Skip to main content

Physical Activity, Exercise, and Lipids and Lipoproteins

  • Chapter
  • First Online:
Cardiorespiratory Fitness in Cardiometabolic Diseases

Abstract

Dyslipidemia is one of the several modifiable risk factors for cardiovascular disease. The American Heart Association and the American College of Sports Medicine recommend lifestyle management as a primary therapy to prevent and control elevated blood lipid and lipoprotein levels. The purposes for this chapter are to (1) present the pathophysiology, metabolic pathways, and prevalence of dyslipidemia; (2) present an overview of the epidemiological evidence for the associations between dyslipidemia, physical activity, exercise, and cardiovascular disease; (3) present evidence for the impact that different forms of physical activity and exercise have on blood lipid and lipoprotein levels; (4) discuss the physical activity and exercise mechanisms responsible for changes in blood lipid and lipoprotein levels; and (5) discuss the public health relevance and application of the evidence regarding physical activity and exercise for health individuals and patients with dyslipidemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Apo:

Apolipoprotein

BMI:

Body mass index

CAD:

Coronary artery disease

CETP:

Cholesteryl ester transfer protein

CVD:

Cardiovascular disease

HDL:

High-density lipoprotein

HDL-C :

High-density lipoprotein cholesterol

HDL-P:

Total HDL particles

HL :

Hepatic lipase

HLP :

Large HDL-P

HMP :

Medium HDL-P

HSP:

Small HDL-P

HZ:

HDL particle size

IDL:

Intermediate-density lipoprotein

IDL-P:

Intermediate-density lipoprotein particles

Kcal:

Kilocalories

LCAT:

Lecithin/cholesterol acyltransferase

LDL:

Low-density lipoprotein

LDL-C:

Low-density lipoprotein cholesterol

LDL-P:

Total LDL particles

LLP:

Large LDL-P

LPL:

Lipoprotein lipase

LSP :

Small LDL-P

LZ :

LDL particle size

NMR :

Nuclear magnetic resonance

PA:

Physical activity

TG:

Triglyceride

VLCP:

Large VLDL-P plus chylomicron particles

VLDL:

Very low-density lipoprotein

VLDLCP:

VLDL-P plus chylomicron particles

VLDL-P:

VLDL particles

VLZ :

VLDL particle size

VMP:

Medium VLDL-P

VSP :

Small VLDL-P

References

  1. Eckel RH, Jakicic JM, Ard JD, de Jesus JM, Houston-Miller N, Hubbard VS, et al. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines. Circulation. 2014;129(25 Suppl 2):S76–99. https://doi.org/10.1161/01.cir.0000437740.48606.d1.

    Article  PubMed  Google Scholar 

  2. Ginsberg HN. Lipoprotein physiology. Endocrinol Metab Clin N Am. 1998;27(3):503–19. https://doi.org/10.1016/S0889-8529(05)70023-2.

    Article  CAS  Google Scholar 

  3. Jo H, Js S, Toro G, Tk C. Effects of a six month program of endurance exercise on the serum lipids of middle-aged man. JACC. 1965;14:753–60. https://doi.org/10.1016/0002-9149(64)90004-9.

    Article  Google Scholar 

  4. Olefsky J, Reaven G, Farquhar J. Effects of weight reduction on obesity studies of lipid and carbohydrate metabolism in normal and hyperlipoproteinemic subjects. J Clin Invest. 1974;53(1):64–76. https://doi.org/10.1172/JCI107560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Connelly PW. The role of hepatic lipase in lipoprotein metabolism. Clin Chim Acta. 1999;286(1–2):243–55. https://doi.org/10.1016/S0009-8981(99)00105-9.

    Article  CAS  PubMed  Google Scholar 

  6. Goldberg IJ. Lipoprotein lipase and lipolysis: central roles in lipoprotein metabolism and atherogenesis. J Lipid Res. 1996;37(4):693–707.

    CAS  PubMed  Google Scholar 

  7. Lewis GF. New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circ Res. 2005;96(12):1221–32. https://doi.org/10.1161/01.RES.0000170946.56981.5c.

    Article  CAS  PubMed  Google Scholar 

  8. Jeyarajah EJ, Cromwell WC, Otvos JD. Lipoprotein particle analysis by nuclear magnetic resonance spectroscopy. Clin Lab Med. 2006;26(4):847–70. https://doi.org/10.1016/j.cll.2006.07.006.

    Article  PubMed  Google Scholar 

  9. Durstine JL, Haskell WL. Effects of exercise training on plasma lipids and lipoproteins. Exerc Sport Sci Rev. 1994;22:477–521.

    Article  CAS  Google Scholar 

  10. Brown MS, Goldstein JL. How LDL receptors influence cholesterol and atherosclerosis. Sci Am Nature. 1984;251(5):58–69.

    CAS  Google Scholar 

  11. Barter P. CETP and atherosclerosis. Arterioscler Thromb Vasc Biol. 2000;20(9):2029–31. https://doi.org/10.1161/01.ATV.20.9.2029.

    Article  CAS  PubMed  Google Scholar 

  12. Bergt C, Oram J, Heinecke J. Oxidized HDL. Arterioscler Thromb Vasc Biol. 2003;23(9):1488–90. https://doi.org/10.1161/01.ATV.0000090570.99836.9C.

    Article  CAS  PubMed  Google Scholar 

  13. Parthasarathy S, Raghavamenon A, Garelnabi M, Santanam N. Oxidized low-density lipoprotein. Methods Mol Biol. 2010;610:403–17. https://doi.org/10.1007/978-1-60327-029-8_24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cobbold C, Sherratt J, Maxwell S. Lipoprotein oxidation and its significance for atherosclerosis: a mathematical approach. B Math Biol. 2002;64(1):65–95. https://doi.org/10.1006/bulm.2001.0267.

    Article  CAS  Google Scholar 

  15. Shapiro MD, Fazio S. From lipids to inflammation: new approaches to reducing atherosclerotic risk. Circ Res. 2016;118(4):732–49. https://doi.org/10.1161/CIRCRESAHA.115.306471.

