Skip to main content

Polymer Matrix Based Nanocomposites: Preparation and Properties

  • Living reference work entry
  • First Online:
Handbook of Polymer and Ceramic Nanotechnology

Abstract

For fast few decades significant progress has been achieved in the fabrication of various types of polymer nanocomposites (PNCs). The properties of polymers are enhanced by adding relatively small amounts (2–5%) of nanometer-sized fillers such as clay, metal particles, and carbonaceous materials. The chapter deals with the various processing techniques and properties of polymer nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbasi H, Antunes M, Velasco JI (2019) Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Prog Mater Sci 103:319–373

    Article  CAS  Google Scholar 

  • Alam FE, Dai W, Yang M, Du S, Li X, Yu J, Jiang N, Lin CT (2017) In situ formation of a cellular graphene framework in thermoplastic composites leading to superior thermal conductivity. J Mater Chem A 5:6164

    Article  CAS  Google Scholar 

  • Asgari M, Abouelmagd A, Sundararaj U (2017) Silane functionalization of sodium montmorillonite nanoclay and its effect on rheological and mechanical properties of HDPE/clay nanocomposites. Appl Clay Sci 146:439–448

    Article  CAS  Google Scholar 

  • Bahreini Z, Heydari V, Namdari Z (2017) Effects of nano-layered silicates on mechanical and chemical properties of acrylic-melamine automotive clear coat. Pigm Resin Technol 46(5):333–341

    Article  CAS  Google Scholar 

  • Beryl JR, Xavier JR (2020) Mechanical and corrosion protection properties of polymer–clay nanocomposite coatings for mild steel in marine environment. Emergent Mater 3:75–85

    Article  CAS  Google Scholar 

  • Chen Z, Gong K (2002) Preparation and dynamic mechanical properties of poly(styrene-b-butadiene)-modified clay nanocomposites. J Appl Polym Sci 84:1499

    Article  CAS  Google Scholar 

  • Chiang IW, Brinson BE, Smalley RE, Margrave JL, Hauge RH (2001) Purification and characterization of single- wall carbon nanotubes. J Phys Chem B 105(6):1157–1161

    Article  CAS  Google Scholar 

  • Chopra N, Majumder M, Hinds BJ (2005) Bifunctional carbon nanotubes by sidewall protection. Adv. Funct. Mater. 15(5):858–864

    Google Scholar 

  • Devi KSU, Ponnamma D, Causin V, Maria HJ, Thomas S (2015) Enhanced morphology and mechanical characteristics of clay/styrene butadiene rubber nanocomposites. Appl Clay Sci 114:568–576

    Article  CAS  Google Scholar 

  • Dominic M, Joseph R, Sabura Begum PM, Parambath Kanoth B, Chandra J, Thomas S (2020) Green tire technology: effect of rice husk derived nanocellulose (RHNC) in replacing carbon black (CB) in natural rubber (NR) compounding. Carbohydr Polym 230:115620

    Article  CAS  Google Scholar 

  • Farmahini-Farahani M, Xiao H, Khan A, Pan Y, Yang Y (2015) Preparation and characterization of exfoliated PHBV nanocomposites to enhance water vapor barriers of calendared paper. Ind Eng Chem Res 54(45):11277–11284

    Article  CAS  Google Scholar 

  • Fones TD, Paul DR (2003) Modeling properties of nylon 6/clay nanocomposites using composite theories. Polymer 44:4993–5013

    Article  CAS  Google Scholar 

  • Ganjeh MS, Ahmadinejad N, Akbarzadeh A (2019) Vinyl modified cloisite 30b clay as an efficient filler for the synthesis of poly(styrene-co-butyl acrylate)/clay nanocomposite by emulsion polymerization. Polym Sci Ser B 61:493–502

    Article  CAS  Google Scholar 

  • George SC, Rajan R, Aprem AS, Thomas S, Kim SS (2016) The fabrication and properties of natural rubber-clay nanocomposites. Polym Test 51:165–173

    Article  CAS  Google Scholar 

  • Gill YQ, Song M, Abid U (2019, 2019) Permeation characterization and modelling of polyethylene/clay nanocomposites for packaging. Polym Bull. https://doi.org/10.1007/s00289-019-02930-9

  • Goda ES, Yoon KR, El-sayed SH, Hong SE (2018) Halloysite nanotubes as smart flame retardant and economic reinforcing materials: a review. Thermochim Acta 669(10):173–184

    Article  CAS  Google Scholar 

  • Gorrasi G, Sorrentino A (2015) Mechanical milling as a technology to produce structural and functional bio-nanocomposites. Green Chem 17(5):2610–2625

