Skip to main content

Use of Ion-Exchange Resins in Dehydration Reactions

  • Chapter
  • First Online:
Applications of Ion Exchange Materials in Chemical and Food Industries

Abstract

This chapter reviews the main uses of ion-exchange resins as catalysts for dehydration processes. In this regard, the dehydration of alcohols to alkenes is dealt with, and mainly to ethers, since these latter processes require a lower reaction temperature. Moreover, the large variety of ethers (linear, branched, cyclic), which can be synthesized in the presence of ion-exchange resins, has attracted the interest of many research groups, and important industrial applications have been envisaged. Another group of hydroxylated compounds, that is, bearing OH groups susceptible to be dehydrated, are carbohydrates. Monosaccharides such as glucose, fructose and xylose, mainly present in the lignocellulosic biomass, can be transformed, in the presence of ion-exchange resins, into platform molecules. Among them, furfural and 5-hydroxymethylfurfural possess a great potential as they can be utilized as building blocks for the production of high value-added chemicals and materials. The main catalytic processes will be described, providing detailed information about the catalytic performance, and underlining advantages and drawbacks of ion-exchange resins for each catalytic process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Serrano-Ruiz JC, West RM, Dumesic JA (2010) Catalytic conversion of renewable biomass resources to fuels and chemicals. Annu Rev Chem Biomol Eng 1:79–100. https://doi.org/10.1146/annurev-chembioeng-073009-100935

    Article  CAS  PubMed  Google Scholar 

  2. Alonso DM, Bond JQ, Dumesic JA (2010) Catalytic conversion of biomass to biofuels. Green Chem 12:1493–1513. https://doi.org/10.1039/c004654j

    Article  CAS  Google Scholar 

  3. Polyanskii NG, Sapozhnikov VK (1977) New advances in catalysis by Ion-exchange resins. Russ Chem Rev 46:226–245

    Article  Google Scholar 

  4. Heath HW, Gates BC (1972) Mass transport and reaction in sulfonic acid resin catalyst: the dehydration of t -butyl alcohol. AIChE J 18:321–326

    Article  CAS  Google Scholar 

  5. Frija LMT, Afonso CAM (2012) Amberlyst -15: a reusable heterogeneous catalyst for the dehydration of tertiary alcohols. Tetrahedron 68:7414–7421. https://doi.org/10.1016/j.tet.2012.06.083

    Article  CAS  Google Scholar 

  6. Courtney TD, Nikolakis V, Mpourmpakis G, Chen JG, Vlachos DG (2012) Applied catalysis a: general liquid-phase dehydration of propylene glycol using solid-acid catalysts. Applied Catal A Gen 449:59–68. https://doi.org/10.1016/j.apcata.2012.09.034

    Article  CAS  Google Scholar 

  7. Kaneko T, Derbyshire F, Makino E, Gray D, Tamura M (2005) Coal liquefaction. In: ULLMANN’S encyclopedia of industrial chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  8. Lei Z, Zou Z, Dai C, Li Q, Chen B (2011) Synthesis of dimethyl ether (DME) by catalytic distillation. Chem Eng Sci 66:3195–3203. https://doi.org/10.1016/j.ces.2011.02.034

    Article  CAS  Google Scholar 

  9. Azizi Z, Rezaeimanesh M, Tohidian T, Rahimpour MR (2014) Dimethyl ether: a review of technologies and production challenges. Chem Eng Process Process Intensif 82:150–172. https://doi.org/10.1016/j.cep.2014.06.007

    Article  CAS  Google Scholar 

  10. Hosseininejad S, Afacan A, Hayes RE (2012) Catalytic and kinetic study of methanol dehydration to dimethyl ether. Chem Eng Res Des 90:825–833. https://doi.org/10.1016/j.cherd.2011.10.007

    Article  CAS  Google Scholar 

  11. Casas C, Bringué R, Ramírez E, Iborra M, Tejero J (2011) Liquid-phase dehydration of 1-octanol, 1-hexanol and 1-pentanol to linear symmetrical ethers over ion exchange resins. Appl Catal A Gen 396:129–139. https://doi.org/10.1016/j.apcata.2011.02.006

    Article  CAS  Google Scholar 

  12. Pérez MA, Bringué R, Iborra M, Tejero J, Cunill F (2014) Ion exchange resins as catalysts for the liquid-phase dehydration of 1-butanol to di-n-butyl ether. Appl Catal A Gen 482:38–48. https://doi.org/10.1016/j.apcata.2014.05.017

    Article  CAS  Google Scholar 

  13. Tejero J, Cunill F, Iborra M, Izquierdo JF, Fité C (2002) Dehydration of 1-pentanol to di- n -pentyl ether over ion-exchange resin catalysts. J Mol Catal A Chem 183:541–554

    Article  Google Scholar 

  14. Guilera J, Bringué R, Ramírez E, Fité C, Tejero J (2014) Kinetic study of ethyl octyl ether formation from ethanol and 1-octanol on amberlyst 70. AIChE J 60:2918–2928. https://doi.org/10.1002/aic

    Article  Google Scholar 

  15. Guilera J, Ramírez E, Fité C, Tejero J, Cunill F (2015) Synthesis of ethyl hexyl ether over acidic ion-exchange resins for cleaner diesel fuel. Catal Sci Technol 5:2238–2250. https://doi.org/10.1039/C4CY01548G

    Article  CAS  Google Scholar 

  16. Tejero J, Cunill F, Iborra M (1987) Molecular mechanisms of MTBE synthesis on a sulphonic acid ion exchange resin. J Mol Catal 42:257–268

    Article  CAS  Google Scholar 

  17. Soto R, Fité C, Ramírez E, Iborra M, Tejero J (2018) Catalytic activity dependence on morphological properties of acidic ion-exchange resins for the simultaneous ETBE and TAEE liquid-phase synthesis. React Chem Eng 3:195–205. https://doi.org/10.1039/C7RE00177K

    Article  CAS  Google Scholar 

  18. Bildea CS, Gyorgy R, Sánchez-Ramírez E, Quiroz-Ramírez JJ, Segovia-Hernandez JG, Kiss AA (2015) Optimal design and plantwide control of novel processes for di-n-pentyl ether production. J Chem Technol Biotechnol 90:992–1001. https://doi.org/10.1002/jctb.4683

    Article  CAS  Google Scholar 

  19. Samoilov VO, Ramazanov DN, Nekhaev AI, Egazar SV, Maximov AL (2015) Flow reactor synthesis of cetane-enhancing fuel additive from 1-butanol. Fuel Process Technol 140:312–323. https://doi.org/10.1016/j.fuproc.2015.08.021

    Article  CAS  Google Scholar 

  20. Vanoye L, Zanota M, Desgranges A, Favre-reguillon A, De Bellefon C (2011) Solvent effects in liquid-phase dehydration reaction of ethanol to diethylether catalysed by sulfonic-acid catalyst. Appl Catal A Gen 394:276–280. https://doi.org/10.1016/j.apcata.2011.01.012

    Article  CAS  Google Scholar 

  21. Müller H (2005) Tetrahydrofuran. In: ULLMANN’S encyclopedia of industrial chemistry, Wiley-VCH Verlag GmbH & Co. KGaA,Weinheim

    Google Scholar 

  22. Vaidya SH, Bhandari VM, Chaudhari RV (2003) Reaction kinetics studies on catalytic dehydration of 1, 4-butanediol using cation exchange resin. Appl Catal A Gen 242:321–328

    Article  CAS  Google Scholar 

  23. Shinde VM, Patil GN, Katariya A, Mahajan YS (2015) Chemical engineering and processing: process intensification production of tetrahydrofuran by dehydration of 1, 4-butanediol using amberlyst-15: batch kinetics and batch reactive distillation. Chem Eng Process Process Intensif 95:241–248. https://doi.org/10.1016/j.cep.2015.06.016

    Article  CAS  Google Scholar 

  24. Corma Canos A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2411–2502. https://doi.org/10.1021/cr050989d

    Article  CAS  Google Scholar 

  25. Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41:1538–1558. https://doi.org/10.1039/c1cs15147a

    Article  CAS  PubMed  Google Scholar 

  26. Mariscal R, Maireles-Torres P, Ojeda M, Sádaba I, Granados ML (2016) Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy Environ Sci 9:1144–1189. https://doi.org/10.1039/c5ee02666k

    Article  CAS  Google Scholar 

  27. Lange JP, Van Der Heide E, Van Buijtenen J, Price R (2012) Furfural-a promising platform for lignocellulosic biofuels. Chem Sus Chem 5:150–166. https://doi.org/10.1002/cssc.201100648

    Article  CAS  Google Scholar 

  28. Wang T, Nolte MW, Shanks BH (2014) Catalytic dehydration of C 6 carbohydrates for the production of hydroxymethylfurfural (HMF) as a versatile platform chemical. Green Chem 16:548–572. https://doi.org/10.1039/c3gc41365a

    Article  CAS  Google Scholar 

  29. Van Putten R, Van Der Waal JC, De Jong E, Rasrendra CB, Heeres HJ, De Vries JG (2013) Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem Rev 113:1499–1597

    Article  Google Scholar 

  30. Agirrezabal-Telleria I, Larreategui A, Requies J, Güemez MB, Arias PL, Guemez MB, Arias PL (2011) Furfural production from xylose using sulfonic ion-exchange resins (Amberlyst) and simultaneous stripping with nitrogen. Bioresour Technol 102:7478–7485. https://doi.org/10.1016/j.biortech.2011.05.015

    Article  CAS  PubMed  Google Scholar 

  31. Agirrezabal-Telleria I, Requies J, Güemez MB, Arias PL (2012) Furfural production from xylose + glucose feedings and simultaneous. Green Chem 14:3132–3140. https://doi.org/10.1039/c2gc36092f

    Article  CAS  Google Scholar 

  32. Mittal A, Black SK, Vinzant TB, Brien O, Tucker MP, Johnson DK (2017) Production of furfural from process-relevant biomass- derived pentoses in a biphasic reaction system. ACS Sustain Chem Eng 5:5694–5701

    Article  CAS  Google Scholar 

  33. Aellig C, Scholz D, Dapsens PY, Mondelli C, Pérez-Ramírez J (2015) When catalyst meets reactor: continuous biphasic processing of xylan to furfural over GaUSY/Amberlyst-36. Catal Sci Technol 5:142–149. https://doi.org/10.1039/C4CY00973H

    Article  CAS  Google Scholar 

  34. Heguaburu V, Franco J, Reina L, Tabarez C, Moyna G, Moyna P (2012) Dehydration of carbohydrates to 2-furaldehydes in ionic liquids by catalysis with ion exchange resins. Catal Commun 27:88–91. https://doi.org/10.1016/j.catcom.2012.07.002

    Article  CAS  Google Scholar 

  35. Mun D, Thanh N, Huynh T, Shin S, Kim YJ, Kim S, Shul Y-G, Cho JK (2017) Facile isomerization of glucose into fructose using anion-exchange resins in organic solvents and application to direct conversion of glucose into furan compounds. Res Chem Intermed 43:5495–5506. https://doi.org/10.1007/s11164-017-2942-3

    Article  CAS  Google Scholar 

  36. Román-leshkov Y, Chheda JN, Dumesic JA (2012) Phase modifiers promote efficient production of hydroxymethylfurfural from fructose. Science (80): 1933–1937. https://doi.org/10.1126/science.1126337

    Article  CAS  Google Scholar 

  37. Lansalot-Matras C, Moreau C (2003) Dehydration of fructose into 5-hydroxymethylfurfural in the presence of ionic liquids. Catal Commun 4:517–520. https://doi.org/10.1016/S1566-7367(03)00133-X

    Article  CAS  Google Scholar 

  38. Qi X, Watanabe M, Aida TM, Smith RL Jr (2009) Efficient process for conversion of fructose to 5-hydroxymethylfurfural with ionic liquids. Green Chem 11:1327–1331. https://doi.org/10.1039/b905975j

    Article  CAS  Google Scholar 

  39. Li Y, Liu H, Song C, Gu X, Li H, Zhu W, Yin S (2013) The dehydration of fructose to 5-hydroxymethylfurfural efficiently catalyzed by acidic ion-exchange resin in ionic liquid. Bioresour Technol 133:347–353. https://doi.org/10.1016/j.biortech.2013.01.038

    Article  CAS  PubMed  Google Scholar 

  40. Pérez-Maqueda J, Arenas-Ligioiz I, López Ó, Fernández-Bolaños JG (2014) Eco-friendly preparation of 5-hydroxymethylfurfural from sucrose using ion-exchange resins. Chem Eng Sci 109:244–250. https://doi.org/10.1016/j.ces.2014.01.037

    Article  CAS  Google Scholar 

  41. Ravasco JMJM, Coelho JAS, Simeonov SP, Afonso CAM (2017) Bifunctional Cr3 + modified ion exchange resins as efficient reusable catalysts for the production and isolation of 5- hydroxymethylfurfural from glucose. RSC Adv 7:7555–7559. https://doi.org/10.1039/C6RA22539J

    Article  CAS  Google Scholar 

  42. Liu H, Wang H, Li Y, Yang W, Song C, Li H, Zhu W, Jiang W (2015) Glucose dehydration to 5-hydroxymethylfurfural in ionic liquid over Cr3 + -modified ion exchange resin. RSC Adv 5:9290–9297. https://doi.org/10.1039/C4RA09131K

    Article  CAS  Google Scholar 

  43. Wang P, Ren L, Lu Q, Huang Y (2016) Dehydration of glucose to 5- hydroxymethylfurfural using combined catalysts in ionic liquid by microwave heating. Chem Eng J 203:1507–1514. https://doi.org/10.1080/00986445.2016.1213724

    Article  CAS  Google Scholar 

  44. Werpy T, Petersen G (2004) Top value added chemicals from biomass. U.S. Dep. Energy. 1:76. https://doi.org/10.2172/926125

  45. Vilcocq L, Cabiac A, Especel C, Guillon E, Duprez D (2013) Transformation of sorbitol to biofuels by heterogeneous catalysis: chemical and industrial considerations. Oil Gas Sci Technol Rev d’IFP Energies Nouv. 68: 841–860. https://doi.org/10.2516/ogst/2012073

    Article  CAS  Google Scholar 

  46. Rose M, Palkovits R (2012) Isosorbide as a renewable platform chemical for versatile applications-quo vadis? Chem Sus Chem 5:167–176. https://doi.org/10.1002/cssc.201100580

    Article  CAS  Google Scholar 

  47. Dussenne C, Delaunay T, Wiatz V, Wyart H, Suisse I, Sauthier M (2017) Synthesis of isosorbide: overview of challenging reactions. Green Chem 19:5332–5344. https://doi.org/10.1039/C7GC01912B

    Article  CAS  Google Scholar 

  48. Morita Y, Furusato S, Takagaki A, Hayashi S, Kikuchi R (2014) Intercalation-controlled cyclodehydration of sorbitol in water over layered-niobium-molybdate solid acid. Chem Sus Chem 8565:748–752. https://doi.org/10.1002/cssc.201300946

    Article  CAS  Google Scholar 

  49. Dabbawala AA, Mishra DK, Huber GW, Hwang JS (2015) Role of acid sites and selectivity correlation in solvent free liquid phase dehydration of sorbitol to isosorbide. Appl Catal A Gen 492:252–261. https://doi.org/10.1016/j.apcata.2014.12.014

    Article  CAS  Google Scholar 

  50. Goodwin JC, Hodge JE, Weisleder D (1980) Preparation of bicyclic hexitol anhydrides by using acidic cation-exchange resin in a binary solvent. p 13C-N.m.r. spectroscopy confirms configurational inversion in chloride displacement of methanesulfonate in isomannide and isosorbide derivatives. Carbohydr Res. 79: 133–141. https://doi.org/10.1016/s0008-6215(00)85138-1

    Article  CAS  Google Scholar 

  51. Moore KV, Sanborn AJ (2005) Process for the production of anhydrosugar alcohols. US 6,849,748 B2.

    Google Scholar 

  52. Khan NA, Mishra DK, Hwang JS, Kwak YW, Jhung SH (2011) Liquid-phase dehydration of sorbitol under microwave irradiation in the presence of acidic resin catalysts. Res Chem Intermed 37:1231–1238. https://doi.org/10.1007/s11164-011-0389-5

    Article  CAS  Google Scholar 

  53. Polaert I, Felix MC, Fornasero M, Marcotte S, Buvat JC, Estel L (2013) A greener process for isosorbide production: Kinetic study of the catalytic dehydration of pure sorbitol under microwave. Chem Eng J 222:228–239. https://doi.org/10.1016/j.cej.2013.02.043

    Article  CAS  Google Scholar 

  54. Ginés-Molina MJ, Moreno-Tost R, Santamaría-González J, Maireles-Torres P (2017) Dehydration of sorbitol to isosorbide over sulfonic acid resins under solvent-free conditions, Appl. Catal. A Gen. 537: 66–73. https://doi.org/10.1016/j.apcata.2017.03.006

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Maireles-Torres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ginés-Molina, M.J., Cecilia, J.A., García-Sancho, C., Moreno-Tost, R., Maireles-Torres, P. (2019). Use of Ion-Exchange Resins in Dehydration Reactions. In: Inamuddin, Rangreez, T., M. Asiri, A. (eds) Applications of Ion Exchange Materials in Chemical and Food Industries. Springer, Cham. https://doi.org/10.1007/978-3-030-06085-5_1

Download citation

Publish with us

Policies and ethics