    Article  CAS  PubMed  Google Scholar 

  16. Jacobson TA, Ito MK, Maki KC, Orringer CE, Bays HE, Jones PH, et al. National lipid association recommendations for patient-centered management of dyslipidemia: Part 1--full report. J Clin Lipidol. 2015;9(2):129–69. https://doi.org/10.1016/j.jacl.2015.02.003.

    Article  PubMed  Google Scholar 

  17. Tiainen S, Luoto R, Ahotupa M, Raitanen J, Vasankari T. 6-mo aerobic exercise intervention enhances the lipid peroxide transport function of HDL. Free Rad Res. 2016;50:1279–85. https://doi.org/10.1080/10715762.2016.1252040.

    Article  CAS  Google Scholar 

  18. Ahotupa M, Suomela J-P, Vuorimaa T, Vasankari T. Lipoprotein-specific transport of circulating lipid peroxides. Ann Med. 2010;42(7):521–9. https://doi.org/10.3109/07853890.2010.510932.

    Article  CAS  PubMed  Google Scholar 

  19. Bier D. Saturated fats and cardiovascular disease: interpretations not as simple as they once were. Crit Rev Food Sci Nutr. 2015;56(12):1943–6. https://doi.org/10.1080/10408398.2014.998332.

    Article  CAS  Google Scholar 

  20. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee I-MM, et al. American College of Sports Medicine position stand: quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):1334–59. https://doi.org/10.1249/MSS.0b013e318213fefb.

    Article  PubMed  Google Scholar 

  21. Francis G. High density lipoprotein oxidation: in vitro susceptibility and potential in vivo consequences. Biochim Biophys Acta. 2000;1483(2):217–35. https://doi.org/10.1016/S1388-1981(99)00181-X.

    Article  CAS  PubMed  Google Scholar 

  22. Rohatgi A, Khera A, Berry J, Givens E, Ayers C, Wedin K, et al. HDL cholesterol efflux capacity and incident cardiovascular events. N Engl J Med. 2014;371(25):2383–93. https://doi.org/10.1056/NEJMoa1409065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Välimäki IA, Vuorimaa T, Ahotupa M, Vasankari T. Effect of continuous and intermittent exercises on oxidised hdl and ldl lipids in runners. Int J Sports Med. 2016;37(14):1103–9. https://doi.org/10.1055/s-0042-114703.

    Article  CAS  PubMed  Google Scholar 

  24. Benjamin E, Blaha M, Chiuve S, Cushman M, Das S, Deo R, et al. Heart disease and stroke statistics—2017 update: a report from the American Heart Association. Circulation. 2017;135(10):e146–603. https://doi.org/10.1161/CIR.0000000000000485.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Center for Disease Control and Prevention. High cholesterol facts. 2017. https://www.cdc.gov/cholesterol/facts.htm

  26. Center for Disease Control and Prevention. Cholesterol. 2017. https://www.cdc.gov/nchs/fastats/cholesterol.htm

  27. Center for Disease Control and Prevention. Cholesterol fact sheet. 2015. https://www.cdc.gov/dhdsp/data_statistics/fact_sheets/fs_cholesterol.htm

  28. Austin M, Hokanson J, Edwards K. Hypertriglyceridemia as a cardiovascular risk factor. Am J Cardiol. 1998;81(4):7B–12B. https://doi.org/10.1016/S0002-9149(98)00031-9.

    Article  CAS  PubMed  Google Scholar 

  29. Austin MA, Hokanson JE. Epidemiology of triglycerides, small dense low-density lipoprotein, and lipoprotein(a) as risk factors for coronary heart disease. Med Clin N Am. 1994;78(1):99–115. https://doi.org/10.1016/S0025-7125(16)30178-X.

    Article  CAS  PubMed  Google Scholar 

  30. Cullen P. Evidence that triglycerides are an independent coronary heart disease risk factor. Am J Cardiol. 2000;86(9):943–9. https://doi.org/10.1016/S0002-9149(00)01127-9.

    Article  CAS  PubMed  Google Scholar 

  31. Durstine JL. Gender differences in lipids and lipoproteins after cardiac rehabilitation. J Cardpulm Rehabil. 2004;24(4):257–8.

    Article  Google Scholar 

  32. Mykkänen L, Kuusisto J, Haffner SM, Laakso M, Austin MA. LDL size and risk of coronary heart disease in elderly men and women. Arterioscler Thromb Vasc Biol. 1999;19(11):2742–8. https://doi.org/10.1161/01.ATV.19.11.2742.

    Article  PubMed  Google Scholar 

  33. Brewer HB. Hypertriglyceridemia: changes in the plasma lipoproteins associated with an increased risk of cardiovascular disease. Am J Cardiol. 1999;83(9):3–12. https://doi.org/10.1016/S0002-9149(99)00308-2.

    Article  Google Scholar 

  34. Bjorvatn B, Sagen I, Øyane N, Waage S, Fetveit A, Pallesen S, et al. The association between sleep duration, body mass index and metabolic measures in the Hordaland Health Study. J Sleep Res. 2007;16(1):66–76. https://doi.org/10.1111/j.1365-2869.2007.00569.x.

    Article  PubMed  Google Scholar 

  35. Franklin BA, Durstine JL, Roberts CK, Barnard RJ. Impact of diet and exercise on lipid management in the modern era. Best Pract Res Clin Endocrinol Metab. 2014;28(3):405–21. https://doi.org/10.1016/j.beem.2014.01.005.

    Article  PubMed  Google Scholar 

  36. Haskell WL. The influence of exercise training on plasma lipids and lipoproteins in health and disease. Acta Med Scand Suppl. 1986;711:25–37. https://doi.org/10.1111/j.0954-6820.1986.tb08929.x.

    Article  CAS  PubMed  Google Scholar 

  37. Keys A. Coronary Heart Disease, serum cholesterol, and the diet. Acta Med Scand. 1980;207(3):153–60. https://doi.org/10.1111/j.0954-6820.1980.tb09697.x.

    Article  CAS  PubMed  Google Scholar 

  38. Wirth A, Diehm C, Kohlmeier M, Heuck CC, Metabolism V-I. Effect of prolonged exercise on serum lipids and lipoproteins. Metabolism. 1983;32(7):669–72. https://doi.org/10.1016/0026-0495(83)90122-1.

    Article  CAS  PubMed  Google Scholar 

  39. Sarzynski M, Burton J, Rankinen T, Blair S, Church T, Després J-P, et al. The effects of exercise on the lipoprotein subclass profile: a meta-analysis of 10 interventions. Atherosclerosis. 2015;243(2):364–72. https://doi.org/10.1016/j.atherosclerosis.2015.10.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Asztalos B, Cupples L, Demissie S, Horvath K, Cox C, Batista M, et al. High-density lipoprotein subpopulation profile and coronary heart disease prevalence in male participants of the Framingham offspring study. Arterioscler Thromb Vasc Biol. 2004;24(11):2181–7. https://doi.org/10.1161/01.ATV.0000146325.93749.a8.

    Article  CAS  PubMed  Google Scholar 

  41. Cheung MC, Brown BG, Wolf AC, Albers JJ. Altered particle size distribution of apolipoprotein A-I-containing lipoproteins in subjects with coronary artery disease. J Lipid Res. 1991;32(3):383–94.

    CAS  PubMed  Google Scholar 

  42. Krauss R. Lipoprotein subfractions and cardiovascular disease risk. Curr Opin Lipidol. 2010;21(4):305–11. https://doi.org/10.1097/MOL.0b013e32833b7756.

    Article  CAS  PubMed  Google Scholar 

  43. Després J-P. Cardiovascular disease under the influence of excess visceral fat. Critical Pathways Cardiol. 2007;6(2):51. https://doi.org/10.1097/HPC.0b013e318057d4c9.

    Article  Google Scholar 

  44. Harchaoui K, Steeg W, Stroes E, Kuivenhoven J, Otvos J, Wareham N, et al. Value of low-density lipoprotein particle number and size as predictors of coronary artery disease in apparently healthy men and women : the EPIC-Norfolk prospective population study. J Am Coll Cardiol. 2007;49(5):547–53. https://doi.org/10.1016/j.jacc.2006.09.043.

    Article  CAS  PubMed  Google Scholar 

  45. Lamarche B, Tchernof A, Moorjani S, Cantin B, Dagenais GR, Lupien PJ, et al. Small, dense low-density lipoprotein particles as a predictor of the risk of ischemic heart disease in men: prospective results from the Quebec cardiovascular study. Circulation. 1997;95(1):69–75. https://doi.org/10.1161/01.CIR.95.1.69.

    Article  CAS  Google Scholar 

  46. Durstine JL, Grandjean PW, Cox CA, Thompson PD. Lipids, lipoproteins, and exercise. J Cardpulm Rehabil. 2002;22(6):385–98.

    Article  Google Scholar 

  47. Brown A, Setji T, Sanders L, Lowry K, Otvos J, Kraus W, et al. Effects of exercise on lipoprotein particles in women with polycystic ovary syndrome. Med Sci Sports Exerc. 2009;41(3):497. https://doi.org/10.1249/MSS.0b013e31818c6c0c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Halverstadt A, Phares D, Wilund K, Goldberg A, Hagberg J. Endurance exercise training raises high-density lipoprotein cholesterol and lowers small low-density lipoprotein and very low-density lipoprotein independent of body fat phenotypes in older men and women. Metabolism. 2007;56(4):444–50. https://doi.org/10.1016/j.metabol.2006.10.019.

    Article  CAS  PubMed  Google Scholar 

  49. Kraus WE, Houmard JA, Duscha BD, Knetzger KJ, Wharton MB, McCartney JS, et al. Effects of the amount and intensity of exercise on plasma lipoproteins. N Engl J Med. 2002;347(19):1483–92. https://doi.org/10.1056/NEJMoa020194.

    Article  CAS  PubMed  Google Scholar 

  50. Seip R, Otvos J, Bilbie C, Tsongalis G, Miles M, Zoeller R, et al. The effect of apolipoprotein E genotype on serum lipoprotein particle response to exercise. Atherosclerosis. 2006;188(1):126–33. https://doi.org/10.1016/j.atherosclerosis.2005.06.050.

    Article  CAS  PubMed  Google Scholar 

  51. Shadid S, LaForge R, Otvos J, Jensen M. Treatment of obesity with diet/exercise versus pioglitazone has distinct effects on lipoprotein particle size. Atherosclerosis. 2006;188(2):370–6. https://doi.org/10.1016/j.atherosclerosis.2005.10.038.

    Article  CAS  PubMed  Google Scholar 

  52. Durstine JL, Grandjean PW, Davis PG, Ferguson MA, Alderson NL, DuBose KD. Blood lipid and lipoprotein adaptations to exercise: a quantitative analysis. Sports Med. 2001;31(15):1033–62. https://doi.org/10.2165/00007256-200131150-00002.

    Article  CAS  PubMed  Google Scholar 

  53. Ferguson MA, Alderson NL, Trost SG, Essig DA, Burke JR, Durstine JL. Effects of four different single exercise sessions on lipids, lipoproteins, and lipoprotein lipase. J Appl Physiol. 1998;85(3):1169–74. https://doi.org/10.1152/jappl.1998.85.3.1169.

    Article  CAS  PubMed  Google Scholar 

  54. Drygas W, Jegler A, Kunski H. Study on threshold dose of physical activity in coronary heart disease prevention. Part i. relationship between leisure time physical activity and coronary risk factors. Int J Sports Med. 1988;09(04):275–8. https://doi.org/10.1055/s-2007-1025021.

    Article  CAS  Google Scholar 

  55. Drygas W, Kostka T, Jegier A, Kuński H. Long-term effects of different physical activity levels on coronary heart disease risk factors in middle-aged men. Int J Sports Med. 2000;21(4):235–41. https://doi.org/10.1055/s-2000-309.

    Article  CAS  PubMed  Google Scholar 

  56. Kokkinos PF, Holland JC, Narayan P, Colleran JA, Dotson CO, Papademetriou V. Miles run per week and high-density lipoprotein cholesterol levels in healthy, middle-aged men. A dose-response relationship. Arch Intern Med. 1995;155(4):415–20. https://doi.org/10.1001/archinte.1995.00430040091011.