    Article  CAS  Google Scholar 

  • Govindaraj P, Fox B, Aitchison P, Hameed N (2019) A review on graphene polymer nanocomposites in harsh operating conditions. Ind Eng Chem Res 58:17106–17129

    Article  CAS  Google Scholar 

  • Hamidinejad SM, Chu RKM, Zhao B, Park CB, Filleter T (2018) Enhanced thermal conductivity of graphene nanoplatelet−polymer nanocomposites fabricated via supercritical fluid-assisted in situ exfoliation. ACS Appl Mater Interfaces 10:1225–1236

    Article  CAS  Google Scholar 

  • Higginbotham AL, Lomeda JR, Morgan AB, Tour JM (2009) Graphite oxide flame-retardant polymer nanocomposites. ACS Appl Mater Interfaces 1:2256

    Article  CAS  Google Scholar 

  • Huang S, Dai L (2002) Plasma etching for purification and controlled opening of aligned carbon nanotubes. J Phys Chem B 106(14):3543–3545

    Article  CAS  Google Scholar 

  • Huang G, Gao J, Wang X, Liang H, Ge C (2012) How can graphene reduce the flammability of polymer nanocomposites? Mater Lett 66:187

    Article  CAS  Google Scholar 

  • Huang C, Qian X, Yang R (2018) Thermal conductivity of polymers and polymer nanocomposites. Mater Sci Eng R 132:1–22

    Article  Google Scholar 

  • Jeon IY, Shin SH, Choi HJ, Yu SY, Jung SM, Baek JB (2017) Heavily aluminated graphene nanoplatelets as an efficient flame retardant. Carbon 116:77

    Article  CAS  Google Scholar 

  • Jin M, Zhong Q (2013) Surface-coating montmorillonite nanoclay by water-soluble proteins extracted from hominy feed. J Food Eng 119(3):687–695

    Article  CAS  Google Scholar 

  • Jose T, Moni G, Salini S, Raju AJ, George JJ, George SC (2017) Multifunctional multi-walled carbon nanotube reinforced natural rubber nanocomposites. Ind Crop Prod 105:63–73

    Article  CAS  Google Scholar 

  • Kalendova A, Smotek J, Stloukal P, Kracalik M, Slouf M (2019) Transport properties of poly(lactic acid)/clay nanocomposites. Polym Eng Sci Spec Issue Times Poly 59:2498–2501

    CAS  Google Scholar 

  • Kangoa S, Kaliab S, Celli A, Njugunad J, Habibie Y, Kumara R (2013) Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites – a review. Prog Poly Sci 38:1232–1261

    Article  CAS  Google Scholar 

  • Kim HS, Bae HS, Yu J, Kim SY (2016) Thermal conductivity of polymer composites with the geometrical characteristics of graphene nanoplatelets. Sci Rep 6. No. 26825

    Google Scholar 

  • Kumar M, Sachin P, Vijayanand S, Moholkar S (2016) Investigations in two-step ultrasonic synthesis of PMMA/ZnO nanocomposites by in–situ emulsion polymerization. Polymer 99:453–469

    Article  CAS  Google Scholar 

  • Kumar A, Sharma K, Dixit AR (2020) Carbon nanotube- and graphene-reinforced multiphase polymeric composites: review on their properties and applications. J Mater Sci 55:2682–2724. https://doi.org/10.1007/s10853-019-04196-y

    Article  CAS  Google Scholar 

  • Lee J-U, Yoon D, Kim H, Lee SW, Cheong H (2011) Thermal conductivity of suspended pristine graphene measured by Raman spectroscopy. Phys Rev B83 8:081419

    Article  CAS  Google Scholar 

  • Meng F, Huang F, Guo Y, Chen J, Chen X, Hui D, He P, Zhou X, Zhou Z (2017) In situ intercalation polymerization approach to polyamide-6/graphite nanoflakes for enhanced thermal conductivity. Compos Part B 117:165–173

    Article  CAS  Google Scholar 

  • Merachtsaki D, Xidas P, Giannakoudakis P, Triantafyllidis K, Spathis P (2017) Corrosion protection of steel by epoxy-organoclay nanocomposite coatings. Coatings Tech 7(7):84

    Article  CAS  Google Scholar 

  • Mittal G, Dhand V, Rhee KY, Park S-J, Lee WR (2015) A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J Ind Eng Chem 21:11–25

    Article  CAS  Google Scholar 

  • Neilson LE (1967) Models for the permeability of filled polymer systems, J Macromol Sci (Chem) 1967; A1(5): 929

    Google Scholar 

  • Niu D, Jiang W, Ye G, Wang K, Yin L, Shi Y, Chen B, Luo F, Liu H (2018) Graphene-elastomer nanocomposites based flexible piezoresistive sensors for strain and pressure detection. Mater Res Bull 102:92–99

    Article  CAS  Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV (2004) Electric field in automatically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  • Okada A, Kawasumi M, Usuki A, Kojima Y, Kurauchi T, Kamigaito O (1990) Nylon-6/clay hybrid. Mater Res Soc Proc 171(45):1990

    Google Scholar 

  • Papadopoulos L, Terzopoulou Z, Vlachopoulos A, Klonos PA, Kyritsis A, Tzetzis D, Papageorgiou GZ, Bikiaris D (2020) Synthesis and characterization of novel polymer/clay nanocomposites based on poly (butylene 2,5-furan dicarboxylate). Appl Clay Sci 190:105588

    Article  CAS  Google Scholar 

  • Papageorgiou DG, Li Z, Liu M, Kinloch IA, Young RJ (2020) Mechanisms of mechanical reinforcement by graphene and carbon nanotubes in polymer nanocomposites. https://doi.org/10.1039/c9nr06952f

  • Paran SMR, Naderi G, Javadi F, Shemshadi R, Saeb MR (2020) Experimental and theoretical analyses on mechanical properties and stiffness of hybrid graphene/graphene oxide reinforced EPDM/NBR nanocomposites. Mater Today Commun 22:100763

    Article  CAS  Google Scholar 

  • Percival SJ, Christopher MAM, Alexander NDW, Schindelholz EJ, Spoerke ED (2020) Nanoscale thin film corrosion barriers enabled by multilayer polymer clay nanocomposites. Surf Coat Technol 383:125228

    Article  CAS  Google Scholar 

  • Ponnammaa D, Sadasivuni KK, Strankowski M, Guo Q, Thomas S (2013) Synergistic effect of multi walled carbon nanotubes and reduced graphene oxides in natural rubber for sensing application. Soft Matter 9:10343–10353

    Article  CAS  Google Scholar 

  • Qiu D, Liang P, Peng L et al (2020) Material behavior of rubber sealing for proton exchange membrane fuel cells. Int J Hydrogen Energ 45(8):5465–5473

    Article  CAS  Google Scholar 

  • Rafiee MA, Rafiee J, Wang Z, Song H, Yu Z-Z, Koratkar N (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3:3884–3890

    Article  CAS  Google Scholar 

  • Rajczak E, Arrigo R, Malucelli G (2020) Thermal stability and flame retardance of EVA containing DNA-modified clays. Thermochim Acta 686:178546

    Article  CAS  Google Scholar 

  • Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud’Homme RK, Brinson LC (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3:327–331

    Article  CAS  Google Scholar 

  • Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28(11):1539–1641

    Article  CAS  Google Scholar 

  • Ray SS, Okamoto K, Maiti P, Okamoto M (2002) New poly (butylene succinate)/layered silicate nanocomposites: preparation and mechanical properties. J Nanosci Nanotechnol 2(2):171–176

    Article  CAS  Google Scholar 

  • Sadasivuni KK, Ponnamma D, Kumar B, Strankawisky M, Cardinaels R, Moldenaers P, Thomas S, Grohens Y (2014) Dielectric properties of modified graphene oxide filled polyurethane nanocomposites and its correlation with rheology. Compos Sci Technol 104:18–25

    Article  CAS  Google Scholar 

  • Sau KP, Chaki TK, Khastgir D (1998) The change in conductivity of a rubber- carbon black composite subjected to different modes of pre-strain. Compos Part A 29A:363–370

    Article  CAS  Google Scholar 

  • Sau KP, Chaki TK, Khastgir D (1999) Electrical an mechanical properties of conducting carbon black filled composites based on rubber and rubber blends. J Appl Polym Sci 71:887–896

    Article  CAS  Google Scholar 

  • Shameli K, Zakaria Z, Hara H, Ahmad MB, Mohamad SE, Nordin MFM, Iiwamoto K (2015) Poly (lactic acid)/organoclay blend nanocomposites: structural, mechanical and microstructural properties. Digest J Nanomater Biostruct 10(1):323–329

    Google Scholar 

  • Shen S, Henry A, Tong J, Zheng R, Chen G (2010) Polyethylene nanofibres with very high thermal conductivities. Nat Nanotechnol 5(4):251–255

    Article  CAS  Google Scholar 

  • Siddique S, Smith GD, Yates K et al (2019) Structural and thermal degradation behaviour of reclaimed clay nano-reinforced low-density polyethylene nanocomposites. J Polym Res 26:154

    Article  CAS  Google Scholar 

  • Singh V, Bougher TL, Weathers A, Cai Y, Bi K, Pettes MT, McMenamin SA, Resler WLDP, Gattuso TR, Altman DH, Sandhage KH, Shi L, Henry A, Cola BA (2014) Polyethylene nanofibres with very high thermal conductivities. Nat Nanotechnol 9(5):384–390

    Article  CAS  Google Scholar 

  • Somasekharan L, Xavier P, Bose S, Zachariah AK, Kalarikkal N, Kumar SA, Thomas S (2020) Natural rubber nanocomposites with MWCNT@POSS hybrid filler: preparation and properties. Polym Compos 41:369–380

    Article  CAS  Google Scholar 

  • Song SH, Park KH, Kim BH, Choi YW, Jun GH, Lee DJ, Kong B-S, Paik K-W, Jeon S (2013) Enhanced thermal conductivity of epoxy-graphene composites by using non-oxidized graphene flakes with non-covalent functionalization. Adv Mater 25:732–737

    Article  CAS  Google Scholar 

  • Susmita K, Madras G, Bose S (2020) Polymer nanocomposites containing semiconductors as advanced materials for emi shielding. ACS Omega 5:4705–4718

    Article  CAS  Google Scholar 

  • Swain SS, Unnikrishnan L, Mohanty S, Nayak SK (2017) Carbon nanotubes as potential candidate for separation of H2-CO2 gas pairs. Intl J Hydro Ener. https://doi.org/10.1016/j.ijhydene.2017.09.152

  • Swapna VP, Nambissan PMG, Thomas SP, Abitha VK, Jose T, George SC, Thomas S, Stephen R (2019) Free volume defects and transport properties of mechanically stable polyhedral oligomeric silsesquioxane embedded poly(vinylalcohol)- poly(ethylene oxide) blend membranes. Polym Int. https://doi.org/10.1002/pi.5815

  • Tanahashi M (2010) Development of fabrication methods of filler/polymer nanocomposites: with focus on simple melt-compounding-based approach without surface modification of nanofillers. Materials 3:1593–1619. https://doi.org/10.3390/ma3031593

    Article  CAS  Google Scholar 

  • Tanahashi M, Hirose M, Lee J-C, Takeda K (2006) Organic/inorganic nanocomposites prepared by mechanical smashing of agglomerated silica ultrafine particles in molten thermoplastic resin. Polym Adv Technol 17:981–990

    Article  CAS  Google Scholar 

  • Utracki LA, Simha R (2004) Pressure−volume−temperature dependence of polypropylene/organoclay nanocomposites. Macromolecules 37:10123

    Article  CAS  Google Scholar 

  • Wang D, Zhu J, Yao Q, Wilkie CA (2002) A comparison of various methods for the preparation of polystyrene and poly(methyl methacrylate) clay nanocomposites. Chem Mater 14:3837

    Article  CAS  Google Scholar 

  • Wang X, Yang C, Jin J et al (2018) High performance stretchable supercapacitors based on intrinsically stretchable acrylate rubber/MWCNTS@ conductive polymer composite electrodes. J Mater Chem 10

    Google Scholar 

  • Wu H, Zhao W, Hu H, Chen G (2011) One-step in situ ball milling synthesis of polymer-functionalized graphene nanocomposites. J Mater Chem 21:8626

    Article  CAS  Google Scholar 

  • Yoon J, Lee J, Hur J (2018) Stretchable supercapacitors based on carbon nanotubes-deposited rubber polymer nanofibers electrodes with high tolerance against strain. Nano 8(2018)

    Google Scholar 

  • Yu BC, Jung JW, Park K, Goodenough JB (2017) A new approach for recycling waste rubber products in Li-S batteries. Energy Environ Sci 1

    Google Scholar 

  • Zhou K, Gui Z, Hu Y (2016) The influence of graphene based smoke suppression agents on reduced fire hazards of polystyrene composites. Compos Part A 80:217

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Stephen, R., Pal, K., Thomas, S. (2020). Polymer Matrix Based Nanocomposites: Preparation and Properties. In: Hussain, C.M., Thomas, S. (eds) Handbook of Polymer and Ceramic Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-10614-0_15-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10614-0_15-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10614-0

  • Online ISBN: 978-3-030-10614-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics