Skip to main content

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

FeCrAl alloys are promising for developing accident tolerant nuclear fuel claddings. These alloys showed good environmental compatibility and oxidation resistance in elevated-temperature water and steam, as well as low radiation-induced swelling. However, FeCrAl alloys may suffer from several degradation mechanisms, one of which may be a susceptibility to cracking during welding. Here, a set of advanced modified FeCrAl alloys were designed and produced by varying Al-content and employing additions of Nb and TiC. Strength, ductility, and deformation hardening behavior of the advanced FeCrAl alloys and their weldments are discussed.

This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC0500OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for the United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.O.H. Amuda, S. Mridha, Comparative evaluation of grain refinement in AISI 430 FSS welds by elemental metal powder addition and cryogenic cooling. Mater. Des. 35, 609–618 (2012)

    Article  CAS  Google Scholar 

  2. I. AghaAli, M. Farzam, M.A. Golozar, I. Danaee, The effect of repeated repair welding on mechanical and corrosion properties of stainless steel 316L, in Materials & Design (1980–2015), vol. 54 (2014), pp. 331–341

    Article  CAS  Google Scholar 

  3. S.J. Zinkle, K.A. Terrani, J.C. Gehin, L.J. Ott, L.L. Snead, Accident tolerant fuels for LWRs: a perspective. J. Nucl. Mater. 448, 374–379 (2014)

    Article  CAS  Google Scholar 

  4. J. Lim, I.S. Hwang, J.H. Kim, Design of alumina forming FeCrAl steels for lead or lead–bismuth cooled fast reactors. J. Nucl. Mater. 441, 650–660 (2013)

    Article  CAS  Google Scholar 

  5. B.A. Pint, K.A. Terrani, Y. Yamamoto, L.L. Snead, Material selection for accident tolerant fuel cladding. Metall Mater Trans E 2, 190–196 (2015)

    CAS  Google Scholar 

  6. J. Lim, H.O. Nam, I.S. Hwang, J.H. Kim, A study of early corrosion behaviors of FeCrAl alloys in liquid lead–bismuth eutectic environments. J. Nucl. Mater. 407, 205–210 (2010)

    Article  CAS  Google Scholar 

  7. J. Engkvist, U. Bexell, M. Grehk, M. Olsson, High temperature oxidation of FeCrAl-alloys–influence of Al-concentration on oxide layer characteristics. Mater. Corros. 60, 876–881 (2009)

    Article  CAS  Google Scholar 

  8. B.A. Pint, K.A. Unocic, K.A. Terrani, Effect of steam on high temperature oxidation behaviour of alumina-forming alloys. Mater. High Temp. 32, 28–35 (2015)

    Article  CAS  Google Scholar 

  9. R. Kögler, W. Anwand, A. Richter, M. Butterling, X. Ou, A. Wagner, C.-L. Chen, Nanocavity formation and hardness increase by dual ion beam irradiation of oxide dispersion strengthened FeCrAl alloy. J. Nucl. Mater. 427, 133–139 (2012)

    Article  CAS  Google Scholar 

  10. E. Little, D. Stow, Void-swelling in irons and ferritic steels: II. An experimental survey of materials irradiated in a fast reactor. J. Nucl. Mater. 87, 25–39 (1979)

    Article  CAS  Google Scholar 

  11. K.G. Field, M.N. Gussev, Y. Yamamoto, L.L. Snead, Deformation behavior of laser welds in high temperature oxidation resistant Fe–Cr–Al alloys for fuel cladding applications. J. Nucl. Mater. 454, 352–358 (2014)

    Article  CAS  Google Scholar 

  12. W. Chubb, S. Alfant, A.A. Bauer, E. Jablonowski, F. Shober, R.F. Dickerson, Constitution, Metallurgy, and Oxidation Resistance of Iron-Chromium-Aluminum Alloys (Battelle Memorial Inst, Columbus, OH, 1958)

    Book  Google Scholar 

  13. J. Regina, J. Dupont, A. Marder, The effect of chromium on the weldability and microstructure of Fe-Cr-Al weld cladding. Weld J New York 86, 170 (2007)

    Google Scholar 

  14. J. DuPont, J. Regina, K. Adams, Improving the weldability of fecral weld overlay coatings, in Annual Conference on Fossil Energy Materials. Citeseer, p. 132 (2007)

    Google Scholar 

  15. R. Trivedi, S. David, M. Eshelman, J. Vitek, S. Babu, T. Hong, T. DebRoy, In situ observations of weld pool solidification using transparent metal-analog systems. J. Appl. Phys. 93, 4885–4895 (2003)

    Article  CAS  Google Scholar 

  16. T. Zacharia, J. Vitek, J. Goldak, T. DebRoy, M. Rappaz, H. Bhadeshia, Modeling of fundamental phenomena in welds. Modell. Simul. Mater. Sci. Eng. 3, 265 (1995)

    Article  CAS  Google Scholar 

  17. M. Turski, M. Smith, P. Bouchard, L. Edwards, P. Withers, Spatially resolved materials property data from a uniaxial cross-weld tensile test. J. Press. Vessel Technol. 131, 061406 (2009)

    Article  CAS  Google Scholar 

  18. P.D. Edmondson, S.A. Briggs, Y. Yamamoto, R.H. Howard, K. Sridharan, K.A. Terrani, K.G. Field, Irradiation-enhanced α′ precipitation in model FeCrAl alloys. Scripta Mater. 116, 112–116 (2016)

    Article  CAS  Google Scholar 

  19. J. Ejenstam, M. Thuvander, P. Olsson, F. Rave, P. Szakalos, Microstructural stability of Fe–Cr–Al alloys at 450–550 °C. J. Nucl. Mater. 457, 291–297 (2015)

    Article  CAS  Google Scholar 

  20. K.G. Field, X. Hu, K.C. Littrell, Y. Yamamoto, L.L. Snead, Radiation tolerance of neutron-irradiated model Fe–Cr–Al alloys. J. Nucl. Mater. 465, 746–755 (2015)

    Article  CAS  Google Scholar 

  21. K.G. Field, M.N. Gussev, R. Howard, First Annual Progress Report on Radiation Tolerance of Controlled Fusion Welds in High Temperature Oxidation Resistant FeCrAl Alloys, ORNL/TM-2015/770 (2015)

    Google Scholar 

  22. D. Naumenko, J. Le-Coze, E. Wessel, W. Fischer, W.J. Quadakkers, Ultra-high purity metals. II. Effect of trace amounts of carbon and nitrogen on the high temperature oxidation resistance of high purity FeCrAl alloys. Mater. Trans. 43, 168–172 (2002)

    Article  CAS  Google Scholar 

  23. B. Pint, Experimental observations in support of the dynamic-segregation theory to explain the reactive-element effect. Oxid. Met. 45, 1–37 (1996)

    Article  CAS  Google Scholar 

  24. M.A. Sutton, J.J. Orteu, H. Schreier, Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications. Springer Science & Business Media (2009)

    Google Scholar 

  25. Y.B. Das, A.N. Forsey, T.H. Simm, K.M. Perkins, M.E. Fitzpatrick, S. Gungor, R.J. Moat, In situ observation of strain and phase transformation in plastically deformed 301 austenitic stainless steel. Mater. Des. 112, 107–116 (2016)

    Article  CAS  Google Scholar 

  26. L. Huynh, J. Rotella, M.D. Sangid, Fatigue behavior of IN718 microtrusses produced via additive manufacturing. Mater. Des. 105, 278–289 (2016)

    Article  CAS  Google Scholar 

  27. C. Leitão, I. Galvão, R. Leal, D. Rodrigues, Determination of local constitutive properties of aluminium friction stir welds using digital image correlation. Mater. Des. 33, 69–74 (2012)

    Article  CAS  Google Scholar 

  28. M.O. Acar, S. Gungor, Experimental and numerical study of strength mismatch in cross-weld tensile testing. J. Strain Anal. Eng. Des., p. 0309324715593699 (2015)

    Google Scholar 

  29. S. Patra, A. Ghosh, J. Sood, L.K. Singhal, A.S. Podder, D. Chakrabarti, Effect of coarse grain band on the ridging severity of 409L ferritic stainless steel. Mater. Des. 106, 336–348 (2016)

    Article  CAS  Google Scholar 

  30. S. Dziaszyk, E.J. Payton, F. Friedel, V. Marx, G. Eggeler, On the characterization of recrystallized fraction using electron backscatter diffraction: a direct comparison to local hardness in an IF steel using nanoindentation. Mater. Sci. Eng. A 527, 7854–7864 (2010)

    Article  CAS  Google Scholar 

  31. M. Gussev, T. Byun, J. Busby, Description of strain hardening behavior in neutron-irradiated fcc metals. J. Nucl. Mater. 427, 62–68 (2012)

    Article  CAS  Google Scholar 

  32. A. Patra, D.L. McDowell, Crystal plasticity investigation of the microstructural factors influencing dislocation channeling in a model irradiated bcc material. Acta Mater. 110, 364–376 (2016)

    Article  CAS  Google Scholar 

  33. V. Villaret, F. Deschaux-Beaume, C. Bordreuil, G. Fras, C. Chovet, B. Petit, L. Faivre, Characterization of Gas Metal Arc Welding welds obtained with new high Cr–Mo ferritic stainless steel filler wires. Mater. Des. 51, 474–483 (2013)

    Article  CAS  Google Scholar 

  34. H. Li, W. Xing, X. Yu, W. Zuo, L. Ma, P. Dong, W. Wang, G. Fan, J. Lian, M. Ding, Dramatically enhanced impact toughness in welded ultra-ferritic stainless steel by additional nitrogen gas in Ar-based shielding gas. J. Mater. Res. 31, 3610–3618 (2016)

    Article  CAS  Google Scholar 

  35. Y. Zheng, Y. Wang, H. Li, W. Xing, X. Yu, P. Dong, W. Wang, G. Fan, J. Lian, M. Ding, An experimental study of nitrogen gas influence on the 443 ferritic stainless steel joints by double-shielded welding. Int. J. Adv. Manuf. Technol., 1–9 (2016)

    Google Scholar 

  36. S. Kobayashi, T. Takasugi, Mapping of 475 °C embrittlement in ferritic Fe–Cr–Al alloys. Scripta Mater. 63, 1104–1107 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was sponsored by the U.S. Department of Energy, Office of Nuclear Energy, for the Nuclear Energy Enabling Technologies (NEET) program for the Reactor Materials effort. This report was authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. Authors would like to thank Dr. L. Tan (ORNL) for fruitful discussion of the results and S. Crawford (ORNL) for valuable help in manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Gussev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Minerals, Metals & Materials Society

About this paper

Cite this paper

Gussev, M.N., Field, K.G., Cakmak, E., Yamamoto, Y. (2019). Mechanical Behavior and Structure of Advanced Fe-Cr-Al Alloy Weldments. In: Jackson, J., Paraventi, D., Wright, M. (eds) Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-04639-2_94

Download citation

Publish with us

Policies and ethics