    Article  CAS  PubMed  Google Scholar 

  57. Lakka TA, Salonen JT. Physical activity and serum lipids: a cross-sectional population study in eastern Finnish men. Am J Epidemiol. 1992;136(7):806–18. https://doi.org/10.1093/aje/136.7.806.

    Article  CAS  PubMed  Google Scholar 

  58. Williams PT. Relationship of distance run per week to coronary heart disease risk factors in 8283 male runners: the National Runners’ health study. Arch Intern Med. 1997;157(2):191–8. https://doi.org/10.1001/archinte.1997.00440230063008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Williams PT. High-density lipoprotein cholesterol and other risk factors for coronary heart disease in female runners. N Engl J Med. 1996;334(20):1298–303. https://doi.org/10.1056/NEJM199605163342004.

    Article  CAS  PubMed  Google Scholar 

  60. Williams PT. Relationships of heart disease risk factors to exercise quantity and intensity. Arch Intern Med. 1998;158(3):237–45. https://doi.org/10.1001/archinte.158.3.237.

    Article  CAS  PubMed  Google Scholar 

  61. Siri-Tarino P, Krauss R. Diet, lipids, and cardiovascular disease. Curr Opin Lipidol. 2016;27(4):323–8. https://doi.org/10.1097/MOL.0000000000000310.

    Article  CAS  PubMed  Google Scholar 

  62. Fontana L, Meyer T, Klein S, Holloszy J. Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. P Natl Acad Sci USA. 2004;101(17):6659–63. https://doi.org/10.1073/pnas.0308291101.

    Article  CAS  Google Scholar 

  63. Katzel LI, Bleecker ER, Colman EG, Rogus EM, Sorkin JD, Goldberg AP. Effects of weight loss vs aerobic exercise training on risk factors for coronary disease in healthy, obese, middle-aged and older men. A randomized controlled trial. JAMA. 1995;274(24):1915–21. https://doi.org/10.1001/jama.1995.03530240025035.

    Article  CAS  PubMed  Google Scholar 

  64. Verdery RB, Walford RL. Changes in plasma lipids and lipoproteins in humans during a 2-year period of dietary restriction in biosphere 2. Arch Intern Med. 1998;158(8):900–6. https://doi.org/10.1001/archinte.158.8.900.

    Article  CAS  PubMed  Google Scholar 

  65. Bhutani S, Klempel M, Kroeger C, Trepanowski J, Varady K. Alternate day fasting and endurance exercise combine to reduce body weight and favorably alter plasma lipids in obese humans. Obesity. 2013;21(7):1370–9. https://doi.org/10.1002/oby.20353.

    Article  CAS  PubMed  Google Scholar 

  66. Tzotzas T, Evangelou P, Kiortsis D. Obesity, weight loss and conditional cardiovascular risk factors. Obes Rev. 2011;12(5):e282–9. https://doi.org/10.1111/j.1467-789X.2010.00807.x.

    Article  CAS  PubMed  Google Scholar 

  67. Varady KA, Hellerstein MK. Alternate-day fasting and chronic disease prevention: a review of human and animal trials. Am J Clin Nutr. 2007;86(1):7–13. https://doi.org/10.1093/ajcn/86.1.7.

    Article  CAS  PubMed  Google Scholar 

  68. Varady K, Bhutani S, Klempel M, Kroeger C. Comparison of effects of diet versus exercise weight loss regimens on LDL and HDL particle size in obese adults. Lipids Health Dis. 2011;10(1):1–5. https://doi.org/10.1186/1476-511X-10-119.

    Article  Google Scholar 

  69. Kaneita Y, Uchiyama M, Yoshiike N, Ohida T. Associations of usual sleep duration with serum lipid and lipoprotein levels. Sleep. 2008;31(5):645–52. https://doi.org/10.1093/sleep/31.5.645.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Aho V, Ollila H, Kronholm E, Bondia-Pons I, Soininen P, Kangas A, et al. Prolonged sleep restriction induces changes in pathways involved in cholesterol metabolism and inflammatory responses. Sci Reports. 2016;6(1):24828. https://doi.org/10.1038/srep24828.

    Article  CAS  Google Scholar 

  71. Plaisance EP, Grandjean PW, Mahurin AJ. Independent and combined effects of aerobic exercise and pharmacological strategies on serum triglyceride concentrations: a qualitative review. Phys Sportsmed. 2009;37(1):11–9. https://doi.org/10.3810/psm.2009.04.1678.

    Article  PubMed  Google Scholar 

  72. Plaisance EP, Mestek ML, Mahurin AJ, Taylor JK, Moncada-Jimenez J, Grandjean PW. Postprandial triglyceride responses to aerobic exercise and extended-release niacin. Am J Clin Nutr. 2008;88(1):30–7. https://doi.org/10.1093/ajcn/88.1.30.

    Article  CAS  PubMed  Google Scholar 

  73. Gordon B, Chen S, Durstine JL. The effects of exercise training on the traditional lipid profile and beyond. Curr Sports Med Rep. 2014;13(4):253–9. https://doi.org/10.1249/JSR.0000000000000073.

    Article  PubMed  Google Scholar 

  74. Crouse SF, O’Brien BC, Grandjean PW, Lowe RC, Rohack JJ, Green JS, et al. Training intensity, blood lipids, and apolipoproteins in men with high cholesterol. J Appl Physiol. 1997;82(1):270–7. https://doi.org/10.1152/jappl.1997.82.1.270.

    Article  CAS  PubMed  Google Scholar 

  75. Blazek A, Rutsky J, Osei K, Maiseyeu A, Rajagopalan S. Exercise-mediated changes in high-density lipoprotein: impact on form and function. Am Heart J. 2013;166(3):392–400. https://doi.org/10.1016/j.ahj.2013.05.021.

    Article  CAS  PubMed  Google Scholar 

  76. Schaefer EJ, Levy RI, Anderson DW, Danner RN, Brewer HB, Blackwelder WC. Plasma-triglycerides in regulation of H.D.L.-cholesterol levels. Lancet. 1978;2(8086):391–3. https://doi.org/10.1016/S0140-6736(78)91863-9.

    Article  CAS  PubMed  Google Scholar 

  77. Couillard C, Despres J-P, Lamarche B, Bergeron J, Gagnon J, Leon AS, et al. Effects of endurance exercise training on plasma HDL cholesterol levels depend on levels of triglycerides : evidence from men of the health, risk factors, exercise training and genetics (HERITAGE) Family Study. Arterioscler Thromb Vasc Biol. 2001;21(7):1226–32. https://doi.org/10.1161/hq0701.092137.

    Article  CAS  PubMed  Google Scholar 

  78. Bouchard C, Rankinen T. Individual differences in response to regular physical activity. Med Sci Sports Exerc. 2001;33(6 Suppl):S446–51.; discussion S452–3. https://doi.org/10.1097/00005768-200106001-00013.

    Article  CAS  PubMed  Google Scholar 

  79. Bouchard C, Blair S, Church T, Earnest C, Hagberg J, Häkkinen K, et al. Adverse metabolic response to regular exercise: is it a rare or common occurrence? PLoS One. 2012;7(5):e37887. https://doi.org/10.1371/journal.pone.0037887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Leon AS, Gaskill SE, Rice T, Bergeron J, Gagnon J, Rao DC, et al. Variability in the response of HDL cholesterol to exercise training in the HERITAGE family study. Int J Sports Med. 2002;23(1):1–9. https://doi.org/10.1055/s-2002-19270.

    Article  CAS  PubMed  Google Scholar 

  81. Stefanick ML, Mackey S, Sheehan M, Ellsworth N. Effects of diet and exercise in men and postmenopausal women with low levels of HDL cholesterol and high levels of LDL cholesterol. N Engl J Med. 1998;339:12–20. https://doi.org/10.1056/NEJM199807023390103.

    Article  CAS  PubMed  Google Scholar 

  82. Kolovou G, Bilianou H, Marvaki A, Mikhailidis D. Aging men and lipids. Am J Mens Health. 2010;5(2):152–65. https://doi.org/10.1177/1557988310370360.

    Article  PubMed  Google Scholar 

  83. MacEneaney O, Harrison M, O’Gorman D, Pankratieva E, O’Connor P, Moyna N. Effect of prior exercise on postprandial lipemia and markers of inflammation and endothelial activation in normal weight and overweight adolescent boys. Eur J Appl Physiol. 2009;106(5):721–9. https://doi.org/10.1007/s00421-009-1073-y.

    Article  CAS  PubMed  Google Scholar 

  84. Mestek M, Plaisance E, Ratcliff L, Taylor J, Wee S-O, Grandjean P. Aerobic exercise and postprandial lipemia in men with the metabolic syndrome. Med Sci Sports Exerc. 2008;40(12):2105. https://doi.org/10.1249/MSS.0b013e3181822ebd.

    Article  CAS  PubMed  Google Scholar 

  85. Hardman AE, Lawrence JE, Herd SL. Postprandial lipemia in endurance-trained people during a short interruption to training. J Appl Physiol. 1998;84(6):1895–901. https://doi.org/10.1152/jappl.1998.84.6.1895.

    Article  CAS  PubMed  Google Scholar 

  86. Medlow P, McEneny J, Murphy M, Trinick T, Duly E, Davison G. Exercise training protects the LDL I subfraction from oxidation susceptibility in an aged human population. Atherosclerosis. 2015;239(2):516–22. https://doi.org/10.1016/j.atherosclerosis.2015.02.012.

    Article  CAS  PubMed  Google Scholar 

  87. Kokkinos PF, Holland JC, Pittaras AE, Narayan P, Dotson CO, Papademetriou V. Cardiorespiratory fitness and coronary heart disease risk factor association in women. J Am Coll Cardiol. 1995;26(2):358–64. https://doi.org/10.1016/0735-1097(95)80007-4.

    Article  CAS  PubMed  Google Scholar 

  88. Kokkinos PF, Hurley BF. Strength training and lipoprotein-lipid profiles. A critical analysis and recommendations for further study. Sports Med. 1990;9(5):266–72.

    Article  CAS  Google Scholar 

  89. Kelley G, Kelley K. Impact of progressive resistance training on lipids and lipoproteins in adults: a meta-analysis of randomized controlled trials. Prev Med. 2009;48(1):9–19. https://doi.org/10.1016/j.ypmed.2008.10.010.

    Article  CAS  PubMed  Google Scholar 

  90. Wooten JS, Phillips MD, Mitchell JB, Patrizi R, Pleasant RN, Hein RM, et al. Resistance exercise and lipoproteins in postmenopausal women. Int J Sports Med. 2010;32(01):7–13. https://doi.org/10.1055/s-0030-1268008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. James A, Whiteford J, Ackland T, Dhaliwal S, Woodhouse J, Prince R, et al. Effects of a 1-year randomised controlled trial of resistance training on blood lipid profile and chylomicron concentration in older men. Eur J Appl Physiol. 2016;116(11–12):2113–23. https://doi.org/10.1007/s00421-016-3465-0.

    Article  CAS  PubMed  Google Scholar 

  92. Durstine JL, Thompson PD. Exercise in the treatment of lipid disorders. Cardiol Clin. 2001;19(3):471–88. https://doi.org/10.1016/S0733-8651(05)70230-7.

    Article  CAS  PubMed  Google Scholar 

  93. Wagganer J, Robison C, Ackerman T, Davis P. Effects of exercise accumulation on plasma lipids and lipoproteins. Appl Physiol Nutr Metab. 2015;40(5):441–7. https://doi.org/10.1139/apnm-2014-0321.

    Article  CAS  PubMed  Google Scholar 

  94. Kantor MA, Cullinane EM, Sady SP, Herbert PN, Thompson PD. Exercise acutely increases high density lipoprotein-cholesterol and lipoprotein lipase activity in trained and untrained men. Metab Clin Exp. 1987;36(2):188–92. https://doi.org/10.1016/0026-0495(87)90016-3.

    Article  CAS  PubMed  Google Scholar 

  95. Thompson PD, Crouse SF, Goodpaster B, Kelley D, Moyna N, Pescatello L. The acute versus the chronic response to exercise. Med Sci Sports Exerc. 2001;33(6 Suppl):S438–45.; discussion S452–3. https://doi.org/10.1097/00005768-200106001-00012.

    Article  CAS  PubMed  Google Scholar 

  96. Moore G, Durstine JL, Painter P. ACSM’s exercise management for persons with chronic diseases and disabilities. 4th ed. Champaign: Human Kinetics; 2016.

    Google Scholar 

  97. Davis PG, Bartoli WP, Durstine JL. Effects of acute exercise intensity on plasma lipids and apolipoproteins in trained runners. J Appl Physiol. 1992;72(3):914–9. https://doi.org/10.1152/jappl.1992.72.3.914.

    Article  CAS  PubMed  Google Scholar 

  98. Lira FS, Yamashita AS, Uchida MC, Zanchi NE, Gualano B, Martins E, et al. Low and moderate, rather than high intensity strength exercise induces benefit regarding plasma lipid profile. Diabetol Metab Syndr. 2010;2:31. https://doi.org/10.1186/1758-5996-2-31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gorski J, Oscai LB, Palmer WK. Hepatic lipid metabolism in exercise and training. Med Sci Sports Exerc. 1990;22(2):213–21.

    CAS  PubMed  Google Scholar 

  100. Nikkilä EA, Taskinen MR, Rehunen S, Harkonen M. Lipoprotein lipase activity in adipose tissue and skeletal muscle of runners: relation to serum lipoproteins. Metabolism. 1978;27(11):1661–71. https://doi.org/10.1016/0026-0495(78)90288-3.

    Article  PubMed  Google Scholar 

  101. Thompson PD, Cullinane EM, Sady SP, Flynn MM, Chenevert CB, Herbert PN. High density lipoprotein metabolism in endurance athletes and sedentary men. Circulation. 1991;84:140–52. https://doi.org/10.1161/01.CIR.84.1.140.

    Article  CAS  PubMed  Google Scholar 

  102. Sady SP, Cullinane EM, Saritelli A, Bernier DN, Thompson PD. Elevated high-density lipoprotein cholesterol in endurance athletes is related to enhanced plasma triglyceride clearance. Metabolism. 1988;37(6):568–72. https://doi.org/10.1016/0026-0495(88)90173-4.

    Article  CAS  PubMed  Google Scholar 

  103. Peltonen P, Marniemi J, Hietanen E, Vuori I, Ehnholm C. Changes in serum lipids, lipoproteins, and heparin releasable lipolytic enzymes during moderate physical training in man: a longitudinal study. Metabolism. 1981;30(5):518–26. https://doi.org/10.1016/0026-0495(81)90190-6.

    Article  CAS  PubMed  Google Scholar 

  104. Thompson PD, Cullinane EM, Sady SP, Flynn MM, Bernier DN, Kantor MA, et al. Modest changes in high-density lipoprotein concentration and metabolism with prolonged exercise training. Circulation. 1988;78:25–34. https://doi.org/10.1161/01.CIR.78.1.25.

    Article  CAS  PubMed  Google Scholar 

  105. Sady SP, Thompson PD, Cullinane EM, Kantor MA, Domagala E, Herbert PN. Prolonged exercise augments plasma triglyceride clearance. JAMA. 1986;256(18):2552–5. https://doi.org/10.1001/jama.1986.03380180114030.

    Article  CAS  PubMed  Google Scholar 

  106. Kiens B, Lithell H. Lipoprotein metabolism influenced by training-induced changes in human skeletal muscle. J Clin Invest. 1989;83(2):558–64. https://doi.org/10.1172/JCI113918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Williams PT, Krauss RM, Vranizan KM, Circulation P. Changes in lipoprotein subfractions during diet-induced and exercise-induced weight loss in moderately overweight men. Circulation. 1990;81:1293–304. https://doi.org/10.1161/01.CIR.81.4.1293.

    Article  CAS  PubMed  Google Scholar 

  108. Herbert PN, Bernier DN, Cullinane EM, Edelstein L, Kantor MA, Thompson PD. High-density lipoprotein metabolism in runners and sedentary men. JAMA. 1984;252(8):1034–7. https://doi.org/10.1001/jama.1984.03350080036023.

    Article  CAS  PubMed  Google Scholar 

  109. Marniemi J, Peltonen P, Vuori I, Hietanen E. Lipoprotein lipase of human postheparin plasma and adipose tissue in relation to physical training. Acta Physiol. 1980;110:131–5. https://doi.org/10.1111/j.1748-1716.1980.tb06642.x.

    Article  CAS  Google Scholar 

  110. Stefanick ML, Terry RB, Haskell WL, Wood P. Relationships of changes in postheparin hepatic and lipoprotein lipase activity to HDL-cholesterol changes following weight loss achieved by dieting versus exercise. Cardiovasc Dis. 1987; https://doi.org/10.1007/978-1-4684-5296-9_7.

  111. Kantor MA, Cullinane EM, Herbert PN, Thompson PD. Acute increase in lipoprotein lipase following prolonged exercise. Metabolism. 1984;33(5):454–7. https://doi.org/10.1016/0026-0495(84)90147-1.

    Article  CAS  PubMed  Google Scholar 

  112. Shoup EE, Durstine JL, Davis JM, Pate RR, Baroli WP. Effects of a single exercise session of resistance exercise on plasma lipoproteins and postheparin lipase activity. Unpublished data.

    Google Scholar 

  113. Kuusi T, Nikkilä EA, Saarinen P, Varha P, Laitinen LA. Plasma high density lipoproteins HDL2, HDL3 and postheparin plasma lipases in relation to parameters of physical fitness. Atherosclerosis. 1982;41(2–3):209–19. https://doi.org/10.1016/0021-9150(82)90186-1.

