Skip to main content

Biosorbents and Composite Cation Exchanger for the Treatment of Heavy Metals

  • Chapter
  • First Online:
Applications of Ion Exchange Materials in the Environment

Abstract

Heavy metals have seriously affected the quality of water, soil, and marine ecosystems. More economical, efficient and effective water purification and desalination methods need to be developed to remove persistent heavy metal ion contamination, especially in drinking water. Among low-cost methods with different degree of effectiveness for heavy metal ion removal highlighted in this chapter are the agro-based biosorbents and biopolymers based on cellulose, chitosan, and alginate. Factors influencing the efficiency of nanofiber membranes and packed-bed adsorbers have been addressed. Different types of composite ion exchangers are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Inglehart R, Norris, P (2003) Rising tide: gender equality and cultural change around the world. Cambridge University Press

    Google Scholar 

  2. Grimm NB et al (2008) Global change and the ecology of cities. Science 319(5864):756–760

    Article  CAS  Google Scholar 

  3. Organization WH (1992) WHO commission on health and environment: report of the panel on industry

    Google Scholar 

  4. Flower SRL (2015) Environmental pollution-especially air pollution-and public health

    Google Scholar 

  5. Förstner U, Wittmann GT (2012) Metal pollution in the aquatic environment. Springer Science & Business Media

    Google Scholar 

  6. Mushak P (2007) Hormesis and its place in nonmonotonic dose–response relationships: some scientific reality checks. Environ Health Perspect 115(4):500

    Article  CAS  Google Scholar 

  7. Mishra MK (2013) A study of intermetallics in Cu–Sn system and development of Sn–Zn based lead free solders

    Google Scholar 

  8. Matte TD, Landrigan PJ, Baker EL (1992) Occupational lead exposure. Hum Lead Exposure 155–168

    Google Scholar 

  9. Choudhary R et al (2016) Equipment-free, single-step, rapid, “on-site” kit for visual detection of lead ions in soil, water, bacteria, live cells, and solid fruits using fluorescent cube-shaped nitrogen-doped carbon dots. ACS Sustain Chem Eng 4(10):5606–5617

    Article  CAS  Google Scholar 

  10. Mudgal V et al (2010) Effect of toxic metals on human health. Open Nutr J 3(1):94–99

    CAS  Google Scholar 

  11. Harikumar P et al (2011) Study on the leaching of mercury from compact fluorescent lamps using stripping voltammetry. J Toxicol Environ Health Sci 3(1):008–013

    CAS  Google Scholar 

  12. Lokeshappa B et al (2012) Assessment of toxic metals in agricultural produce. Food Public Health 2(1):24–29

    Article  Google Scholar 

  13. Pais I, Jones JB Jr (1997) The handbook of trace elements. CRC Press

    Google Scholar 

  14. Soetan K, Olaiya C, Oyewole O (2010) The importance of mineral elements for humans, domestic animals and plants—a review. Afr J Food Sci 4(5):200–222

    CAS  Google Scholar 

  15. Underwood E (2012) Trace elements in human and animal nutrition: Elsevier

    Google Scholar 

  16. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92(3):407–418

    Article  CAS  Google Scholar 

  17. Ngah WW, Hanafiah M (2008) Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review. Biores Technol 99(10):3935–3948

    Article  CAS  Google Scholar 

  18. Barakat M (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4(4):361–377

    Article  CAS  Google Scholar 

  19. Daneshfozoun S, Abdullah M, Abdullah B (2017) Preparation and characterization of magnetic biosorbent based on oil palm empty fruit bunch fibers, cellulose and Ceiba pentandra for heavy metal ions removal. Ind Crops Prod 105:93–103

    Article  CAS  Google Scholar 

  20. Omri A, Benzina M (2012) Removal of manganese (II) ions from aqueous solutions by adsorption on activated carbon derived a new precursor: ziziphus spina-christi seeds. Alexandria Eng J 51(4):343–350

    Article  CAS  Google Scholar 

  21. Omorogie M (2014) Adsorption of some toxic metal ions onto west african boxwood (naucleadiderrichii, merrill) seed epicarp doped with nanoparticles

    Google Scholar 

  22. Mondal DK, Nandi BK, Purkait M (2013) Removal of mercury (II) from aqueous solution using bamboo leaf powder: equilibrium, thermodynamic and kinetic studies. J Environ Chem Eng 1(4):891–898

    Article  CAS  Google Scholar 

  23. Reddy DHK et al (2012) Optimization of Cd(II), Cu(II) and Ni(II) biosorption by chemically modified Moringa oleifera leaves powder. Carbohyd Polym 88(3):1077–1086

    Article  CAS  Google Scholar 

  24. Li X et al (2013) Adsorption, concentration, and recovery of aqueous heavy metal ions with the root powder of Eichhornia crassipes. Ecol Eng 60:160–166

    Article  CAS  Google Scholar 

  25. Munagapati VS et al (2010) Biosorption of Cu(II), Cd(II) and Pb(II) by acacia leucocephala bark powder: kinetics, equilibrium and thermodynamics. Chem Eng J 157(2–3):357–365

    Article  CAS  Google Scholar 

  26. Reddy DHK et al (2011) Biosorption of Ni(II) from aqueous phase by Moringa oleifera bark, a low cost biosorbent. Desalination 268(1–3):150–157

    Article  CAS  Google Scholar 

  27. Sarin V, Pant KK (2006) Removal of chromium from industrial waste by using eucalyptus bark. Biores Technol 97(1):15–20

    Article  CAS  Google Scholar 

  28. Feng N et al (2011) Biosorption of heavy metals from aqueous solutions by chemically modified orange peel. J Hazard Mater 185(1):49–54

    Article  CAS  Google Scholar 

  29. Saha R et al (2013) Removal of hexavalent chromium from water by adsorption on mosambi (Citrus limetta) peel. Res Chem Intermed 39(5):2245–2257

    Article  CAS  Google Scholar 

  30. Bhattacharya P et al (2013) Potential of biosorbent developed from fruit peel of Trewia nudiflora for removal of hexavalent chromium from synthetic and industrial effluent: Analyzing phytotoxicity in germinating Vigna seeds. J Environ Sci Health Part A 48(7):706–719

    Article  CAS  Google Scholar 

  31. Iqbal M, Saeed A, Kalim I (2009) Characterization of adsorptive capacity and investigation of mechanism of Cu2+, Ni2+ and Zn2+ adsorption on mango peel waste from constituted metal solution and genuine electroplating effluent. Sep Sci Technol 44(15):3770–3791

    Article  CAS  Google Scholar 

  32. Zheng L et al (2010) Equilibrium and kinetic studies of adsorption of Cd(II) from aqueous solution using modified corn stalk. J Hazard Mater 176(1–3):650–656

    Article  CAS  Google Scholar 

  33. Zheng L et al (2010) Removal of cadmium (II) from aqueous solution by corn stalk graft copolymers. Biores Technol 101(15):5820–5826

    Article  CAS  Google Scholar 

  34. Wong K et al (2003) Removal of Cu and Pb by tartaric acid modified rice husk from aqueous solutions. Chemosphere 50(1):23–28

    Article  CAS  Google Scholar 

  35. Ahalya N, Kanamadi R, Ramachandra T (2005) Biosorption of chromium (VI) from aqueous solutions by the husk of Bengal gram (Cicer arientinum). Electron J Biotechnol 8(3):0–0

    Article  CAS  Google Scholar 

  36. Oliveira WE et al (2008) Untreated coffee husks as biosorbents for the removal of heavy metals from aqueous solutions. J Hazard Mater 152(3):1073–1081

    Article  CAS  Google Scholar 

  37. Alomá I et al (2012) Removal of nickel (II) ions from aqueous solutions by biosorption on sugarcane bagasse. J Taiwan Inst Chem Eng 43(2):275–281

    Article  CAS  Google Scholar 

  38. Velazquez-Jimenez LH, Pavlick A, Rangel-Mendez JR (2013) Chemical characterization of raw and treated agave bagasse and its potential as adsorbent of metal cations from water. Ind Crops Prod 43:200–206

    Article  CAS  Google Scholar 

  39. Martín-Lara MÁ et al (2010) Modification of the sorptive characteristics of sugarcane bagasse for removing lead from aqueous solutions. Desalination 256(1–3):58–63

    Article  CAS  Google Scholar 

  40. Khoramzadeh E, Nasernejad B, Halladj R (2013) Mercury biosorption from aqueous solutions by sugarcane bagasse. J Taiwan Inst Chem Eng 44(2):266–269

    Article  CAS  Google Scholar 

  41. Boota R, Bhatti HN, Hanif MA (2009) Removal of Cu(II) and Zn(II) using lignocellulosic fiber derived from Citrus reticulata (Kinnow) waste biomass. Sep Sci Technol 44(16):4000–4022

    Article  CAS  Google Scholar 

  42. Daneshfozoun S, Abdullah B, Abdullah MA (2014) Heavy metal removal by oil palm empty fruit bunches (OPEFB) biosorbent. In: Applied mechanics and materials. Trans Tech Publications

    Google Scholar 

  43. Daneshfozoun S, Abdullah B, Abdullah MA (2016) The effects of oil palm empty fruit bunch sorbent sizes on plumbum (II) ion sorption. In: Advanced materials research. Trans Tech Publications

    Google Scholar 

  44. Nazir MS, Ajab H, Raza MR, Abdullah MA (2018) Surface modification of cellulose fibers from oil palm empty fruit bunches for heavy metal ion sorption and diesel desulphurization. Desalin Water Treat 107: 241–256

    Article  Google Scholar 

  45. Ajab H, Dennis JO, Abdullah MA (2018) Synthesis and characterization of cellulose and hydroxyapatite-carbon electrode composite for trace plumbum ions detection and its validation in blood serum. Int J Biol Macromol 113:376–385

    Article  CAS  Google Scholar 

  46. Kaur R et al (2012) Biosorption the possible alternative to existing conventional technologies for sequestering heavy metal ions from aqueous streams: a review. Univ J Environ Res Technol 2(4)

    Google Scholar 

  47. Wei W et al (2016) Biosorption of Pb(II) from aqueous solution by extracellular polymeric substances extracted from Klebsiella sp. J1: adsorption behavior and mechanism assessment. Sci Rep 6:31575

    Google Scholar 

  48. Sargın İ (2015) Preparation of chitosan microcapsules and investigation of its metal adsorption properties. Selçuk Üniversitesi Fen Bilimleri Enstitüsü

    Google Scholar 

  49. Homagai PL (2018) Studies on the development of natural cation exchanger for heavy metals removal

    Google Scholar 

  50. Zhang YHP (2013) Next generation biorefineries will solve the food, biofuels, and environmental trilemma in the energy–food–water nexus. Energy Sci Eng 1(1):27–41

    Article  CAS  Google Scholar 

  51. Dax D et al (2013) Amphiphilic spruce galactoglucomannan derivatives based on naturally-occurring fatty acids. BioResources 8(3):3771–3790

    Article  Google Scholar 

  52. Wang J et al (2013) Collagen/cellulose hydrogel beads reconstituted from ionic liquid solution for Cu(II) adsorption. Carbohyd Polym 98(1):736–743

    Article  CAS  Google Scholar 

  53. Abbas A et al (2017) Design, characterization and evaluation of hydroxyethylcellulose based novel regenerable supersorbent for heavy metal ions uptake and competitive adsorption. Int J Biol Macromol 102:170–180

    Article  CAS  Google Scholar 

  54. Abbas A et al (2017) Modified hydroxyethylcellulose: a regenerable super-sorbent for Cd2+ uptake from spiked high-hardness groundwater. Cellul Chem Technol 51(1–2):167–174

    CAS  Google Scholar 

  55. Kweon D-K et al (2001) Adsorption of divalent metal ions by succinylated and oxidized corn starches. Carbohyd Polym 46(2):171–177

    Article  CAS  Google Scholar 

  56. Song X et al (2006) Preparation and properties of octenyl succinic anhydride modified early indica rice starch. Starch-Stärke 58(2):109–117

    Article  CAS  Google Scholar 

  57. Marcazzan M et al (1999) An ESR assay for α-amylase activity toward succinylated starch, amylose and amylopectin. J Biochem Biophys Methods 38(3):191–202

    Article  CAS  Google Scholar 

  58. Yamaguchi R et al (1981) Preparation of partially N-succinylated chitosans and their cross-linked gels. Carbohyd Res 88(1):172–175

    Article  CAS  Google Scholar 

  59. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31(7):603–632

    Article  CAS  Google Scholar 

  60. Kumar MNR (2000) A review of chitin and chitosan applications. React Funct Polym 46(1):1–27

    Article  CAS  Google Scholar 

  61. Shukla SK et al (2013) Chitosan-based nanomaterials: a state-of-the-art review. Int J Biol Macromol 59:46–58

    Article  CAS  Google Scholar 

  62. Sorlier P et al (2001) Relation between the degree of acetylation and the electrostatic properties of chitin and chitosan. Biomacromol 2(3):765–772

    Article  CAS  Google Scholar 

  63. Miretzky P, Cirelli AF (2009) Hg(II) removal from water by chitosan and chitosan derivatives: a review. J Hazard Mater 167(1–3):10–23

    Article  CAS  Google Scholar 

  64. Dash M et al (2011) Chitosan—a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 36(8):981–1014

    Article  CAS  Google Scholar 

  65. Jayakumar R et al (2005) Graft copolymerized chitosan—present status and applications. Carbohyd Polym 62(2):142–158

    Article  CAS  Google Scholar 

  66. Ryu SW et al (2004) Synthesis of well-defined high-density branched polymers carrying two branch chains in each repeating unit by coupling reaction of benzyl bromide-functionalized polystyrenes with polymer anions comprised of two polymer segments. Macromolecules 37(17):6291–6298

    Article  CAS  Google Scholar 

  67. Lavanya R et al (2017) Adsorptive removal of copper (II) and lead (II) using chitosan-g-maleic anhydride-g-methacrylic acid copolymer. Int J Biol Macromol 104:1495–1508

    Article  CAS  Google Scholar 

  68. Razzaz A et al (2015) J Taiwan Inst Chem Eng

    Google Scholar 

  69. Kumar I, Natrayasamy V (2017) Development of multivalent metal ion imprinted chitosan biocomposites for phosphate sorption

    Google Scholar 

  70. Sargın İ, Arslan G, Kaya M (2016) Efficiency of chitosan–algal biomass composite microbeads at heavy metal removal. React Funct Polym 98:38–47

    Article  CAS  Google Scholar 

  71. Pereao O et al (2017) Electrospinning: polymer nanofibre adsorbent applications for metal ion removal. J Polym Environ 25(4):1175–1189

    Article  CAS  Google Scholar 

  72. Karthik R, Meenakshi S (2015) Removal of Cr(VI) ions by adsorption onto sodium alginate-polyaniline nanofibers. Int J Biol Macromol 72:711–717

    Article  CAS  Google Scholar 

  73. Lim S-F et al (2009) Removal of copper by calcium alginate encapsulated magnetic sorbent. Chem Eng J 152(2–3):509–513

    Article  CAS  Google Scholar 

  74. Dogan H (2012) Preparation and characterization of calcium alginate-based composite adsorbents for the removal of Cd, Hg, and Pb ions from aqueous solution. Toxicol Environ Chem 94(3):482–499

    Article  CAS  Google Scholar 

  75. Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37(18):4311–4330

    Article  CAS  Google Scholar 

  76. Chang C, Zhang L (2011) Cellulose-based hydrogels: present status and application prospects. Carbohyd Polym 84(1):40–53

    Article  CAS  Google Scholar 

  77. Lee KY et al (2009) Electrospinning of polysaccharides for regenerative medicine. Adv Drug Deliv Rev 61(12):1020–1032

    Article  CAS  Google Scholar 

  78. Huang Z-M et al (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253

    Article  CAS  Google Scholar 

  79. Elsabee MZ, Naguib HF, Morsi RE (2012) Chitosan based nanofibers, review. Mater Sci Eng C 32(7):1711–1726

    Article  CAS  Google Scholar 

  80. Ramakrishna S et al (2006) Electrospun nanofibers: solving global issues. Mater Today 9(3):40–50

    Article  CAS  Google Scholar 

  81. Ahmed S, Ikram S (2015) Chitosan & its derivatives: a review in recent innovations. Int J Pharm Sci Res 6(1):14

    Google Scholar 

  82. Shariful MI et al (2017) Adsorption of divalent heavy metal ion by mesoporous-high surface area chitosan/poly (ethylene oxide) nanofibrous membrane. Carbohyd Polym 157:57–64

    Article  CAS  Google Scholar 

  83. Habiba U et al (2017) Chitosan/(polyvinyl alcohol)/zeolite electrospun composite nanofibrous membrane for adsorption of Cr6+, Fe3+ and Ni2+. J Hazard Mater 322:182–194

    Article  CAS  Google Scholar 

  84. Mohamed RR, Elella MHA, Sabaa MW (2017) Cytotoxicity and metal ions removal using antibacterial biodegradable hydrogels based on N-quaternized chitosan/poly (acrylic acid). Int J Biol Macromol 98:302–313

    Article  CAS  Google Scholar 

  85. Gupta V et al (2009) Low-cost adsorbents: growing approach to wastewater treatment—a review. Crit Rev Environ Sci Technol 39(10):783–842

    Article  Google Scholar 

  86. Goel J et al (2005) Removal of lead (II) by adsorption using treated granular activated carbon: batch and column studies. J Hazard Mater 125(1–3):211–220

    Article  CAS  Google Scholar 

  87. Han R et al (2009) Characterization and properties of iron oxide-coated zeolite as adsorbent for removal of copper (II) from solution in fixed bed column. Chem Eng J 149(1–3):123–131

    Article  CAS  Google Scholar 

  88. Taty-Costodes VC et al (2005) Removal of lead (II) ions from synthetic and real effluents using immobilized Pinus sylvestris sawdust: adsorption on a fixed-bed column. J Hazard Mater 123(1–3):135–144

    Article  CAS  Google Scholar 

  89. Chen JP, Wang X (2000) Removing copper, zinc, and lead ion by granular activated carbon in pretreated fixed-bed columns. Sep Purif Technol 19(3):157–167

    Article  CAS  Google Scholar 

  90. Mohammed N et al (2016) Continuous flow adsorption of methylene blue by cellulose nanocrystal-alginate hydrogel beads in fixed bed columns. Carbohyd Polym 136:1194–1202

    Article  CAS  Google Scholar 

  91. Mojumdar S, Varshney K, Agrawal A (2006) Hybrid fibrous ion exchange materials: past, present and future. Res J Chem Environ 10(1):89–97

    CAS  Google Scholar 

  92. Mojumdar S et al (2006) Synthetic and ion-exchange studies on a lead selective acrylamide thorium (IV) phosphate hybrid fibrous ion exchanger. Res J Chem Environ 10:85–89

    CAS  Google Scholar 

  93. Varshney K, Agrawal A, Mojumdar S (2007) Pyridine based cerium (IV) phosphate hybrid fibrous ion exchanger: synthesis, characterization and thermal behaviour. J Therm Anal Calorim 90(3):731–734

    Article  CAS  Google Scholar 

  94. Varshney K, Agrawal A, Mojumdar S (2007) Pyridine based thorium (IV) phosphate hybrid fibrous ion exchanger: synthesis, characterization and thermal behaviour. J Therm Anal Calorim 90(3):721–724

    Article  CAS  Google Scholar 

  95. Shahadat M et al (2012) Synthesis, characterization, photolytic degradation, electrical conductivity and applications of a nanocomposite adsorbent for the treatment of pollutants. RSC Adv 2(18):7207–7220

    Article  CAS  Google Scholar 

  96. Pouliot Y, Conway V, Leclerc P-L (2014) Separation and concentration technologies in food processing. In: Food processing: principles and applications, pp. 33–60

    Chapter  Google Scholar 

  97. Camacho LM et al (2013) Advances in membrane distillation for water desalination and purification applications. Water 5(1):94–196

    Article  Google Scholar 

  98. Drioli E, Macedonio EF (2010) Membrane research, membrane production and membrane application in China

    Google Scholar 

  99. Wu Y et al (2015) The effects of multi-functional groups from PVA and ternary multisilicon copolymer on diffusion dialysis. Sep Purif Technol 141:124–131

    Article  CAS  Google Scholar 

  100. Gizli N, Çınarlı S, Demircioğlu M (2012) Characterization of poly (vinylchloride) (PVC) based cation exchange membranes prepared with ionic liquid. Sep Purif Technol 97:96–107

    Article  CAS  Google Scholar 

  101. Kaushal S et al (2017) Synthesis and characterization of a tin (IV) antimonophosphate nano-composite membrane incorporating 1-dodecyl-3-methylimidazolium bromide ionic liquid. RSC Adv 7(21):12561–12569

    Article  CAS  Google Scholar 

  102. Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28(11):1539–1641

    Article  CAS  Google Scholar 

  103. Pavlidou S, Papaspyrides C (2008) A review on polymer–layered silicate nanocomposites. Prog Polym Sci 33(12):1119–1198

    Article  CAS  Google Scholar 

  104. Kaur M, Srivastava A (2002) Photopolymerization: a review. J Macromol Sci Part C Polym Rev 42(4):481–512

    Article  CAS  Google Scholar 

  105. Fuchs Y, Soppera O, Haupt K (2012) Photopolymerization and photostructuring of molecularly imprinted polymers for sensor applications—a review. Anal Chim Acta 717:7–20

    Article  CAS  Google Scholar 

  106. Bayram I, Oral A, Şirin K (2013) Synthesis of poly(cyclohexene oxide)-montmorillonite nanocomposite via in situ photoinitiated cationic polymerization with bifunctional clay. J Chem 2013

    Google Scholar 

  107. Maruyama SA et al (2017) Synthesis, cation exchange and dehydration/rehydration of sodium gordaite: NaZn4(OH)6(SO4)Cl · 6H2O. Appl Clay Sci 146:100–105

    Article  CAS  Google Scholar 

  108. Kulkarni VV, Golder AK, Ghosh PK (2018) Synthesis and characterization of carboxylic cation exchange bio-resin for heavy metal remediation. J Hazard Mater 341:207–217

    Article  CAS  Google Scholar 

  109. Maity J, Ray SK (2018) Removal of Pb(II) from water using a bio-composite adsorbent-A systematic approach of optimizing synthesis and process parameters by response surface methodology. J Environ Manage 209:112–125

    Article  CAS  Google Scholar 

  110. Jain CK, Malik DS, Yadav AK (2016) Applicability of plant based biosorbents in the removal of heavy metals: a review. Environ Process 3(2):495–523

    Article  CAS  Google Scholar 

  111. Raftery R, O’Brien FJ, Cryan S-A (2013) Chitosan for gene delivery and orthopedic tissue engineering applications. Molecules 18(5):5611–5647

    Article  CAS  Google Scholar 

  112. Matsumoto H, Tanioka A (2011) Functionality in electrospun nanofibrous membranes based on fiber’s size. Surface Area, and Molecular Orientation. 1:249–264

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Azmuddin Abdullah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nazir, M.S., Tahir, Z., Akhtar, M.N., Abdullah, M.A. (2019). Biosorbents and Composite Cation Exchanger for the Treatment of Heavy Metals. In: Inamuddin, Ahamed, M., Asiri, A. (eds) Applications of Ion Exchange Materials in the Environment. Springer, Cham. https://doi.org/10.1007/978-3-030-10430-6_7

Download citation

Publish with us

Policies and ethics