavior: mechanisms and implications. Ann N Y Acad Sci. 2001;933:222–34.

    Article  CAS  PubMed  Google Scholar 

  • Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9(1):46–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller AH, Maletic V, Raison CL. Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry. 2009;65(9):732–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller AH, Raison CL. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol. 2016;16(1):22–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wohleb ES, McKim DB, Sheridan JF, Godbout JP. Monocyte trafficking to the brain with stress and inflammation: a novel axis of immune-to-brain communication that influences mood and behavior. Front Neurosci. 2015;8:447.

    Article  PubMed  PubMed Central  Google Scholar 

References

  1. Velázquez-Moctezuma J, Domínguez-Salazar E, Gómez-González B. Beyond the borders: the gates and fences of neuroimmune interaction. Front Integr Neurosci. 2014;8:26.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Azad N, Agrawal L, Emanuele MA, Kelley MR, Mohagheghpour N, Lawrence AM, Emanuele NV. Neuroimmunoendocrinology. Am J Reprod Immunol. 1991;26(4):160–72.

    Article  CAS  PubMed  Google Scholar 

  3. Weigent DA, Kraneveld AD, Blalock JE. Neuroimmunoendocrinology. In: Nijkamp FP, Parnham MJ, editors. Principles of immunopharmacology: 3rd revised and extended edition. Basel: Springer; 2011. p. 179–98.

    Chapter  Google Scholar 

  4. Ader R. On the development of psychoneuroimmunology. Eur J Pharmacol. 2000;405(1-3):167–76.

    Article  CAS  PubMed  Google Scholar 

  5. Weigent DA, Blalock JE. Associations between the neuroendocrine and immune systems. J Leukoc Biol. 1995;58:137–50.

    Article  CAS  PubMed  Google Scholar 

  6. Blalock JE, Smith EM. The immune system: our mobile brain? Immunol Today. 1985;6(4):115–7.

    Article  CAS  PubMed  Google Scholar 

  7. Pariante CM. Psychoneuroimmunology or immunopsychiatry? Lancet Psychiatry. 2015;2(3):197–9.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Capuron L, Miller AH. Cytokines and psychopathology: lessons from interferon-alpha. Biol Psychiatry. 2004;56(11):819–24.

    Article  CAS  PubMed  Google Scholar 

  9. Cruz-Topete D, Cidlowski JA. One hormone, two actions: anti- and pro-inflammatory effects of glucocorticoids. Neuroimmunomodulation. 2015;22(1-2):20–32.

    Article  CAS  PubMed  Google Scholar 

  10. Sapolsky RM, Romero LM, Munck AU. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev. 2000;21(1):55–89.

    CAS  PubMed  Google Scholar 

  11. Elenkov IJ, Chrousos GP. Stress system--organization, physiology and immunoregulation. Neuroimmunomodulation. 2006;13(5-6):257–67.

    Article  CAS  PubMed  Google Scholar 

  12. Visser J, van Boxel-Dezaire A, Methorst D, Brunt T, de Kloet ER, Nagelkerken L. Differential regulation of interleukin-10 (IL-10) and IL-12 by glucocorticoids in vitro. Blood. 1998;91(11):4255–64.

    Article  CAS  PubMed  Google Scholar 

  13. Almawi WY, Melemedjian OK, Rieder MJ. An alternate mechanism of glucocorticoid anti-proliferative effect: promotion of a Th2 cytokine-secreting profile. Clin Transplant. 1999;13(5):365–74.

    Article  CAS  PubMed  Google Scholar 

  14. Unterberger C, Staples KJ, Smallie T, Williams L, Foxwell B, Schaefer A, Kempkes B, Hofer TP, Koeppel M, Lohrum M, Stunnenberg H, Frankenberger M, Ziegler-Heitbrock L. Role of STAT3 in glucocorticoid-induced expression of the human IL-10 gene. Mol Immunol. 2008;45(11):3230–7.

    Article  CAS  PubMed  Google Scholar 

  15. Liberman AC, Refojo D, Druker J, Toscano M, Rein T, Holsboer F, Arzt E. The activated glucocorticoid receptor inhibits the transcription factor T-bet by direct protein-protein interaction. FASEB J. 2007;21(4):1177–88.

    Article  CAS  PubMed  Google Scholar 

  16. Tamada K, Harada M, Abe K, Li T, Nomoto K. IL-4-producing NK1.1+ T cells are resistant to glucocorticoid-induced apoptosis: implications for the Th1/Th2 balance. J Immunol. 1998;161(3):1239–47.

    CAS  PubMed  Google Scholar 

  17. Elyaman W, Bradshaw EM, Uyttenhove C, Dardalhon V, Awasthi A, Imitola J, Bettelli E, Oukka M, van Snick J, Renauld JC, Kuchroo VK, Khoury SJ. IL-9 induces differentiation of TH17 cells and enhances function of FoxP3+ natural regulatory T cells. Proc Natl Acad Sci U S A. 2009;106(31):12885–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Prado C, de Paz B, Gómez J, López P, Rodríguez-Carrio J, Suárez A. Glucocorticoids enhance Th17/Th1 imbalance and signal transducer and activator of transcription 3 expression in systemic lupus erythematosus patients. Rheumatology (Oxford). 2011;50(10):1794–801.

    Article  CAS  Google Scholar 

  19. Freier E, Weber CS, Nowottne U, Horn C, Bartels K, Meyer S, Hildebrandt Y, Luetkens T, Cao Y, Pabst C, Muzzulini J, Schnee B, Brunner-Weinzierl MC, Marangolo M, Bokemeyer C, Deter HC, Atanackovic D. Decrease of CD4(+)FOXP3(+) T regulatory cells in the peripheral blood of human subjects undergoing a mental stressor. Psychoneuroendocrinology. 2010;35(5):663–73.

    Article  CAS  PubMed  Google Scholar 

  20. Sbiera S, Dexneit T, Reichardt SD, Michel KD, van den Brandt J, Schmull S, Kraus L, Beyer M, Mlynski R, Wortmann S, Allolio B, Reichardt HM, Fassnacht M. Influence of short-term glucocorticoid therapy on regulatory T cells in vivo. PLoS One. 2011;6(9):e24345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cronstein BN, Kimmel SC, Levin RI, Martiniuk F, Weissmann G. A mechanism for the antiinflammatory effects of corticosteroids: the glucocorticoid receptor regulates leukocyte adhesion to endothelial cells and expression of endothelial-leukocyte adhesion molecule 1 and intercellular adhesion molecule 1. Proc Natl Acad Sci U S A. 1992;89(21):9991–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Baschant U, Tuckermann J. The role of the glucocorticoid receptor in inflammation and immunity. J Steroid Biochem Mol Biol. 2010;120(2-3):69–75.

    Article  CAS  PubMed  Google Scholar 

  23. Dhabhar FS, Miller AH, Stein M, McEwen BS, Spencer RL. Diurnal and acute stress-induced changes in distribution of peripheral blood leukocyte subpopulations. Brain Behav Immun. 1994;8(1):66–79.

    Article  CAS  PubMed  Google Scholar 

  24. Abo T, Kawate T, Itoh K, Kumagai K. Studies on the bioperiodicity of the immune response. I. Circadian rhythms of human T, B, and K cell traffic in the peripheral blood. J Immunol. 1981;126(4):1360–3.

    CAS  PubMed  Google Scholar 

  25. Kawate T, Abo T, Hinuma S, Kumagai K. Studies of the bioperiodicity of the immune response. II. Co-variations of murine T and B cells and a role of corticosteroid. J Immunol. 1981;126(4):1364–7.

    CAS  PubMed  Google Scholar 

  26. Dimitrov S, Benedict C, Heutling D, Westermann J, Born J, Lange T. Cortisol and epinephrine control opposing circadian rhythms in T cell subsets. Blood. 2009;113(21):5134–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011;11(2):85–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cohen S, Janicki-Deverts D, Doyle WJ, Miller GE, Frank E, Rabin BS, Turner RB. Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk. Proc Natl Acad Sci U S A. 2012;109(16):5995–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Raison CL, Miller AH. When not enough is too much: the role of insufficient glucocorticoid signaling in the pathophysiology of stress-related disorders. Am J Psychiatry. 2003;160(9):1554–65.

    Article  PubMed  Google Scholar 

  30. Lopes RP, Grassi-Oliveira R, de Almeida LR, Stein LM, Luz C, Teixeira AL, Bauer ME. Neuroimmunoendocrine interactions in patients with recurrent major depression, increased early life stress and long-standing posttraumatic stress disorder symptoms. Neuroimmunomodulation. 2012;19(1):33–42.

    Article  CAS  PubMed  Google Scholar 

  31. Miller AH, Raison CL. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol. 2016;16(1):22–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Horowitz MA, Zunszain PA. Neuroimmune and neuroendocrine abnormalities in depression: two sides of the same coin. Ann N Y Acad Sci. 2015;1351:68–79.

    Article  CAS  PubMed  Google Scholar 

  33. Felten DL, Felten SY, Carlson SL, Olschowka JA, Livnat S. Noradrenergic and peptidergic innervation of lymphoid tissue. J Immunol. 1985;135(2 Suppl):755s–65s.

    CAS  PubMed  Google Scholar 

  34. Sanders VM, Kavelaars A. Adrenergic regulation of immunity. In: Ader R, editor. Psychoneuroimmunology. 4th ed. New York, NY: Academic Press; 2007. p. 63–83.

    Chapter  Google Scholar 

  35. Rosas-Ballina M, Olofsson PS, Ochani M, Valdés-Ferrer SI, Levine YA, Reardon C, Tusche MW, Pavlov VA, Andersson U, Chavan S, Mak TW, Tracey KJ. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science. 2011;334(6052):98–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dhabhar FS, Malarkey WB, Neri E, McEwen BS. Stress-induced redistribution of immune cells--from barracks to boulevards to battlefields: a tale of three hormones--Curt Richter Award winner. Psychoneuroendocrinology. 2012;37(9):1345–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Heidt T, Sager HB, Courties G, Dutta P, Iwamoto Y, Zaltsman A, von Zur Muhlen C, Bode C, Fricchione GL, Denninger J, Lin CP, Vinegoni C, Libby P, Swirski FK, Weissleder R, Nahrendorf M. Chronic variable stress activates hematopoietic stem cells. Nat Med. 2014;20(7):754–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Engler H, Bailey MT, Engler A, Sheridan JF. Effects of repeated social stress on leukocyte distribution in bone marrow, peripheral blood and spleen. J Neuroimmunol. 2004;148(1-2):106–15.

    Article  CAS  PubMed  Google Scholar 

  39. Liezmann C, Stock D, Peters EM. Stress induced neuroendocrine-immune plasticity: a role for the spleen in peripheral inflammatory disease and inflammaging? Dermatoendocrinology. 2012;4(3):271–9.

    Article  CAS  Google Scholar 

  40. Seifert HA, Hall AA, Chapman CB, Collier LA, Willing AE, Pennypacker KR. A transient decrease in spleen size following stroke corresponds to splenocyte release into systemic circulation. J Neuroimmune Pharmacol. 2012;7(4):1017–24.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wohleb ES, Powell ND, Godbout JP, Sheridan JF. Stress-induced recruitment of bone marrow-derived monocytes to the brain promotes anxiety-like behavior. J Neurosci. 2013;33(34):13820–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Benschop RJ, Rodriguez-Feuerhahn M, Schedlowski M. Catecholamine-induced leukocytosis: early observations, current research, and future directions. Brain Behav Immun. 1996;10(2):77–91.

    Article  CAS  PubMed  Google Scholar 

  43. Procaccini C, Pucino V, De Rosa V, Marone G, Matarese G. Neuro-endocrine networks controlling immune system in health and disease. Front Immunol. 2014;5:143.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Madden KS. Catecholamines, sympathetic innervation, and immunity. Brain Behav Immun. 2003;17(Suppl 1):S5–10.

    Article  CAS  PubMed  Google Scholar 

  45. Panina-Bordignon P, Mazzeo D, Lucia PD, D’Ambrosio D, Lang R, Fabbri L, Self C, Sinigaglia F. Beta2-agonists prevent Th1 development by selective inhibition of interleukin 12. J Clin Invest. 1997;100(6):1513–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cole SW, Korin YD, Fahey JL, Zack JA. Norepinephrine accelerates HIV replication via protein kinase A-dependent effects on cytokine production. J Immunol. 1998;161(2):610–6.

    CAS  PubMed  Google Scholar 

  47. Bhowmick S, Singh A, Flavell RA, Clark RB, O’Rourke J, Cone RE. The sympathetic nervous system modulates CD4(+)FoxP3(+) regulatory T cells via a TGF-beta-dependent mechanism. J Leukoc Biol. 2009;86:1275–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Collado-Hidalgo A, Sung C, Cole S. Adrenergic inhibition of innate anti-viral response: PKA blockade of Type I interferon gene transcription mediates catecholamine support for HIV-1 replication. Brain Behav Immun. 2006;20(6):552–63.

    Article  CAS  PubMed  Google Scholar 

  49. Grebe KM, Takeda K, Hickman HD, Bailey AL, Embry AC, Bennink JR, Yewdell JW. Cutting edge: sympathetic nervous system increases proinflammatory cytokines and exacerbates influenza A virus pathogenesis. J Immunol. 2010;184(2):540–4.

    Article  CAS  PubMed  Google Scholar 

  50. Saha B, Mondal AC, Majumder J, Basu S, Dasgupta PS. Physiological concentrations of dopamine inhibit the proliferation and cytotoxicity of human CD4+ and CD8+ T cells in vitro: a receptor-mediated mechanism. Neuroimmunomodulation. 2001;9(1):23–33.

    Article  CAS  PubMed  Google Scholar 

  51. Mikulak J, Bozzo L, Roberto A, Pontarini E, Tentorio P, Hudspeth K, Lugli E, Mavilio D. Dopamine inhibits the effector functions of activated NK cells via the upregulation of the D5 receptor. J Immunol. 2014;193(6):2792–800.

    Article  CAS  PubMed  Google Scholar 

  52. Wu J, Zhang R, Tang N, Gong Z, Zhou J, Chen Y, Chen K, Cai W. Dopamine inhibits the function of Gr-1+CD115+ myeloid-derived suppressor cells through D1-like receptors and enhances anti-tumor immunity. J Leukoc Biol. 2015;97(1):191–200.

    Article  PubMed  CAS  Google Scholar 

  53. Tracey KJ. Reflex control of immunity. Nat Rev Immunol. 2009;9(6):418–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pavlov VA, Tracey KJ. The vagus nerve and the inflammatory reflex--linking immunity and metabolism. Nat Rev Endocrinol. 2012;8(12):743–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Antonica A, Ayroldi E, Magni F, Paolocci N. Lymphocyte traffic changes induced by monolateral vagal denervation in mouse thymus and peripheral lymphoid organs. J Neuroimmunol. 1996;64(2):115–22.

    Article  CAS  PubMed  Google Scholar 

  56. Goehler LE, Gaykema RP, Nguyen KT, Lee JE, Tilders FJ, Maier SF, Watkins LR. Interleukin-1beta in immune cells of the abdominal vagus nerve: a link between the immune and nervous systems? J Neurosci. 1999;19(7):2799–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Delgado M, Ganea D. Vasoactive intestinal peptide: a neuropeptide with pleiotropic immune functions. Amino Acids. 2013;45(1):25–39.

    Article  CAS  PubMed  Google Scholar 

  58. Delgado M, Gonzalez-Rey E, Ganea D. VIP/PACAP preferentially attract Th2 effectors through differential regulation of chemokine production by dendritic cells. FASEB J. 2004;18(12):1453–5.

    Article  CAS  PubMed  Google Scholar 

  59. Ran WZ, Dong L, Tang CY, Zhou Y, Sun GY, Liu T, Liu YP, Guan CX. Vasoactive intestinal peptide suppresses macrophage-mediated inflammation by downregulating interleukin-17A expression via PKA- and PKC-dependent pathways. Int J Exp Pathol. 2015;96(4):269–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chorny A, Gonzalez-Rey E, Fernandez-Martin A, Pozo D, Ganea D, Delgado M. Vasoactive intestinal peptide induces regulatory dendritic cells with therapeutic effects on autoimmune disorders. Proc Natl Acad Sci U S A. 2005;102(38):13562–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Delgado M, Chorny A, Gonzalez-Rey E, Ganea D. Vasoactive intestinal peptide generates CD4+CD25+ regulatory T cells in vivo. J Leukoc Biol. 2005;78(6):1327–38.

    Article  CAS  PubMed  Google Scholar 

  62. Fernandez-Martin A, Gonzalez-Rey E, Chorny A, Ganea D, Delgado M. Vasoactive intestinal peptide induces regulatory T cells during experimental autoimmune encephalomyelitis. Eur J Immunol. 2006;36(2):318–26.

    Article  CAS  PubMed  Google Scholar 

  63. Gonzalez-Rey E, Chorny A, Fernandez-Martin A, Ganea D, Delgado M. Vasoactive intestinal peptide generates human tolerogenic dendritic cells that induce CD4 and CD8 regulatory T cells. Blood. 2006;107(9):3632–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gonzalez-Rey E, Delgado M. Therapeutic treatment of experimental colitis with regulatory dendritic cells generated with vasoactive intestinal peptide. Gastroenterology. 2006;131(6):1799–811.

    Article  CAS  PubMed  Google Scholar 

  65. Gonzalez-Rey E, Fernandez-Martin A, Chorny A, Delgado M. Vasoactive intestinal peptide induces CD4+,CD25+ T regulatory cells with therapeutic effect in collagen-induced arthritis. Arthritis Rheum. 2006;54(3):864–76.

    Article  CAS  PubMed  Google Scholar 

  66. Grasso E, Paparini D, Agüero M, Mor G, Pérez Leirós C, Ramhorst R. VIP contribution to the decidualization program: regulatory T cell recruitment. J Endocrinol. 2014;221(1):121–31.

    Article  CAS  PubMed  Google Scholar 

  67. Gropp E, Shanabrough M, Borok E, Xu AW, Janoschek R, Buch T, et al. Agouti-related peptide-expressing neurons are mandatory for feeding. Nat Neurosci. 2005;8:1289–91.

    Article  CAS  PubMed  Google Scholar 

  68. Matarese G, Procaccini C, Menale C, Kim JG, Kim JD, Diano S, et al. Hunger-promoting hypothalamic neurons modulate effector and regulatory T-cell responses. Proc Natl Acad Sci U S A. 2013;110:6193–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mashaghi A, Marmalidou A, Tehrani M, Grace PM, Pothoulakis C, Dana R. Neuropeptide substance P and the immune response. Cell Mol Life Sci. 2016;

    Google Scholar 

  70. Feistritzer C, Clausen J, Sturn DH, Djanani A, Gunsilius E, Wiedermann CJ, et al. Natural killer cell functions mediated by the neuropeptide substance P. Regul Pept. 2003;116:119–26.

    Article  CAS  PubMed  Google Scholar 

  71. Bilimoria PM, Stevens B. Microglia function during brain development: new insights from animal models. Brain Res. 2015;1617:7–17.

    Article  CAS  PubMed  Google Scholar 

  72. Miller AH, Raison CL. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol. 2016;16(1):22–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523:337–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Eskandari F, Webster JI, Sternberg EM. Neural immune pathways and their connection to inflammatory diseases. Arthritis Res Ther. 2003;5(6):251–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dantzer R. Cytokine-induced sickness behavior: mechanisms and implications. Ann N Y Acad Sci. 2001;933:222–34.

    Article  CAS  PubMed  Google Scholar 

  76. Watkins LR, Maier SF. The pain of being sick: implications of immune-to-brain communication for understanding pain. Annu Rev Psychol. 2000;51:29–57.

    Article  CAS  PubMed  Google Scholar 

  77. Rocha NP, Reis HJ, Vanden Berghe P, Cirillo C. Depression and cognitive impairment in Parkinson’s disease: a role for inflammation and immunomodulation? Neuroimmunomodulation. 2014;21(2-3):88–94.

    Article  CAS  Google Scholar 

  78. Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9(1):46–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Miller AH, Maletic V, Raison CL. Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry. 2009;65(9):732–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Reichenberg A, Yirmiya R, Schuld A, Kraus T, Haack M, Morag A, Pollmächer T. Cytokine-associated emotional and cognitive disturbances in humans. Arch Gen Psychiatry. 2001;58(5):445–52.

    Article  CAS  PubMed  Google Scholar 

  81. Pace TW, Mletzko TC, Alagbe O, Musselman DL, Nemeroff CB, Miller AH, Heim CM. Increased stress-induced inflammatory responses in male patients with major depression and increased early life stress. Am J Psychiatry. 2006;163(9):1630–3.

    Article  PubMed  Google Scholar 

  82. Aschbacher K, Epel E, Wolkowitz OM, Prather AA, Puterman E, Dhabhar FS. Maintenance of a positive outlook during acute stress protects against pro-inflammatory reactivity and future depressive symptoms. Brain Behav Immun. 2012;26(2):346–52.

    Article  CAS  PubMed  Google Scholar 

  83. Miller AH, Lecture TWPNC. Mechanisms of cytokine-induced behavioral changes: psychoneuroimmunology at the translational interface. Brain Behav Immun. 2009;23(2):149–58.

    Article  CAS  PubMed  Google Scholar 

  84. Wohleb ES, McKim DB, Sheridan JF, Godbout JP. Monocyte trafficking to the brain with stress and inflammation: a novel axis of immune-to-brain communication that influences mood and behavior. Front Neurosci. 2015;8:447.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Schwartz M, Kipnis J, Rivest S, Prat A. How do immune cells support and shape the brain in health, disease, and aging? J Neurosci. 2013;33:17587–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Norden DM, Muccigrosso MM, Godbout JP. Microglial priming and enhanced reactivity to secondary insult in aging, and traumatic CNS injury, and neurodegenerative disease. Neuropharmacology. 2015;96(Pt A):29–41.

    Article  CAS  PubMed  Google Scholar 

  87. Wohleb ES, Hanke ML, Corona AW, Powell ND, Stiner LM, Bailey MT, Nelson RJ, Godbout JP, Sheridan JF. β-Adrenergic receptor antagonism prevents anxiety-like behavior and microglial reactivity induced by repeated social defeat. J Neurosci. 2011;31(17):6277–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Johnson JD, Campisi J, Sharkey CM, Kennedy SL, Nickerson M, Greenwood BN, Fleshner M. Catecholamines mediate stress-induced increases in peripheral and central inflammatory cytokines. Neuroscience. 2005;135(4):1295–307.

    Article  CAS  PubMed  Google Scholar 

  89. Goshen I, Yirmiya R. Interleukin-1 (IL-1): a central regulator of stress responses. Front Neuroendocrinol. 2009;30(1):30–45.

    Article  CAS  PubMed  Google Scholar 

  90. Sawada A, Niiyama Y, Ataka K, Nagaishi K, Yamakage M, Fujimiya M. Suppression of bone marrow-derived microglia in the amygdala improves anxiety-like behavior induced by chronic partial sciatic nerve ligation in mice. Pain. 2014;155(9):1762–72.

    Article  CAS  PubMed  Google Scholar 

  91. D’Mello C, Riazi K, Le T, Stevens KM, Wang A, McKay DM, Pittman QJ, Swain MG. P-selectin-mediated monocyte-cerebral endothelium adhesive interactions link peripheral organ inflammation to sickness behaviors. J Neurosci. 2013;33(37):14878–88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Degos V, Vacas S, Han Z, van Rooijen N, Gressens P, Su H, Young WL, Maze M. Depletion of bone marrow-derived macrophages perturbs the innate immune response to surgery and reduces postoperative memory dysfunction. Anesthesiology. 2013;118(3):527–36.

    Article  CAS  PubMed  Google Scholar 

  93. Wohleb ES, McKim DB, Shea DT, Powell ND, Tarr AJ, Sheridan JF, Godbout JP. Re-establishment of anxiety in stress-sensitized mice is caused by monocyte trafficking from the spleen to the brain. Biol Psychiatry. 2014;75(12):970–81.

    Article  CAS  PubMed  Google Scholar 

  94. Torres-Platas SG, Cruceanu C, Chen GG, Turecki G, Mechawar N. Evidence for increased microglial priming and macrophage recruitment in the dorsal anterior cingulate white matter of depressed suicides. Brain Behav Immun. 2014;42:50–9.

    Article  CAS  PubMed  Google Scholar 

  95. Derecki NC, Cronk JC, Lu Z, Xu E, Abbott SB, Guyenet PG, et al. Wild-type microglia arrest pathology in a mouse model of Rett syndrome. Nature. 2012;484:105–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ziv Y, Ron N, Butovsky O, Landa G, Sudai E, Greenberg N, et al. Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat Neurosci. 2006;9:268–75.

    Article  CAS  PubMed  Google Scholar 

  97. Baruch K, Ron-Harel N, Gal H, Deczkowska A, Shifrut E, Ndifon W, et al. CNS-specific immunity at the choroid plexus shifts toward destructive Th2 inflammation in brain aging. Proc Natl Acad Sci U S A. 2013;110:2264–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Derecki NC, Cardani AN, Yang CH, Quinnies KM, Crihfield A, Lynch KR, et al. Regulation of learning and memory by meningeal immunity: a key role for IL-4. J Exp Med. 2010;207:1067–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Grassi-Oliveira R, Stein LM, Lopes RP, Teixeira AL, Bauer ME. Low plasma brain-derived neurotrophic factor and childhood physical neglect are associated with verbal memory impairment in major depression--a preliminary report. Biol Psychiatry. 2008;64:281–5.

    Article  CAS  PubMed  Google Scholar 

  100. Lewitus GM, Cohen H, Schwartz M. Reducing post-traumatic anxiety by immunization. Brain Behav Immun. 2008;22:1108–14.

    Article  CAS  PubMed  Google Scholar 

  101. Lewitus GM, Schwartz M. Behavioral immunization: immunity to self-antigens contributes to psychological stress resilience. Mol Psychiatry. 2009;14:532–6.

    Article  CAS  PubMed  Google Scholar 

  102. Cohen H, Ziv Y, Cardon M, Kaplan Z, Matar MA, Gidron Y, et al. Maladaptation to mental stress mitigated by the adaptive immune system via depletion of naturally occurring regulatory CD4+CD25+ cells. J Neurobiol. 2006;66:552–63.

    Article  PubMed  Google Scholar 

  103. Kipnis J, Mizrahi T, Hauben E, Shaked I, Shevach E, Schwartz M. Neuroprotective autoimmunity: naturally occurring CD4+CD25+ regulatory T cells suppress the ability to withstand injury to the central nervous system. Proc Natl Acad Sci U S A. 2002;99:15620–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Moalem G, Leibowitz-Amit R, Yoles E, Mor F, Cohen IR, Schwartz M. Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat Med. 1999;5:49–55.

    Article  CAS  PubMed  Google Scholar 

  105. Avidan H, Kipnis J, Butovsky O, Caspi RR, Schwartz M. Vaccination with autoantigen protects against aggregated beta-amyloid and glutamate toxicity by controlling microglia: effect of CD4+CD25+ T cells. Eur J Immunol. 2004;34:3434–45.

    Article  CAS  PubMed  Google Scholar 

  106. Baruch K, Rosenzweig N, Kertser A, Deczkowska A, Sharif AM, Spinrad A, et al. Breaking immune tolerance by targeting Foxp3(+) regulatory T cells mitigates Alzheimer’s disease pathology. Nat Commun. 2015;6:7967.

    Article  CAS  PubMed  Google Scholar 

  107. Deczkowska A, Baruch K, Schwartz M. Type I/II interferon balance in the regulation of brain physiology and pathology. Trends Immunol. 2016;37:181–92.

    Article  CAS  PubMed  Google Scholar 

  108. Baruch K, Deczkowska A, David E, Castellano JM, Miller O, Kertser A, et al. Aging. Aging-induced type I interferon response at the choroid plexus negatively affects brain function. Science. 2014;346:89–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Filiano AJ, Xu Y, Tustison NJ, Marsh RL, Baker W, Smirnov I, et al. Unexpected role of interferon-gamma in regulating neuronal connectivity and social behaviour. Nature. 2016;535:425–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rocha, N.P., Bauer, M.E., Teixeira, A.L. (2019). Neuroimmunoendocrinology. In: Parnham, M., Nijkamp, F., Rossi, A. (eds) Nijkamp and Parnham's Principles of Immunopharmacology. Springer, Cham. https://doi.org/10.1007/978-3-030-10811-3_13

Download citation

Publish with us

Policies and ethics