    Article  CAS  PubMed  Google Scholar 

  114. Taskinen MR, Nikkilä EA. High density lipoprotein subfractions in relation to lipoprotein lipase activity of tissues in man--evidence for reciprocal regulation of HDL2 and HDL3 levels by lipoprotein lipase. Clin Chim Acta. 1981;112(3):325–32. https://doi.org/10.1016/0009-8981(81)90455-1.

    Article  CAS  PubMed  Google Scholar 

  115. Williams PT, Albers JJ, Krauss RM, Wood P. Associations of lecithin: cholesterol acyltransferase (LCAT) mass concentrations with exercise, weight loss, and plasma lipoprotein subfraction concentrations in men. Atherosclerosis. 1990;82(1–2):53–8. https://doi.org/10.1016/0021-9150(90)90143-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Gupta AK, Ross EA, Myers JN, Kashyap ML. Increased reverse cholesterol transport in athletes. Metabolism. 1993;42(6):684–90. https://doi.org/10.1016/0026-0495(93)90233-E.

    Article  CAS  PubMed  Google Scholar 

  117. Marniemi J, Dahlström S, Kvist M, SeppAnen A, Hietanen E. Dependence of serum lipid and lecithin: cholesterol acyltransferase levels on physical training in young men. Eur J Appl Physio and Occup Physio. 1982;49(1):25–35. https://doi.org/10.1007/BF00428960.

    Article  CAS  Google Scholar 

  118. Tsopanakis C, Kotsarellis D, Tsopanakis A. Plasma lecithin: cholesterol acyltransferase activity in elite athletes from selected sports. Eur J Appl Physio and Occup Physio. 1988;58(3):262–5. https://doi.org/10.1007/BF00417260.

    Article  CAS  Google Scholar 

  119. Marniemi J, Hietanen E. Regulation of Serum Lipids by Physical Exercise. Boca Raton: CRC Press; 1982.

    Google Scholar 

  120. Thomas TR, Adeniran SB, Iltis PW, Aquiar CA, Albers JJ. Effects of interval and continuous running on HDL-cholesterol, apoproteins A-1 and B, and LCAT. Can J Appl Sport Sci. 1985;10(1):52–9.

    CAS  PubMed  Google Scholar 

  121. Thompson CE, Thomas TR, Araujo J, Albers JJ, Decedue CJ. Response of HDL cholesterol, apoprotein AI, and LCAT to exercise withdrawal. Atherosclerosis. 1985;54(1):65–73. https://doi.org/10.1016/0021-9150(85)90154-6.

    Article  CAS  PubMed  Google Scholar 

  122. Dufaux B, Order U, Muller R, Hollmann W. Delayed effects of prolonged exercise on serum lipoproteins. Metabolism. 1986;35(2):105–9. https://doi.org/10.1016/0026-0495(86)90108-3.

    Article  CAS  PubMed  Google Scholar 

  123. Frey I, Baumstark MW, Berg A, Keul J. Influence of acute maximal exercise on lecithin: cholesterol acyltransferase activity in healthy adults of differing aerobic performance. Eur J Appl Physio Occup Physiol. 1991;62(1):31–5. https://doi.org/10.1007/BF00635630.

    Article  CAS  Google Scholar 

  124. Berger GMB, Griffiths MP. Acute effects of moderate exercise on plasma lipoprotein parameters. Inter J Sports Med. 1987;8(5):336–41. https://doi.org/10.1055/s-2008-1025680.

    Article  CAS  Google Scholar 

  125. Griffin BA, Skinner ER, Maughan RJ. The acute effect of prolonged walking and dietary changes on plasma lipoprotein concentrations and high-density lipoprotein subfractions. Metabolism. 1988;37(6):535–41. https://doi.org/10.1016/0026-0495(88)90168-0.

    Article  CAS  PubMed  Google Scholar 

  126. Wallace MB, Moffatt RJ, Haymes EM, Green NR. Acute effects of resistance exercise on parameters of lipoprotein metabolism. Med Sci Sports Exerc. 1991;23(2):199–204.

    Article  CAS  Google Scholar 

  127. Seip RL, Moulin P, Cocke T, Tall A, Kohrt WM, Mankowitz K, et al. Exercise training decreases plasma cholesteryl ester transfer protein. Arterioscler Thromb Vasc Biol. 1993;13:1359–67. https://doi.org/10.1161/01.ATV.13.9.1359.

    Article  CAS  Google Scholar 

  128. Services USDoHH. Physical activity guidelines for Americans. ODPHP Publication No. 2008;U0036:2008.

    Google Scholar 

  129. Haskell WL, Lee IM, Pate RR, Powell KE, Blair SN, Franklin BA, et al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Circulation. 2007;116(9):1081–93. https://doi.org/10.1161/CIRCULATION.107.185649.

    Article  PubMed  Google Scholar 

  130. Chodzko-Zajko WJ, Proctor DN, Singh MA, Minson CT, Nigg CR, Salem GJ, et al. Exercise and physical activity for older adults. Med Sci Sports Exerc. 2009;41:1510–30. https://doi.org/10.1249/MSS.0b013e3181a0c95c.

    Article  PubMed  Google Scholar 

  131. Nelson ME, Rejeski WJ, Blair SN, Duncan PW, Judge JO, King AC, et al. Physical activity and public health in older adults: recommendation from the American College of Sports Medicine and the American Heart Association. Circulation. 2007;116(9):1094–105. https://doi.org/10.1161/CIRCULATIONAHA.107.185650.

    Article  PubMed  Google Scholar 

  132. Riebe D. ACSM’s Exercise Testing and Prescription. 10th ed. Philadelphia: Wolters Kluwer; 2017.

    Google Scholar 

  133. Williams PT, Krauss RM, Wood PD, Lindgren FT, Giotas C, Vranizan KM. Lipoprotein subfractions of runners and sedentary men. Metabolism. 1986;35(1):45–52. https://doi.org/10.1016/0026-0495(86)90094-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Wood PD, Haskell WL, Blair SN, Williams PT, Krauss RM, Lindgren FT, et al. Increased exercise level and plasma lipoprotein concentrations: a one-year, randomized, controlled study in sedentary, middle-aged men. Metabolism. 1983;32(1):31–9. https://doi.org/10.1016/0026-0495(83)90152-X.

    Article  CAS  PubMed  Google Scholar 

  135. Artinian NT, Fletcher GF, Mozaffarian D, Kris-Etherton P, Van Horn L, Lichtenstein AH, et al. Interventions to promote physical activity and dietary lifestyle changes for cardiovascular risk factor reduction in adults: a scientific statement from the American Heart Association. Circulation. 2010;122(4):406–41. https://doi.org/10.1161/CIR.0b013e3181e8edf1.

    Article  PubMed  Google Scholar 

  136. Fletcher B, Berra K, Ades P, Braun LT, Burke LE, Durstine JL, et al. Managing abnormal blood lipids: a collaborative approach. Circulation. 2005;112(20):3184–209. https://doi.org/10.1161/CIRCULATIONAHA.105.169180.

    Article  PubMed  Google Scholar 

  137. Stone NJ, Robinson JG, Lichtenstein AH, Bairey Merz CN, Blum CB, Eckel RH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63(25 Pt B):2889–934. https://doi.org/10.1016/j.jacc.2013.11.002.

    Article  PubMed  Google Scholar 

  138. Sarzynski MA, Ruiz-Ramie JJ, Barber JL, Slentz CA, Apolzan JW, McGarrah RW, et al. Effects of increasing exercise intensity and dose on multiple measures of HDL (High-Density Lipoprotein) function. Arterioscler Thromb Vasc Biol. 2018;38(4):943–52. https://doi.org/10.1161/ATVBAHA.117.310307.

    Article  CAS  PubMed  Google Scholar 

  139. Durstine JL, Moore GE. ACSM’s Exercise Management for Persons with Chronic Diseases and Disabilities. 2nd ed. Champaign: Human Kinetics; 2003.

    Google Scholar 

  140. Auro K, Joensuu A, Fischer K, Kettunen J, Salo P, Mattsson H, et al. A metabolic view on menopause and ageing. Nat Commun. 2014;5:4708. https://doi.org/10.1038/ncomms5708.

    Article  CAS  PubMed  Google Scholar 

  141. Després JP, Moorjani S, Lupien PJ, Tremblay A, Nadeau A, Bouchard C. Regional distribution of body fat, plasma lipoproteins, and cardiovascular disease. Arteriosclerosis. 1990;10(4):497–511. https://doi.org/10.1161/01.ATV.10.4.497.

    Article  PubMed  Google Scholar 

  142. Walton C, Lees B, Crook D, Worthington M, Godsland IF, Stevenson JC. Body fat distribution, rather than overall adiposity, influences serum lipids and lipoproteins in healthy men independently of age. Amer J Med Sci. 1995;99(5):459–64. https://doi.org/10.1016/S0002-9343(99)80220-4.

    Article  CAS  Google Scholar 

  143. Gepner AD, Piper ME, Johnson HM, Fiore MC, Baker TB, Stein JH. Effects of smoking and smoking cessation on lipids and lipoproteins: outcomes from a randomized clinical trial. Am Heart J. 2011;161(1):145–51. https://doi.org/10.1016/j.ahj.2010.09.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Schijf CP, Mooren MJ, Doesburg WH, Thomas CM, Rolland R. Differences in serum lipids, lipoproteins, sex hormone binding globulin and testosterone between the follicular and the luteal phase of the menstrual cycle. Acta Endocrinol. 1993;129(2):130–3. https://doi.org/10.1530/acta.0.1290130.

    Article  CAS  PubMed  Google Scholar 

  145. Ribeiro SM, Luz Sdos S, Aquino Rde C. The role of nutrition and physical activity in cholesterol and aging. Clin Geriatr Med. 2015;31(3):401–16. https://doi.org/10.1016/j.cger.2015.04.010.

    Article  PubMed  Google Scholar 

  146. Langsted A, Freiberg JJ, Nordestgaard BG. Fasting and nonfasting lipid levels: influence of normal food intake on lipids, lipoproteins, apolipoproteins, and cardiovascular risk prediction. Circulation. 2008;118(20):2047–56. https://doi.org/10.1161/CIRCULATIONAHA.108.804146.

    Article  CAS  PubMed  Google Scholar 

  147. Dill DB, Costill DL. Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J Appl Physiol. 1974;37(2):247–8. https://doi.org/10.1152/jappl.1974.37.2.247.

    Article  CAS  PubMed  Google Scholar 

  148. Crouse JR, Grundy SM. Effects of alcohol on plasma lipoproteins and cholesterol and triglyceride metabolism in man. J Lipid Res. 1984;25:486–96.

    CAS  PubMed  Google Scholar 

  149. Klop B, Rego A, Cabezas M. Alcohol and plasma triglycerides. Curr Opin Lipidol. 2013;24(4):321–6. https://doi.org/10.1097/MOL.0b013e3283606845.

    Article  CAS  PubMed  Google Scholar 

  150. Ainsworth R, Haskell WL, Herrmann SD, Meckes N, Ssett DR, Tudor-Locke C, et al. 2011 Compendium of physical activities. Med Sci Sports Exerc. 2011;43(8):1575–81. https://doi.org/10.1249/MSS.0b013e31821ece12.

    Article  PubMed  Google Scholar 

  151. Herink M, Ito MK. Medication induced changes in lipid and lipoproteins. Endotext [Internet] 2015; https://www.ncbi.nlm.nih.gov/books/NBK326739/

  152. Crook MA, Apolipoprotein H. Its relevance to cardiovascular disease. Atherosclerosis. 2010;209(1):32–4. https://doi.org/10.1016/j.atherosclerosis.2009.11.022.

    Article  CAS  PubMed  Google Scholar 

  153. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the Third Report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults. JAMA. 2001;285(19):2486–97. https://doi.org/10.1001/jama.285.19.2486.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Larry Durstine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Durstine, J.L., Anderson, E., Porter, R.R., Wang, X. (2019). Physical Activity, Exercise, and Lipids and Lipoproteins. In: Kokkinos, P., Narayan, P. (eds) Cardiorespiratory Fitness in Cardiometabolic Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-04816-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04816-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04815-0

  • Online ISBN: 978-3-030-04816-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics