Skip to main content

Sleep and Circadian Rhythm in Critical Illness

  • Chapter
  • First Online:
Annual Update in Intensive Care and Emergency Medicine 2019

Part of the book series: Annual Update in Intensive Care and Emergency Medicine ((AUICEM))

Abstract

Sleep is controlled by two major regulatory systems: a circadian system that drives 24-h periodicity (Process C), and a homeostatic system (Process S) that ensures adequate amounts of sleep are obtained. Both processes are disturbed in critically ill patients, potentially due to exposure to sleep-altering medications (e.g., propofol), the structure of the intensive care unit (ICU) environment (e.g., workflow), aggravation of a pre-existing sleep disorder, and/or effects of acute illness (e.g., sepsis). As a result, patients may experience delirium, poor respiratory function, and dysregulated immune system reactivity. Several methods of measuring sleep in the ICU exist, although all provide their own challenges. A number of intervention-based therapies to improve ICU sleep and circadian rhythm disturbances have been explored, including noise reduction protocols, music therapy, light treatment, and different modes of mechanical ventilation. These studies have met with limited success.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Academy of Sleep Medicine. The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications, version 2.5. Westchester: American Academy of Sleep Medicine; 2018.

    Google Scholar 

  2. Collop NA, Salas RE, Delayo M, Gamaldo C. Normal sleep and circadian processes. Crit Care Clin. 2008;24:449–60.

    Article  CAS  Google Scholar 

  3. Hirshkowitz M, Whiton K, Albert SM, et al. National Sleep Foundation’s sleep time duration recommendations: methodology and results summary. Sleep Health. 2015;1:40–3.

    Article  Google Scholar 

  4. Wilcox ME, Lim AS, Pinto R, Black SE, McAndrews MP, Rubenfeld GD. Sleep on the ward in intensive care unit survivors: a case series of polysomnography. Intern Med J. 2018;48:795–802.

    Article  Google Scholar 

  5. Haimovich B, Calvano J, Haimovich AD, Calvano SE, Coyle SM, Lowry SF. In vivo endotoxin synchronizes and suppresses clock gene expression in human peripheral blood leukocytes. Crit Care Med. 2010;38:751–8.

    Article  CAS  Google Scholar 

  6. Mundigler G, Delle-Karth G, Koreny M, et al. Impaired circadian rhythm of melatonin secretion in sedated critically ill patients with severe sepsis. Crit Care Med. 2002;30:536–40.

    Article  CAS  Google Scholar 

  7. Li CX, Liang DD, Xie GH, et al. Altered melatonin secretion and circadian gene expression with increased proinflammatory cytokine expression in early-stage sepsis patients. Mol Med Rep. 2013;7:1117–22.

    Article  CAS  Google Scholar 

  8. Dennis CM, Lee R, Woodard EK, Szalaj JJ, Walker CA. Benefits of quiet time for neuro-intensive care patients. J Neurosci Nurs. 2010;42:217–24.

    Article  Google Scholar 

  9. Verceles AC, Liu X, Terrin ML, et al. Ambient light levels and critical care outcomes. J Crit Care. 2013;28:110 e111–8.

    Article  Google Scholar 

  10. Verceles AC, Silhan L, Terrin M, Netzer G, Shanholtz C, Scharf SM. Circadian rhythm disruption in severe sepsis: the effect of ambient light on urinary 6-sulfatoxymelatonin secretion. Intensive Care Med. 2012;38:804–10.

    Article  CAS  Google Scholar 

  11. Gile J, Scott B, Eckle T. The Period 2 enhancer nobiletin as novel therapy in murine models of circadian disruption resembling delirium. Crit Care Med. 2018;46:e600–8.

    Article  CAS  Google Scholar 

  12. Seifman MA, Gomes K, Nguyen PN, et al. Measurement of serum melatonin in intensive care unit patients: changes in traumatic brain injury, trauma, and medical conditions. Front Neurol. 2014;5:237.

    Article  Google Scholar 

  13. Freedman NS, Gazendam J, Levan L, Pack AI, Schwab RJ. Abnormal sleep/wake cycles and the effect of environmental noise on sleep disruption in the intensive care unit. Am J Respir Crit Care Med. 2001;163:451–7.

    Article  CAS  Google Scholar 

  14. Freedman NS, Kotzer N, Schwab RJ. Patient perception of sleep quality and etiology of sleep disruption in the intensive care unit. Am J Respir Crit Care Med. 1999;159:1155–62.

    Article  CAS  Google Scholar 

  15. Barr J, Fraser GL, Puntillo K, et al. Clinical practice guidelines for the management of pain, agitation, and delirium in adult patients in the intensive care unit. Crit Care Med. 2013;41:263–306.

    Article  Google Scholar 

  16. Plante DT, Goldstein MR, Cook JD, et al. Effects of oral temazepam on sleep spindles during non-rapid eye movement sleep: a high-density EEG investigation. Eur Neuropsychopharmacol. 2015;25:1600–10.

    Article  CAS  Google Scholar 

  17. Dimsdale JE, Norman D, DeJardin D, Wallace MS. The effect of opioids on sleep architecture. J Clin Sleep Med. 2007;3:33–6.

    PubMed  Google Scholar 

  18. Gehlbach BK, Chapotot F, Leproult R, et al. Temporal disorganization of circadian rhythmicity and sleep-wake regulation in mechanically ventilated patients receiving continuous intravenous sedation. Sleep. 2012;35:1105–14.

    Article  Google Scholar 

  19. Lu W, Fu Q, Luo X, Fu S, Hu K. Effects of dexmedetomidine on sleep quality of patients after surgery without mechanical ventilation in ICU. Medicine (Baltimore). 2017;96:e7081.

    Article  CAS  Google Scholar 

  20. Alexopoulou C, Kondili E, Diamantaki E, et al. Effects of dexmedetomidine on sleep quality in critically ill patients: a pilot study. Anesthesiology. 2014;121:801–7.

    Article  CAS  Google Scholar 

  21. Skrobik Y, Duprey MS, Hill NS, Devlin JW. Low-dose nocturnal dexmedetomidine prevents icu delirium. a randomized, placebo-controlled trial. Am J Respir Crit Care Med. 2018;197:1147–56.

    Article  CAS  Google Scholar 

  22. Huber R, Ghilardi MF, Massimini M, et al. Arm immobilization causes cortical plastic changes and locally decreases sleep slow wave activity. Nat Neurosci. 2006;9:1169–76.

    Article  CAS  Google Scholar 

  23. Pham T, Telias I, Piraino T, Yoshida T, Brochard LJ. Asynchrony consequences and management. Crit Care Clin. 2018;34:325–41.

    Article  Google Scholar 

  24. Thille AW, Reynaud F, Marie D, et al. Impact of sleep alterations on weaning duration in mechanically ventilated patients: a prospective study. Eur Respir J. 2018;51:1702465.

    Google Scholar 

  25. Younes M, Ostrowski M, Soiferman M, et al. Odds ratio product of sleep EEG as a continuous measure of sleep state. Sleep. 2015;38:641–54.

    Article  Google Scholar 

  26. Mehta S, Meade M, Burry L, et al. Variation in diurnal sedation in mechanically ventilated patients who are managed with a sedation protocol alone or a sedation protocol and daily interruption. Crit Care. 2016;20:233.

    Article  Google Scholar 

  27. Dessap AM, Roche-Campo F, Launay JM, et al. Delirium and circadian rhythm of melatonin during weaning from mechanical ventilation: an ancillary study of a weaning trial. Chest. 2015;148:1231–41.

    Article  Google Scholar 

  28. Papaioannou V, Mebazaa A, Plaud B, Legrand M. ‘Chronomics’ in ICU: circadian aspects of immune response and therapeutic perspectives in the critically ill. Intensive Care Med Exp. 2014;2:18.

    Article  Google Scholar 

  29. Perras B, Meier M, Dodt C. Light and darkness fail to regulate melatonin release in critically ill humans. Intensive Care Med. 2007;33:1954–8.

    Article  CAS  Google Scholar 

  30. McClave SA, Taylor BE, Martindale RG, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: society of critical care medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). J Parenter Enter Nutr. 2016;40:159–211.

    Article  CAS  Google Scholar 

  31. Sveinsson IS. Postoperative psychosis after heart surgery. J Thorac Cardiovasc Surg. 1975;70:717–26.

    CAS  PubMed  Google Scholar 

  32. Harrell RG, Othmer E. Postcardiotomy confusion and sleep loss. J Clin Psychiatry. 1987;48:445–6.

    CAS  PubMed  Google Scholar 

  33. Trompeo AC, Vidi Y, Locane MD, et al. Sleep disturbances in the critically ill patients: role of delirium and sedative agents. Minerva Anestesiol. 2011;77:604–12.

    CAS  PubMed  Google Scholar 

  34. Lim AS, Yu L, Costa MD, Leurgans SE, Buchman AS, Bennett DA, Saper CB. Increased fragmentation of rest-activity patterns is associated with a characteristic pattern of cognitive impairment in older individuals. Sleep. 2012;35:633–40.

    Article  Google Scholar 

  35. Altman MT, Knauert MP, Pisani MA. Sleep disturbances after hospitalization and critical illness: a systematic review. Ann Am Thorac Soc. 2017;14:1457–68.

    Article  Google Scholar 

  36. Davydow DS, Gifford JM, Desai SV, Bienvenu OJ, Needham DM. Depression in general intensive care unit survivors: a systematic review. Intensive Care Med. 2009;35:796–809.

    Article  Google Scholar 

  37. Drouot X, Roche-Campo F, Thille AW, et al. A new classification for sleep analysis in critically ill patients. Sleep Med. 2012;13:7–14.

    Article  Google Scholar 

  38. Lim AS, Yu L, Kowgier M, Buchman AS, Bennett DA. Modification of the relationship of the apolipoprotein E ε4 allele to the risk of Alzheimer disease and neurofibrillary tangle density by sleep. JAMA Neurol. 2013;70:1544–51.

    Article  Google Scholar 

  39. Lim AS, Chang AM, Shulman JM, et al. A common polymorphism near PER1 and the timing of human behavioral rhythms. Ann Neurol. 2012;72:324–34.

    Article  CAS  Google Scholar 

  40. Schwab KE, Ronish B, Needham DM, To AQ, Martin JL, Kamdar BB. Actigraphy to evaluate sleep in the intensive care unit. a systematic review. Ann Am Thorac Soc. 2018;15:1075–82.

    Article  Google Scholar 

  41. Matthews EE. Sleep disturbances and fatigue in critically ill patients. AACN Adv Crit Care. 2011;22:204–24.

    Article  Google Scholar 

  42. Taguchi T, Yano M, Kido Y. Influence of bright light therapy on postoperative patients: a pilot study. Intensive Crit Care Nurs. 2007;23:289–97.

    Article  Google Scholar 

  43. Van Rompaey B, Elseviers MM, Schuurmans MJ, Shortridge-Baggett LM, Truijen S, Bossaert L. Risk factors for delirium in intensive care patients: a prospective cohort study. Crit Care. 2009;13:R77.

    Article  Google Scholar 

  44. Vinzio S, Ruellan A, Perrin AE, Schlienger JL, Goichot B. Actigraphic assessment of the circadian rest-activity rhythm in elderly patients hospitalized in an acute care unit. Psychiatry Clin Neurosci. 2003;57:53–8.

    Article  Google Scholar 

  45. Demoule A, Carreira S, Lavault S, et al. Impact of earplugs and eye mask on sleep in critically ill patients: a prospective randomized study. Crit Care. 2017;21:284.

    Article  Google Scholar 

  46. Bourne RS, Mills GH, Minelli C. Melatonin therapy to improve nocturnal sleep in critically ill patients: encouraging results from a small randomised controlled trial. Crit Care. 2008;12:R52.

    Article  Google Scholar 

  47. Fanfulla F, Delmastro M, Berardinelli A, Lupo ND, Nava S. Effects of different ventilator settings on sleep and inspiratory effort in patients with neuromuscular disease. Am J Respir Crit Care Med. 2005;172:619–24.

    Article  Google Scholar 

  48. Cabello B, Thille AW, Drouot X, et al. Sleep quality in mechanically ventilated patients: comparison of three ventilatory modes. Crit Care Med. 2008;36:1749–55.

    Article  Google Scholar 

  49. Parthasarathy S, Tobin MJ. Effect of ventilator mode on sleep quality in critically ill patients. Am J Respir Crit Care Med. 2002;166:1423–9.

    Article  Google Scholar 

  50. Roche-Campo F, Thille AW, Drouot X, et al. Comparison of sleep quality with mechanical versus spontaneous ventilation during weaning of critically ill tracheostomized patients. Crit Care Med. 2013;41:1637–44.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Wilcox .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Telias, I., Wilcox, M.E. (2019). Sleep and Circadian Rhythm in Critical Illness. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2019. Annual Update in Intensive Care and Emergency Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-06067-1_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-06067-1_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-06066-4

  • Online ISBN: 978-3-030-06067-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics